RETURN TO MAIN MENU

Recital Universal JDBC Driver

Universal JDBC Driver

Recital Corporation,
100 Cummings Center, Suite 318J
Beverly, MA 01915

Recital may have patents and/or patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT ©1988-2006 Recital Corporation. All rights reserved. All Recital products are trademarks or
registered trademarks of Recital Corporation, Inc. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Last Updated August, 2006

Index

Installation and Data Source Configuration

Windows 4
Linux/UNIX 5
Integrity/Alpha OpenVMS 6
Standard Imports 7
Connection URL Format 7
Bridging to Other File Formats

Connecting to C-ISAM Files 10
Connecting to RMS Files 14
Accessing a Resultset from a Stored Procedure 22

INSTALLATION

The Recital Universal JDBC Driver is available for Windows (2000/XP/2003), Alpha/Integrity OpenVMS
and Linux/UNIX. The Recital Universal JDBC Driver requires a running, correctly installed and licensed
Recital Database Server.

Java 2 version 1.4 or above is required.

If you have been sent a license for the Recital Database Server, please follow the instructions on the fax or
email for installation.

Windows (2000/XP/2003)

Classpath

The following reference must be added to the CLASSPATH environment variable or specified in the
classpath parameter to Java commands. The reference should be changed if the JDBC Driver was not
installed in the default installation directory.

C:\Program Files\Recital\Universal JDBC Driver\RecitalJDBC.jar
JDBC_TEST

The jdbc_test class is included to allow the JDBC Driver installation to be tested. The jdbc_test.java source
code is also included for information purposes.

NOTE: The Sun Java SDK requires the <SDK path>/bin directory to be included in the system PATH, or
the full path to be specified on commands, e.g.

To compile:

Rem Change the specified paths to match your installation

C:\j2sdk1.4.2_05\bin\javac -classpath “C:\Program Files\Recital\Universal JDBC Driver\RecitalJ]DBC.jar”
jdbc_test.java

To run:

Rem Change the specified paths to match your installation

C:\j2sdk1.4.2_05\bin\java -classpath “C:\Program Files\Recital\Universal JDBC Driver\RecitalJDBC.jar”;.
jdbc_test

Linux/UNIX

The Recital Database Server and Recital Client Drivers both include the Recital Universal JDBC Driver.
Distributions are available as tar archives, or as rpm files (Linux only). Follow the distribution installation
instructions to install the files.

Classpath

The file RecitalJDBC.jar needs to be moved or linked to the Java lib directory, which needs to be included
in the CLASSPATH.

JDBC_TEST

The jdbc_test class is included to allow the Recital Universal JDBC Driver installation to be tested. The
jdbc_test.java source code is also included for information purposes.
To run the Recital JDBC test program:

1. Look for addyourusername and addyourpassword in jdbc_test.java and change them to the correct
values for your environment.

2. Compile the test program:
javac jdbc_test.java

3. Run the applet:
java jdbc_test

Alphal/integrity OpenVMS Installation

The Recital Database Server save set includes the Recital Classes as both individual classes and as a Jar
archive, RecitalJDBC.jar. These can be installed where required.

Classpath

The appropriate Recital classes or Recital Jar file path should be added to CLASSPATH after installation.

JDBC_TEST

The jdbc_test java file is included to allow the Recital Universal JDBC Driver installation to be tested.

To run the Recital JDBC test program:

1. Look for the username and password details in jdbc_test.java and change them to the correct values for
your environment.

2. Compile the test program:
javac jdbc_test.java

3. Run the applet:
java jdbc_test

Standard Imports required

import java.sql.*;

import java.io.*;

import java.net.URL;

import java.math.BigDecimal;
import Recital.sql.*;

Connection URL format

Standard format:

String url = "jdbc:Recital:" +
"SERVERNAME=servername;" +
"DIRECTORY=directory;" +
"USERNAME=username;" +
"PASSWORD=password";
Parameter | Description
servername | The IP address of the Database Server. “?’ connects to the local machine.
directory The startup directory on the server. NOTE: For Windows paths the ‘\’ should be
doubled e.g. C:\\Program Files\\Recital\\UAS\\data\\southwind
username Database Server Login username.
password Database Server Login password.

Alternative Standard format:

String url =

"jdbc:Recital:" +
"SERVERNAME=servername;" +
"DATABASE=database;" +
"USERNAME=username;" +
"PASSWORD=password";

Parameter

Description

Servername

The IP address of the Database Server. “?” connects to the local machine.

database

The database on the server. Databases in Recital are implemented as directories
containing files that correspond to the tables in the database. The directory is a sub-
directory of the Recital data directory. The environment variable / symbol
DB_DATADIR points to the current Recital data directory. The database catalog can
contain information about a table's associated index files (single .ndx files and tagged
.dbx files). It also contains path information, which allows tables in other directories to
be accessed.

username

Database Server Login username.

password

Database Server Login password.

