try
open database southwind
catch
die("Cannot open database, please try later.")
endtry
SET DATADIR TO [ <directory> ]This command is used to specify a directory where database tables, memos, indexes, and dictionary files are located. When a table is being opened this directory is searched first before the current directory and the file search path to locate the table and its associated files. This allows the database tables to be relocated to a different file system without the need to change an existing application.
It would appear that gigabit LAN is not! In fact it often runs at the same speed as 100Mbps LAN. Let's look at why exactly.
After configuring your network you can use the ifconfig command to see what speeds the LAN is connected. Even though 1000Mbps is reported by the card, the reality is that the overall throughtput may well be ~100Mpbs. You can try copying a large file using scp to demonstrate this.
As it turns out, in order to use a gigabit LAN you need to use CAT6 cables. CAT5 and CAT5E are not good enough. End result, the ethernet cards throttle back the speed to reduce dropped packets and errors.
You can find a good article here titled Squeeze Your Gigabit NIC for Top Performance. After tuning up the TCP parameters i found that it made no dfifference. The principal reasons behind low gigabit ethernet performance can be summed up as follows.
- Need to use CAT6 cables
- Slow Disk speed
- Limitations of the PCI bus which the gigabit ethernet cards use
You can get an idea about the disk speed using the hdparm command:
Display the disk partitions and choose the main linux partition which has the / filesystem.
# fdisk -l
Then get disk cache and disk read statistics:
# hdparm -Tt /dev/sda0
On my desktop system the sata disk perfomance is a limiting factor. These were the results:
/dev/sda1:
Timing cached reads: 9984 MB in 2.00 seconds = 4996.41 MB/sec
Timing buffered disk reads: 84 MB in 3.13 seconds = 58.49 MB/sec
Well, that equates to a raw disk read speed of 58.49 * 8 = 467Mbps which is half the speed of a gigabit LAN.
So.. NAS storage with lots of memory looks to be the way to go... If you use the right cables!
In this article Barry Mavin, CEO and Chief Software Architect for Recital provides details on how to use the Recital Universal .NET Data Provider with the Recital Database Server.
Overview
A data provider in the .NET Framework serves as a bridge between an application and a data source. A data provider is used to retrieve data from a data source and to reconcile changes to that data back to the data source.
Each .NET Framework data provider has a DataAdapter object: the .NET Framework Data Provider for OLE DB is the OleDbDataAdapter object, the .NET Framework Data Provider for SQL Server is the SqlDataAdapter object, the .NET Framework Data Provider for ODBC is the OdbcDataAdapter object, and the .NET Framework Data Provider for the Recital Database Server is the RecitalDataAdapter object.
The Recital Universal .NET Data Provider can access any data sources supported by the Recital Database Server. It is not restricted to only access Recital data. It can be used to access server-side ODBC, JDBC and OLE DB data sources also.
Core classes of the Data Provider
The Connection, Command, DataReader, and DataAdapter objects represent the core elements of the .NET Framework data provider model. The Recital Universal .NET Data Provider is plug compatible with the .NET Framework Data Provider for SQL Server. All SQL Server classes are prefixed with "Sql" e.g. SqlDataAdaptor. To use the Recital Universal Data Adaptor, simply change the "Sql" prefix to "Recital" e.g. RecitalDataAdaptor.
The following table describes these objects.
| Object | Description |
|---|---|
| RecitalConnection | Establishes a connection to a specific data source. |
| RecitalCommand | Executes a command against a data source. |
| RecitalDataReader | Reads a forward-only, read-only stream of data from a data source. |
| RecitalDataAdapter | Populates a DataSet and resolves updates with the data source. |
Along with the core classes listed in the preceding table, a .NET Framework data provider also contains the classes listed in the following table.
| Object | Description |
|---|---|
| RecitalTransaction | Enables you to enlist commands in transactions at the data source. |
| RecitalCommandBuilder | A helper object that will automatically generate command properties of a DataAdapter or will derive parameter information from a stored procedure and populate the Parameters collection of a Command object. |
| RecitalParameter | Defines input, output, and return value parameters for commands and stored procedures. |
The Recital Universal .NET Data Provider provides connectivity to the Recital Database Server running on any supported platform (Windows, Linux, Unix, OpenVMS) using the RecitalConnection object. The Recital Universal .NET Data Provider supports a connection string format that is similar to the SQL Server connection string format.
The basic format of a connection string consists of a series of keyword/value pairs separated by semicolons. The equal sign (=) connects each keyword and its value.
