$ lsof | grep db.exe | grep accounts db.exe 16897 john 6uw REG 253,0 20012 3413872 /usr/recital100/qa/accounts.dbf db.exe 16897 john 7u REG 253,0 4176 3413885 /usr/recital100/qa/accounts.dbxIf you want to check for locks you can use lslk, for example;
$ lslk | grep db.exe | grep accounts db.exe 16897 253,0 3413872 20012 w 0 0 0 12319 0 /usr/recital100/qa/accounts.dbfIf you don't have lslk installed you can install it with one of the updaters, for example on redhat linux:
$ yum update lslk
It would appear that gigabit LAN is not! In fact it often runs at the same speed as 100Mbps LAN. Let's look at why exactly.
After configuring your network you can use the ifconfig command to see what speeds the LAN is connected. Even though 1000Mbps is reported by the card, the reality is that the overall throughtput may well be ~100Mpbs. You can try copying a large file using scp to demonstrate this.
As it turns out, in order to use a gigabit LAN you need to use CAT6 cables. CAT5 and CAT5E are not good enough. End result, the ethernet cards throttle back the speed to reduce dropped packets and errors.
You can find a good article here titled Squeeze Your Gigabit NIC for Top Performance. After tuning up the TCP parameters i found that it made no dfifference. The principal reasons behind low gigabit ethernet performance can be summed up as follows.
- Need to use CAT6 cables
- Slow Disk speed
- Limitations of the PCI bus which the gigabit ethernet cards use
You can get an idea about the disk speed using the hdparm command:
Display the disk partitions and choose the main linux partition which has the / filesystem.
# fdisk -l
Then get disk cache and disk read statistics:
# hdparm -Tt /dev/sda0
On my desktop system the sata disk perfomance is a limiting factor. These were the results:
/dev/sda1:
Timing cached reads: 9984 MB in 2.00 seconds = 4996.41 MB/sec
Timing buffered disk reads: 84 MB in 3.13 seconds = 58.49 MB/sec
Well, that equates to a raw disk read speed of 58.49 * 8 = 467Mbps which is half the speed of a gigabit LAN.
So.. NAS storage with lots of memory looks to be the way to go... If you use the right cables!
After an extended period of intense software development, we are pleased to announce the release of Recital 10 which is a milestone in our development efforts.
The Recital 10 release notes can be found here.
- Recital
A powerful scripting language with an embedded database used for developing desktop database applications on Linux and Unix.
- Recital Server
A cross-platform SQL database and application server.
- Recital Web
A server-side scripting language with an embedded SQL database for creating web 2.0 web applications.
Usually, you do not need to setup an email server under Linux. Most GUI email clients support Gmail POP3 and IMAP configurations. But, how do you send mail via the standard /usr/bin/mail user agents in a shell script? Programs such as sendmail / postfix / exim can be configured as a gmail smarthost but they are largely overkill for this use. The ssmtp program is a neat utility that does just that for you via gmail.
Recital provides a wide variety of connectivity solutions to external data sources. This article provides an overview.
Ext3 commits writes to disk within approximately 5 seconds - Ext4 can take from 40-150 seconds. In addition, if a system is using Ext3 and crashes before the commit takes place you will still have the previous contents of a file where under Ext4 the file will be empty. Theodore Tso feels that this is a failure at the application level and that the file system is behaving as designed and as specified by the POSIX spec (which apparently does not specify what is supposed to happen when a system is not shut down cleanly). His solution to the issue is to suggest proper use of fsync() and lists various scenarios/examples in post 54 of the bug report (linked above). In addition he wrote a patch that recognize the rename() situation mentioned in his post 54 yet retains the normal Ext4 behaviors and performance in the majority of cases. Also a more "proper" solution has been provided which allows the behavior of Ext3 to be retained under Ext4 by mounting it with alloc_on_commit.
A somewhat related topic is the use of on-board caching by hard drives. This behavior can be modified on most drives by using hdparm.
In this article Barry Mavin, CEO and Chief Software Architect for Recital, details Working with Stored Procedures in the Recital Database Server.
Overview
Stored procedures and user-defined functions are collections of SQL statements and optional control-of-flow statements written in the Recital 4GL (compatible with VFP) stored under a name and saved in a Database. Both stored procedures and user-defined functions are just-in-time compiled by the Recital database engine. Using the Database Administrator in Recital Enterprise Studio, you can easily create, view, modify, and test Stored Procedures, Triggers, and user-defined functions
Creating and Editing Stored Procedures
To create a new Stored Procedure, right-click the Procedures node in the Databases tree of the Project Explorer and choose Create. To modify an existing stored procedure select the Stored Procedure in the Databases Tree in the Project Explorer by double-clicking on it or selecting Modify from the context menu . By convertion we recommend that you name your Stored Procedures beginning with "sp_xxx_", user-defined functions with "f_xxx_", and Triggers with "dt_xxx_", where xxx is the name of the table that they are associated with.
Testing the Procedure
To test run the Stored Procedure, select the Stored Procedure in the Databases Tree in the Project Explorer by double-clicking on it. Once the Database Administrator is displayed, click the Run button to run the procedure.
Getting return values
Example Stored Procedure called "sp_myproc":
parameter arg1, arg2 return arg1 + arg2
Example calling the Stored Procedure from C# .NET:
////////////////////////////////////////////////////////////////////////
// include the references below
using System.Data;
using Recital.Data;
////////////////////////////////////////////////////////////////////////
// sample code to call a Stored Procedure that adds to numeric values together
public int CallStoredProcedure()
{
RecitalConnection conn = new
RecitalConnection("Data Source=localhost;Database=southwind;uid=?;pwd=?");
RecitalCommand cmd = new RecitalCommand();
cmd.Connection = conn;
cmd.CommandText = "sp_myproc(@arg1, @arg2)";
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters["@arg1"].Value = 10;
cmd.Parameters["@arg2"].Value = 20;
conn.Open();
cmd.ExecuteNonQuery();
int result = (int)(cmd.Parameters["retvalue"].Value); // get the return value from the sp
conn.Close();
return result;
}
Writing Stored Procedures that return a Resultset
If you want to write a Stored Procedure that returns a ResultSet, you use the SETRESULTSET() function of the 4GL. Using the Universal .NET Data Provider, you can then execute the 4GL Stored Procedure and return the ResultSet to the client application for processing. ResultSets that are returned from Stored Procedures are read-only.
Example Stored Procedure called "sp_myproc":
parameter query
select * from customers &query into cursor "mydata"
return setresultset("mydata")
Example calling the Stored Procedure from C# .NET:
////////////////////////////////////////////////////////////////////////
// include the references below
using System.Data;
using Recital.Data;
////////////////////////////////////////////////////////////////////////
// sample code to call a stored procedure that returns a ResultSet
public void CallStoredProcedure()
{
RecitalConnection conn = new
RecitalConnection("Data Source=localhost;Database=southwind;uid=?;pwd=?");
RecitalCommand cmd = new RecitalCommand();
cmd.Connection = conn;
cmd.CommandText = "sp_myproc(@query)";
cmd.CommandType = CommandType.StoredProcedure;
cmd.Parameters["@query"].Value = "where not deleted()";
conn.Open();
RecitalDataReader dreader = cmd.ExecuteReader();
int sqlcnt = (int)(cmd.Parameters["sqlcnt"].Value); // returns number of affected rows
while (dreader.Read())
{
// read and process the data
}
dreader.Close();
conn.Close();
}