Extended format:

The extended format provides logging and encryption capabilities. 1f ENCRYPTION is set to true, the
username and password information is transmitted in DES3 encrypted format. The extended format also
provides gateway connectivity to the following data sources. Please note this may require the purchase of
additional license options. Details of gateway availability for each platform are available from the Recital
web site http://www.recital.com/products.htm.

ODBC data sources
Oracle

Informix

Ingres

Remote Recital
MySQL
PostgreSQL

String url =
“jdbc:Recital:” +
“SERVERNAME-= servername;” +
“DIRECTORY=directory;” +
“USERNAME-= username;” +
“PASSWORD= password;” +
“LOGGING=logging;” +
“LOGFILE=logfile;” +
“ENCRYPTION=true/false;” +
“GATEWAY=type@node:dbms_username/dbms_password-database.protocol”;

or
String url =
“jdbc:Recital:” +
“SERVERNAME-= servername;” +
“DIRECTORY=directory;” +
“USERNAME-= username;” +
“PASSWORD= password;” +
“LOGGING=logging;” +
“LOGFILE=logfile;” +
“ENCRYPTION=true/false;” +
“GATEWAY=o0dbc:datasource”;
Parameter Description
servername The IP address of the Database Server.
“?” connects to the local machine.
directory The startup directory on the server. To access tables in other directories and
associate single index files with their table, a sysodbc.ini file is required. Please
see the Database Server Installation and Configuration Guide for information on
sysodbc.ini files.
username Database Server Login username.
password Database Server Login password.
logging Set to ‘true’ or ‘false’ to turn logging on or off.
logfile The name of the file to log to.
gateway Gateway definition.
datasource ODBC datasource (DSN).
type Gateway type: ‘ora’; ‘inf’; “ing’; ‘odb’; ‘rec’; ‘mys’; ‘pos’

node

The IP address (or hostname) of the data server.

dbms_username

The username for the data source, e.g. if connecting to Oracle, this must be the
name of a valid Oracle user.

dbms_password

The password for the dbms_username above.

database

The database to connect to.

protocol

The network protocol, decnet (DECNET) or tcpip (TCP/IP). If the protocol is
not specified, TCP/IP is assumed on Unix/Linux and DECNET on OpenVMS.

NOTE: If ENCRYPTION is set to true, the corresponding Database Server must be configured to expect
encrypted username and password information. Please see the Database Server documentation for more

information.

CONNECTING TO C-ISAM FILES

The Recital Universal JDBC Driver can access Informix compliant C-ISAM files.

Data access is achieved through a C-ISAM Bridge. This requires the creation of a Bridge file and an empty
Recital table that has the same structure as the C-ISAM file.

NOTE: Users of Recital Terminal Developer on UNIX or Linux can create the Recital table and the Bridge
file through the CREATE and CREATE BRIDGE work surfaces. Please see the online documentation
(help) in Unix Developer for instructions on using these work surfaces.

Creating the Recital Table

Create a Recital table with the same structure as the C-ISAM file. The fields/columns in the structure file
must exactly match the data type and length of those in the C-ISAM file. The Recital table will have one
byte more in total record length due to the Recital record deletion marker.

To create the table, use the SQL CREATE TABLE command. The table should be given a “.str’ file
extension (rather than the default *.dbf’) to signify that this is a structure file only.

Please see the end of this section for information on matching Informix and Recital data types. Sample
code for table and Bridge creation is given at the end of the Connecting to RMS files section.

Creating the Bridge File
The Bridge File can be created in two ways: by using an ‘ini’ file, or by the SQL CREATE BRIDGE
command.

Maximums Widths
The following maximum widths apply to the bridge elements:

Element Maximum Width in Characters Description

Type 10 Bridge type: CISAM
External 80 External file name

Metadata 80 Recital ‘structure’ table name
Alias 10 Alias name

‘ini” file

Firstly, an “ini’ file should be created on the server in the data directory where the C-ISAM file is held. The
ini file has the following structure:

[bridge]

bridgetype=<bridgetype>

externalname=<name of the C-ISAM file>
databasename=<name of the Recital structure table>
alias=<the name to use to access your file>

e.g. cisamdemo.ini

[bridge]
bridgetype=CISAM
externalname=cisam.dat
databasename=cisamstru.str
alias=cisamdemo

NOTE: There should be no white space either side of the ‘=" signs.