The following table lists the valid names for keyword values within the ConnectionString property of the RecitalConnection class.
| Name | Default | Description |
|---|---|---|
| Data Source -or- Server -or- Servername -or- Nodename |
The name or network address of the instance of the Recital Database Server which to connect to. | |
| Directory | The target directory on the remote server where data to be accessed resides. This is ignored when a Database is specified. | |
| Encrypt -or- Encryption |
false | When true, DES3 encryption is used for all data sent between the client and server. |
| Initial Catalog -or- Database |
The name of the database on the remote server. | |
| Password -or- Pwd |
The password used to authenticate access to the remote server. | |
| User ID -or- uid -or- User -or- Username |
The user name used to authenticate access to the remote server. | |
| Connection Pooling -or- Pool |
false | Enable connection pooling to the server. This provides for one connection to be shared. |
| Logging | false | Provides for the ability to log all server requests for debugging purposes |
| Rowid | true | When Rowid is true (the default) a column will be post-fixed to each SELECT query that is a unique row identifier. This is used to provide optimised UPDATE and DELETE operations. If you use the RecitalSqlGrid, RecitalSqlForm, or RecitalSqlGridForm components then this column is not visible but is used to handle updates to the underlying data source. |
| Logfile | The name of the logfile for logging | |
| Gateway |
Opens an SQL gateway(Connection) to a foreign SQL data source on the remote server.
The gateway can be specified in several formats: |
Populating a DataSet from a DataAdaptor
The ADO.NET DataSet is a memory-resident representation of data that provides a consistent relational programming model independent of the data source. The DataSet represents a complete set of data including tables, constraints, and relationships among the tables. Because the DataSet is independent of the data source, a DataSet can include data local to the application, as well as data from multiple data sources. Interaction with existing data sources is controlled through the DataAdapter.
A DataAdapter is used to retrieve data from a data source and populate tables within a DataSet. The DataAdapter also resolves changes made to the DataSet back to the data source. The DataAdapter uses the Connection object of the .NET Framework data provider to connect to a data source and Command objects to retrieve data from and resolve changes to the data source.
The SelectCommand property of the DataAdapter is a Command object that retrieves data from the data source. The InsertCommand, UpdateCommand, and DeleteCommand properties of the DataAdapter are Command objects that manage updates to the data in the data source according to modifications made to the data in the DataSet.
The Fill method of the DataAdapter is used to populate a DataSet with the results of the SelectCommand of the DataAdapter. Fill takes as its arguments a DataSet to be populated, and a DataTable object, or the name of the DataTable to be filled with the rows returned from the SelectCommand.
The Fill method uses the DataReader object implicitly to return the column names and types used to create the tables in the DataSet, as well as the data to populate the rows of the tables in the DataSet. Tables and columns are only created if they do not already exist; otherwise Fill uses the existing DataSet schema.
Examples in C#:
////////////////////////////////////////////////////////////////////////
// include the references below
using System.Data;
using Recital.Data;
////////////////////////////////////////////////////////////////////////
// The following code example creates an instance of a DataAdapter that
// uses a Connection to the Recital Database Server Southwind database
// and populates a DataTable in a DataSet with the list of customers.
// The SQL statement and Connection arguments passed to the DataAdapter
// constructor are used to create the SelectCommand property of the DataAdapter.
public DataSet SelectCustomers()
{
RecitalConnection swindConn = new
RecitalConnection("Data Source=localhost;Initial Catalog=southwind");
RecitalCommand selectCMD = new
RecitalCommand("SELECT CustomerID, CompanyName FROM Customers", swindConn);
selectCMD.CommandTimeout = 30;
RecitalDataAdapter custDA = new RecitalDataAdapter();
custDA.SelectCommand = selectCMD;
swindConn.Open();
DataSet custDS = new DataSet();
custDA.Fill(custDS, "Customers");
swindConn.Close();
return custDS;
}
////////////////////////////////////////////////////////////////////////
// The following example uses the RecitalCommand, RecitalDataAdapter and
// RecitalConnection, to select records from a database, and populate a
// DataSet with the selected rows. The filled DataSet is then returned.
// To accomplish this, the method is passed an initialized DataSet, a
// connection string, and a query string that is a SQL SELECT statement
public DataSet SelectRecitalRows(DataSet dataset, string connection, string query)
{
RecitalConnection conn = new RecitalConnection(connection);
SqlDataAdapter adapter = new RecitalDataAdapter();
adapter.SelectCommand = new RecitalCommand(query, conn);
adapter.Fill(dataset);
return dataset;
} In this article Chris Mavin, explains and details how to use the Recital Database Server with the Open Source Servlet Container Apache Tomcat.
