Recital

Login Register
The PHP ODBC functions can be used to access Recital data via the Recital Universal ODBC Driver.

The following example connects to a Recital ODBC datasource, executes a query then outputs all the results from the resultset.

<?php
$sql = "select country from customers limit 10";
$conn = odbc_connect('Recital ODBC test', '?', '?');
$rs = odbc_exec($conn, $sql);
odbc_result_all($rs);
odbc_close($conn);
?>

Output:

<table><tr><th>Country</th></tr>
<tr><td>Germany        </td></tr>
<tr><td>Mexico         </td></tr>
<tr><td>Mexico         </td></tr>
<tr><td>UK             </td></tr>
<tr><td>Sweden         </td></tr>
<tr><td>Germany        </td></tr>
<tr><td>France         </td></tr>
<tr><td>Spain          </td></tr>
<tr><td>France         </td></tr>
<tr><td>Canada         </td></tr>
</table>

For information on installing and configuring the Recital Universal ODBC Driver and creating and modifying datasources, please see the Documentation section of this web site.

Note: Use of ? for the username and password on the local server is dependent on DB_LOCAL_LOGIN being enabled.



Published in Blogs
Read more...

DRBD:
DRBD (Distributed Replicated Block Device) forms the storage redundancy portition of a HA cluster setup. Explained in basic terms DRBD provides a means of achieving RAID 1 behavoir over a network, where whole block devices are mirrored accross the network.

To start off you will need 2 indentically sized raw drives or partitions. Many how-to's on the internet assume the use of whole drives, of course this will be better performance, but if you are simply getting familar with the technology you can repartition existing drives to allow for two eqaully sized raw partitions, one on each of the systems you will be using.

There are 3 DRBD replication modes:
• Protocol A: Write I/O is reported as completed as soon as it reached local disk and local TCP send buffer
• Protocol B: Write I/O is reported as completed as soon as it reached local disk and remote TCP buffer cache
• Protocol C: Write I/O is reported as completed as soon as it reached both local and remote disks.

If we were installing the HA cluster on a slow LAN or if the geogrphical seperation of the systems involved was great, then I recommend you opt for asyncronous mirroring (Protocol A) where the notifcation of a completed write operation occurs as soon as the local disk write is performed. This will greatly improve performance.

As we are setting up our HA cluster connected via a fast LAN, we will be using DRBD in fully syncronous mode, protocol C.
Protocol C involves the file system on the active node only being notified that the write operation was finished when the block is written to both disks of the cluster. Protocol C is the most commonly used mode of DRBD.

/etc/drbd.conf

global { usage-count yes; }
common { syncer { rate 10M; } }
resource r0 {
protocol C;
net {
max-buffers 2048;
ko-count 4;
}
on bailey {
device    /dev/drbd0;
disk      /dev/sda4;
address   192.168.1.125:7789;
meta-disk internal;
}
on giskard {
device    /dev/drbd0;
disk      /dev/sda3;
address   192.168.1.127:7789;
meta-disk internal;
}
}

drbd.conf explained:

Global section, usage-count. The DRBD project keeps statistics about the usage of DRBD versions. They do this by contacting a HTTP server each time a new DRBD version is installed on a system. This can be disabled by setting usage-count no;.

The common seciton contains configurations inhereted by all resources defined.
Setting the syncronisation rate, this is accoimplished by going to the syncer section and then assigning a value to the rate setting. The syncronisation rate refers to rate in which the data is being mirrored in the background. The best setting for the syncronsation rate is related to the speed of the network with which the DRBD systems are communicating on. 100Mbps ethernet supports around 12MBps, Giggabit ethernet somewhere around 125MBps.

in the configuration above, we have a resource defined as r0, the nodes are configured in the "on" host subsections.
"Device" configures the path of the logical block device that will be created by DRBD
"Disk" configures the block device that will be used to store the data.
"Address" configures the IP address and port number of the host that will hold this DRBD device.
"Meta-disk" configures the location where the metadata about the DRBD device will be stored.
You can set this to internal and DRBD will use the physical block device to store the information, by recording the metadata within the last sections of the disk.
Once you have created your configuration file, you must conduct the following steps on both the nodes.

