Another useful article on IBM developerworks shows how to build PHP extensions using SWIG. You can find the article here.
A quick tip for optimizing TCP performance on linux.
edit /etc/sysctl.conf add the lines:
If using gigabit ethernet:
net.ipv4.tcp_mem= 98304 131072 196608
net.ipv4.tcp_window_scaling=1
net.core.wmem_default = 65536
net.core.rmem_default = 65536
net.core.wmem_max=8388608
To reload these use:
# sysctl -p
If using infiniband:
net.ipv4.tcp_window_scaling=1
net.ipv4.tcp_timestamps=0
net.ipv4.tcp_sack=0
net.ipv4.tcp_rmem=10000000 10000000 10000000
net.ipv4.tcp_wmem=10000000 10000000 10000000
net.ipv4.tcp_mem=10000000 10000000 10000000
net.core.rmem_max=524287
net.core.wmem_max=524287
net.core.rmem_default=524287
net.core.wmem_default=524287
net.core.optmem_max=524287
net.core.netdev_max_backlog=300000
Specifying this seems to reslove the problem:
-Xmx512m -XX:MaxPermSize=512m
lslk lists information about locks held on files with local inodes on systems running linux.
Install it with:
yum install lslk
When you start the loadbalancer.org appliance you will see the following:
Default login:
Username: root
Password: loadbalancer
Access to webclient from an external client is:
http://192.168.1.129:9080
http://192.168.1.129:9443
You can access the web administrator using the IP and ports described onscreen.
For the sri lanka porject we are looking for performance and the network diagram indicates we are happy to have the cluster on the same subnet as the rest of the network.
Direct routing is the fasted performance possible, it has the advantage over NAT that the Loadbalancer does not become a bottleneck for incoming and outgoing packets. With DR the loadbalancer simply examines incoming packets and the servers to route the packets directly back to the requesting user.
The web interfaceis the only way to fully configure the loadbalancer vm. The console tool lbwizard will get it initiallised and any further configurations can then be done via the webinterface.
Using lbwizard for the Sri lanka configuration follow these steps.
On the first Loadbalancer:
//Start
Is this unit part for a HA Pair?
YES
Have you already setup the Slave?
NO
Is this a one-armed configuration?
YES
Enter the IP Address for the interface eth0?
Enter IP address you wish to be assigned to the SLAVE loadbalancer.
Enter the netmask for interface eth0?
Enter netmask for the subnet.
Enter the Floating IP adrress?
Enter the IP address that will be IP assosiacted the the HA-pair of loadbalancers.
//Finish
On the 2nd loadbalancer VM, run the lbwizard.
//Start
Is this unit part of an HA-Pair?
YES
Have you already set up the Slave?
YES
What is the slave units UP address?
Enter the IP which you entered when configuring the other loadbalancer VM.
Is this a one-armed configuration?
YES
Enter the IP Address for the interface eth0?
Enter the IP that will be assigned to the MASTER loadbalancer
Enter the netmask for interface eth0?
Enter the subnet netmask.
Enter the Floating IP address?
Enter the IP address that will be IP assosiacted the the HA-pair of loadbalancers.
Enter the address of the default gateway?
Enter the deafult gateway for the subnet.
Enter the IP of the nameserver?
Enter the dns server.
Enter the port for the first Virtual server?
Enter 22 for ssh
Enter the IP address of the first real server?
Enter the real IP of the first appserver
//Finish
Now this is complete we need to go to the web admin interface to configure the 2nd Real Server. As the lbwizard program will only allow you to configure 1 real server.
Now login to the web admin using the default password:
username: loadbalancer
password: loadbalancer
Note: Connect to the IP you have now set for your master loadbalancer
Goto the edit configuration tab
Now click add a real server:
Enter a label
IP address of the server plus the port of the service i.e. 192.168.1.125:22
Edit Configuration -> Virtual Servers
persistancte -> NO
Scheduler-> LC
LC - Least-Connection: assign more jobs to real servers with
fewer active jobs.
Service to check -> custom1
Check port -> 22
Forwarding Method -> DR
Feedback Method -> Agent
Arp Problem when using DR
Every real server must be configured to respond to the VIP address as well as the RIP
address.
You can use iptables (netfilter) on the real server to re-direct incoming packets destined for the virtual
server IP address.
This is a simple case of adding the following command to your start up script (rc.local):
//replace 10.0.0.21 with the Virtual Server IP
iptables -t nat -A PREROUTING -p tcp -d 10.0.0.21 -j REDIRECT
chkconfig iptables on
// the click event handler
private function onclick_sourcetree(e:Event):void {
yourTree.editable = false;
}
// the doubleclick event handler
private function ondoubleclick_sourcetree(e:Event):void {
yourTree.editable = true;
yourTree.editedItemPosition = {columnIndex:0, rowIndex:sourceTree.selectedIndex};
} sernet.de maintain the latest Samba releases in a yum repository, allowing for an easy and painless install or upgrade of Samba on your yum based Linux distribution.
To install the latest available Samba execute the following commands at the shell:
# cd /etc/yum.repos.d # wget http://ftp.sernet.de/pub/samba/experimental/centos/5/sernet-samba.repo # yum install samba
To upgrade an existing Samba install:
# cd /etc/yum.repos.d # wget http://ftp.sernet.de/pub/samba/experimental/centos/5/sernet-samba.repo ## Note: edit sernet-samba.repo and add the line "gpgcheck=false" otherwise ## it will not install as it is not signed
# yum update samba
Note: These steps will install the very latest build available at sernet.de.
If you require a less bleeding edge version of Samba, use the "tested" repo. This can be found at the following URL: http://ftp.sernet.de/pub/samba/tested/rhel/5
[data] oplocks = False level2 oplocks = False
veto oplock files = /*.dbf/*.DBF/*.ndx/*.NDX/*.dbx/*.DBX/*.dbt/*.DBT/
You can further tune samba by following this guide.
mount -t cifs {mount-point} -o username=name,pass=pass,directio
The directio option is used to not do inode data caching on files opened on this mount. This precludes mmaping files on this mount. In some cases with fast networks and little or no caching benefits on the client (e.g. when the application is doing large sequential reads bigger than page size without rereading the same data) this can provide better performance than the default behavior which caches reads (readahead) and writes (writebehind) through the local Linux client pagecache if oplock (caching token) is granted and held. Note that direct allows write operations larger than page size to be sent to the server.
Apr 22 16:57:39 bailey kernel: Status code returned 0xc000006d NT_STATUS_LOGON_FAILURE Apr 22 16:57:39 bailey kernel: CIFS VFS: Send error in SessSetup = -13 Apr 22 16:57:39 bailey kernel: CIFS VFS: cifs_mount failed w/return code = -13The you need to create the Samba user specified on the mount command
smbpasswd -a usernameFYI - Make sure you umount all the Samba {mount-point(s)} before shutting down Samba.
// determine how many Recital users are on the system
nusers = pipetostr("ps -ef | grep db.exe | wc -l")