Overview
PHP has exploded on the Internet, but its not the only way to create web applications and dynamic websites. Using Java Servlets, JavaServer Pages and Apache Tomcat you can develop web applications in a more powerful full featured Object Oriented Language, that is easier to debug, maintain, and improve.
Tomcat Installation
There are a number of popular Java application servers such as IBM Web Sphere and BEA WebLogic but today we will be talking about the use of Apache Tomcat 5, the Open Source implementation of the Java Servlet and JavaServer Pages technologies developed at the Apache Software Foundation. The Tomcat Servlet engine is the official reference implementation for both the Servlet and JSP specifications, which are developed by Sun under the Java Community Process. What this means is that the Tomcat Server implements the Servlet and JSP specifications as well or better than most commercial application servers.
Apache Tomcat is available for free but offers many of the same features that commercially available Web application containers boast.
Tomcat 5 supports the latest Servlet and JSP specifications, Servlet 2.4, and JSP 2.0, along with features such as:
-
Tomcat can run as a standalone webserver or a Servlet/JSP engine for other Web Servers.
-
Multiple connectors - for enabling multiple protocol handlers to access the same Servlet engine.
-
JNDI - The Java Naming and Domain Interface is supported.
-
Realms - Databases of usernames and passwords that identify valid users of a web application.
-
Virtual hosts - a single server can host applications for multiple domain names. You need to edit server.xml to configure virtual hosts.
-
Valve chains.
-
JDBC - Tomcat can be configured to use any JDBC driver.
-
DBCP - Tomcat can use the Apache commons DBCP for connection pooling.
-
Servlet reloading (Tomcat monitors any changes to the classes deployed within that web server.)
-
HTTP functionality - Tomcat functions as a fully featured Web Server.
-
JMX, JSP and Struts-based administration.
Tomcat Installation
In this next two sections we will walk through the install and setup of Tomcat for use with the Recital database server.
To download Tomcat visit the Apache Tomcat web site is at http://jakarta.apache.org/tomcat.
Follow the download links to the binary for the hardware and operating system you require.
For Tomcat to function fully you need a full Java Development Kit (JDK). If you intend to simply run pre compiled JavaServer pages you can do so using just the Java Runtime Environment(JRE).
The JDK 1.5 is the preferred Java install to work with Tomcat 5, although it is possible to run Tomcat 5 with JDK 1.4 but you will have to download and install the compat archive available from the Tomcat website.
For the purpose of this article we will be downloading and using Tomcat 5 for Linux and JDK 5.0,
you can download the JDK at http://java.sun.com/javase/downloads/index.jsp.
Now we have the JDK, if the JAVA_HOME environment variable isn't set we need to set it to refer to the base JDK install directory.
Linux/Unix:
$ JAVA_HOME= /usr/lib/j2se/1.4/ $ EXPORT $JAVA_HOME
Windows NT/2000/XP:
Follow the following steps:
1. Open Control Panel.
2. Click the System icon.
3. Go to the Advanced tab.
4. Click the Environment Variables button.
5. Add the JAVA_HOME variable into the system environment variables.
The directory structure of a Tomcat installation comprises of the following:
/bin - Contains startup, shutdown and other scripts. /common - Common classes that the container and web applications can use. /conf - Contains Tomcat XML configuration files XML files. /logs - Serlvet container and application logs. /server - Classes used only by the Container. /shared - Classes shared by all web application. /webapps - Directory containing the web applications. /work - Temporary directory for files and directories.
The important files that you should know about are the following:
-
server.xml
The Tomcat Server main configuration file is the [tomcat install path]\conf\server.xml file. This file is mostly setup correctly for general use. It is within this file where you specify the port you wish to be running the server on. Later in this article I show you how to change the default port used from 8080 to port 80.
-
web.xml
The web.xml file provides the configuration for your web applications. There are two locations where the web.xml file is used,
web-inf\web.xml provides individual web application configurations and [tomcat install path]conf\web.xml contains the server wide configuration.
Setting up Tomcat for use
We'll start by changing the port that Tomcat will be listening on to 80.
To do this we need to edit [tomcat install path]/conf/server.xml and change the port attribute of the connector element from 8080 to 80.
After you have made the alteration the entry should read as:
<!-- Define a non-SSL HTTP/1.1 Connector on port 8080 --> <Connector port="80" maxHttpHeaderSize="8192"
Next we want to turn on Servlet reloading, this will cause the web application to be recompiled each time it is accessed, allowing us to make changes to the files without having to worry about if the page is being recompiled or not.