Create device metadata.

$ drbdadm create-md r0
v08 Magic number not found
Writing meta data...
initialising activity log
NOT initialized bitmap
New drbd meta data block sucessfully created.
success

Attach the backing device.
$ drbdadm attach r0

Set the syncronisation parameters.
$ drbdadm syncer r0

Connect it to the peer.
$ drbdadm connect r0

Run the service.
$ service drbd start

Heartbeat:

Heartbeat provides the IP redundancy and the service HA functionailty.
On the failure of the primary node the VIP is assigned to the secondary node and the services configured to be HA are started on the secondary node.

Heartbeat configuration:

/etc/ha/ha.conf

## /etc/ha.d/ha.cf on node1
## This configuration is to be the same on both machines
## This example is made for version 2, comment out crm if using version 1
// replace the node variables with the names of your nodes.

crm no
keepalive 1
deadtime 5
warntime 3
initdead 20
bcast eth0
auto_failback yes
node bailey
node giskard

/etc/ha.d/authkeys
// The configuration below set authentication off, and encryption off for the authentication of nodes and their packets.
//Note make sure the authkeys file has the correct permisisions chmod 600

## /etc/ha.d/authkeys
auth 1
1 crc

/etc/ha.d/haresources
//192.168.1.40 is the VIP (Virtual IP) assigned to the cluster.
//the "smb" in the configuration line represents the service we wish to make HA
// /devdrbd0 represents the resource name you configured in the drbd.conf

## /etc/ha.d/haresources
## This configuration is to be the same on both nodes

bailey 192.168.1.40 drbddisk Filesystem::/dev/drbd0::/drbdData::ext3 smb

Published in Blogs
Read more...
Recital Web: cookies, sessions, 64-bit Apache module: documentation update:

Recital Web Getting Started
Published in Blogs
Read more...

Recital 10.0.0 Linux x86 is now available

The full download for linux x86 can be downloaded from here.

Release notes can be found here.

Published in Blogs
Read more...

There's a nice article on IBM developerworks describing how to package software using RPM. You can read it here.

Published in Blogs
Read more...
TIP
To access the menu bar in Recital, press the / key.

Full details on Recital Function Keys can be found in the Key Assist section of the Help menu, or in our documentation wiki here.
Published in Blogs
Read more...
Recital is a dynamic programming language particularly suited to the development of database applications. While Recital still supports standard procedural programming, new extensions to the language give you the power and flexibility of object-oriented programming. Object-oriented design and object-oriented programming represent a change in focus from standard procedural programming. This short primer will give you a good understanding of how to program object-oriented Recital.
Published in Blogs
Read more...

After an extended period of intense software development, we are pleased to announce the release of Recital 10 which is a milestone in our development efforts.
 
Recital 10 is comprised of major new versions of all of our products (which are all now Cluster Ready) as well as some new products, and a collection of open source technologies fully supported by ourselves to our customer base. 

The Recital 10 release notes can be found here.
  • Recital

    A powerful scripting language with an embedded database used for developing desktop database applications on Linux and Unix.

  • Recital Server

    A cross-platform SQL database and application server.

  • Recital Web

    A server-side scripting language with an embedded SQL database for creating web 2.0 web applications.

Published in Blogs
Read more...

Recital is a rich and versatile product with many ways to do the same thing. Developers usually write code in the way that they are accustomed to without paying much attention to how this will perform in a multi-user environment with large amounts of users and transactions. The best way to optimize Recital applications is to use the built-in tuning capabilities introduced in Recital 10.

Published in Blogs
Read more...
TIP
The Recital Oracle Gateway requires the Oracle libclntsh.so shared library.  If this file is unknown to ld.so.conf, add it using the ldconfig command. 
Published in Blogs
Read more...

Copyright © 2025 Recital Software Inc.

Login

Register

User Registration
or Cancel