To enable this you need to edit [tomcat install path]/conf/context.xml and change <Context> element to <Context reloadable="true">.
After you have made the alteration the entry should read as:
<Context reloadable="true"> <WatchedResource>WEB-INF/web.xml</WatchedResource> </Context>
Next we want to enable the invoker Servlet.
The "invoker" Servlet executes anonymous Servlet classes that have not been defined in a web.xml file. Traditionally, this Servlet is mapped to the URL pattern "/servlet/*", but you can map it to other patterns as well. The extra path info portion of such a request must be the fully qualified class name of a Java class that implements Servlet, or the Servlet name of an existing Servlet definition.
To enable the invoker Servlet you need to edit the to [tomcat install path]/conf/web.xml and uncomment the Servlet and Servlet-mapping elements that map the invoker /servlet/*.
After you have made the alteration the entry should read as:
<servlet> <servlet-name>invoker</servlet-name> <servlet-class>org.apache.catalina.servlets.InvokerServlet</servlet-class> <init-param> <param-name>debug</param-name> <param-value>0</param-value> </init-param> <load-on-startup>2</load-on-startup> </servlet> <servlet-mapping> <servlet-name>invoker</servlet-name> <url-pattern>/servlet/*</url-pattern> </servlet-mapping>
If you are you not interested in setting up your own install of Tomcat there are prebuilt versions Tomcat that has all of the above changes already made, and has the test HTML, JSP, and Servlet files already bundled. Just unzip the file, set your JAVA_HOME
Next we will give Tomcat and your web applications access to the Recital JDBC driver.
For the purposes of this article we are going to install the Recital JDBC driver in the /[tomcat install path]/common/lib/ this gives Tomcat and your web applications access to the Recital JDBC driver. The driver can be installed in a number of places in the Tomcat tree, giving access to the driver to specific application or just to the web application and not the container. For more information refer to the Tomcat documentation.
Copy the recitalJDBC.jar which is located at /[recital install path]/drivers/recitalJDBC.jar to the /[tomcat install path]/common/lib/ directory.
Linux:
$cp /[recital install path]/drivers/recitalJDBC.jar /[tomcat install path]/common/lib/
Once you have completed all the steps detailed above, fire up the server using the script used by your platform's Tomcat installation.
Linux/Unix:
[tomcat install path]/bin/startup.sh
Windows:
[tomcat install path]/bin/startup
If you are having problems configuring your Tomcat Installation or would like more detail visit the online documentation a the Apache Tomcat site.
Example and Links
Now we have setup our Tomcat installation, lets get down to it with a JSP example which uses the Recital JDBC driver to access the demonstration database (southwind) shipped with the Recital Database Server.
The example provided below is a basic JDBC web application, where the user simply selects a supplier from the listbox and requests the products supplied by that supplier.
To run the example download and extract the tar archive or simple save each of the two jsp pages individually into /[tomcat install path]/webapps/ROOT/ on your server.
By enabling the invoker Servlet earlier we have removed the need to set the example up as a web application in the Tomcat configuration files.
You can now access the example web application at http://[Server Name]/supplier.jsp if the page doesn't display, check you have followed all the Tomcat installation steps detailed earlier in this article and then make sure both Tomcat and a licensed Recital UAS are running.
Downloads:
Archive: jspExample.tar
Right click and save as individual files and rename as .jsp files:
supplier.txt details.txt
Further Reading on JSP and JDBC can be found at http://www-128.ibm.com/developerworks/java/library/j-webdata/
Final Thoughts
Recital and Apache tomcat are a powerful combination, using Java Servlet technology you can separate application logic and the presentation extremely well. Tomcat, JSP, Java Servlets and the Recital database server form a robust platform independent, easily maintained and administered solution with which to unlock the power of your Recital, Foxpro, Foxbase, Clipper, RMS and C-SAM data.
DB_SAMBA=YES ;export DB_SAMBA
preserve case = nodefault case = lowermangle case = yes
oplocks = False
share modes = no
If you want details about how storage devices are performing on Redhat/Centos/Fedora use the vmstat and iostat commands.
After installing Centos 5.3 the iostat command is not available. To install it use yum:
# yum install sysstat
DRBD:
DRBD (Distributed Replicated Block Device) forms the storage redundancy portition of a HA cluster setup. Explained in basic terms DRBD provides a means of achieving RAID 1 behavoir over a network, where whole block devices are mirrored accross the network.
To start off you will need 2 indentically sized raw drives or partitions. Many how-to's on the internet assume the use of whole drives, of course this will be better performance, but if you are simply getting familar with the technology you can repartition existing drives to allow for two eqaully sized raw partitions, one on each of the systems you will be using.
There are 3 DRBD replication modes:
• Protocol A: Write I/O is reported as completed as soon as it reached local disk and local TCP send buffer
• Protocol B: Write I/O is reported as completed as soon as it reached local disk and remote TCP buffer cache
• Protocol C: Write I/O is reported as completed as soon as it reached both local and remote disks.
If we were installing the HA cluster on a slow LAN or if the geogrphical seperation of the systems involved was great, then I recommend you opt for asyncronous mirroring (Protocol A) where the notifcation of a completed write operation occurs as soon as the local disk write is performed. This will greatly improve performance.
As we are setting up our HA cluster connected via a fast LAN, we will be using DRBD in fully syncronous mode, protocol C.
Protocol C involves the file system on the active node only being notified that the write operation was finished when the block is written to both disks of the cluster. Protocol C is the most commonly used mode of DRBD.
/etc/drbd.conf
global { usage-count yes; }
common { syncer { rate 10M; } }
resource r0 {
protocol C;
net {
max-buffers 2048;
ko-count 4;
}
on bailey {
device /dev/drbd0;
disk /dev/sda4;
address 192.168.1.125:7789;
meta-disk internal;
}
on giskard {
device /dev/drbd0;
disk /dev/sda3;
address 192.168.1.127:7789;
meta-disk internal;
}
}
drbd.conf explained:
Global section, usage-count. The DRBD project keeps statistics about the usage of DRBD versions. They do this by contacting a HTTP server each time a new DRBD version is installed on a system. This can be disabled by setting usage-count no;.
The common seciton contains configurations inhereted by all resources defined.
Setting the syncronisation rate, this is accoimplished by going to the syncer section and then assigning a value to the rate setting. The syncronisation rate refers to rate in which the data is being mirrored in the background. The best setting for the syncronsation rate is related to the speed of the network with which the DRBD systems are communicating on. 100Mbps ethernet supports around 12MBps, Giggabit ethernet somewhere around 125MBps.
in the configuration above, we have a resource defined as r0, the nodes are configured in the "on" host subsections.
"Device" configures the path of the logical block device that will be created by DRBD
"Disk" configures the block device that will be used to store the data.
"Address" configures the IP address and port number of the host that will hold this DRBD device.
"Meta-disk" configures the location where the metadata about the DRBD device will be stored.
You can set this to internal and DRBD will use the physical block device to store the information, by recording the metadata within the last sections of the disk.
Once you have created your configuration file, you must conduct the following steps on both the nodes.
Create device metadata.
$ drbdadm create-md r0
v08 Magic number not found
Writing meta data...
initialising activity log
NOT initialized bitmap
New drbd meta data block sucessfully created.
success
Attach the backing device.
$ drbdadm attach r0
Set the syncronisation parameters.
$ drbdadm syncer r0
Connect it to the peer.
$ drbdadm connect r0
Run the service.
$ service drbd start
Heartbeat:
Heartbeat provides the IP redundancy and the service HA functionailty.
On the failure of the primary node the VIP is assigned to the secondary node and the services configured to be HA are started on the secondary node.
Heartbeat configuration:
/etc/ha/ha.conf
## /etc/ha.d/ha.cf on node1
## This configuration is to be the same on both machines
## This example is made for version 2, comment out crm if using version 1
// replace the node variables with the names of your nodes.
crm no
keepalive 1
deadtime 5
warntime 3
initdead 20
bcast eth0
auto_failback yes
node bailey
node giskard
/etc/ha.d/authkeys
// The configuration below set authentication off, and encryption off for the authentication of nodes and their packets.
//Note make sure the authkeys file has the correct permisisions chmod 600
## /etc/ha.d/authkeys
auth 1
1 crc
/etc/ha.d/haresources
//192.168.1.40 is the VIP (Virtual IP) assigned to the cluster.
//the "smb" in the configuration line represents the service we wish to make HA
// /devdrbd0 represents the resource name you configured in the drbd.conf
## /etc/ha.d/haresources
## This configuration is to be the same on both nodes
bailey 192.168.1.40 drbddisk Filesystem::/dev/drbd0::/drbdData::ext3 smb
All temporary files created by Recital are stored in the directory specified by the environment variable DB_TMPDIR.
mkdir /opt/recital/tmp
mount -t tmpfs -o size=1g recitaltmpfs /usr/recital/tmp