10

The Bridge file can now be created from the ini file. This can be given a ‘.dbf’ file extension (rather than
the default “.brg’) so that it can be accessed like a normal Recital table. The SQL EXECUTE
IMMEDIATE command is used to run the Recital/4AGL CREATE BRIDGE <.brg filename> | (<expC>)
FROM command:

e.g.
execute immediate create bridge cisamdemo.dbf from cisamdemo

CREATE BRIDGE (SQL)
The CREATE BRIDGE SQL command defines and creates the bridge in one step:

e.g.

CREATE BRIDGE cisamdemo.dbf
TYPE “CISAM”

EXTERNAL “cisamdemo.dat”
METADATA “cisamdemo.str”
ALIAS “cisamdemo”

[lor

CREATE BRIDGE cisamdemo.dbf
AS “TYPE=CISAM;EXTERNAL=cisamdemo.dat; METADATA=cisamdemo.str;ALIAS=cisamdemo”

Using the Bridge
The Bridge can now be used. To access the C-ISAM file, use the ‘alias’ specified in the Bridge definition.

e.g.

select * from cisamdemo

11

Data Types

Informix Recital
Byte Numeric
Char Character
Character Character
Date Date
Datetime Character
Decimal Numeric
Double Precision Float
Float Real

16 Bit Integer Short
Integer Numeric
Interval Character
32 Bit Long Integer
Money Numeric
Numeric Numeric
Real Numeric
Smallfloat Numeric
Smallint Numeric
Text Unsupported
Varchar Character

12

C-ISAM Error Messages

The following errors relate to the use of the Recital CISAM Bridge and can be received as an
‘errno <expN>' on Recital error messages:

ERRNO() Error Description

100 Duplicate record

101 File not open

102 Invalid argument

103 Invalid key description

104 Out of file descriptors

105 Invalid ISAM file format

106 Exclusive lock required

107 Record claimed by another user
108 Key already exists

109 Primary key may not be used
110 Beginning or end of file reached
111 No match was found

112 There is no "current” established
113 Entire file locked by another user
114 File name too long

115 Cannot create lock file

116 Memory allocation request failed
117 Bad custom collating

118 Duplicate primary key allowed
119 Invalid transaction identifier

120 Exclusively locked in a transaction
121 Internal error in journaling

122 Obiject not locked

13

CONNECTING TO RMS FILES

The Recital Universal JDBC Driver can access the following fixed length RMS File types:

e RMS Sequential
e RMS Indexed Sequential
e RMS Relative

Data access is achieved through an RMS Bridge. This requires the creation of a Bridge file and an empty
Recital table that has the same structure as the RMS file.

NOTE: Users of Recital Terminal Developer for OpenVMS can create the Recital table and the Bridge file
through the CREATE and CREATE BRIDGE work surfaces. Please see the online documentation (help)
in OpenVMS Developer for instructions on using these work surfaces.

Creating the Recital Table

Create a Recital table with the same structure as the RMS file. The fields/columns in the structure file must
exactly match the data type and length of those in the RMS file. The Recital table will have one byte more
in total record length due to the Recital record deletion marker. To create the table, use the SQL CREATE
TABLE command. The table should be given a “.str’ file extension (rather than the default *.dbf’) to
signify that this is a structure file only.

Please see the end of this section for information on accessing VAX COBOL data types.
Creating the Bridge File
The Bridge File can be created in two ways: by using an ‘ini’ file, or by the SQL CREATE BRIDGE

command.

Maximums Widths
The following maximum widths apply to the bridge elements:

Element Maximum Width in Characters Description

Type 10 Bridge type: RMSSEQ, RMSIDX, RMSREL
External 80 External file name

Metadata 80 Recital “structure’ table name

Alias 10 Alias name

Index 50 Index key or filename

14

CREATE BRIDGE (SQL)
The CREATE BRIDGE SQL command defines and creates the bridge in one step:

e.g.

CREATE BRIDGE rmsseqdemo.dbf
TYPE “RMSSEQ”

EXTERNAL “rmsseq.dat”
METADATA “rmsseqdemo.str”
ALIAS “rmsseqdemo”

or

CREATE BRIDGE rmsseqdemo.dbf
AS “type=RMSSEQ;external=rmsseq.dat;metadata=rmsseqdemo.str;alias=rmsseqdemo”

For RMS Indexed Sequential files, the RMS index keys to be used can also be included in the bridge
definition. Up to 7 different keys may be specified:

e.g.

CREATE BRIDGE rmsidxdemo.dbf

TYPE “RMSIDX”

EXTERNAL “rmsidx.dat”

METADATA “rmsidxdemo.str”

ALIAS “rmsidxdemo”

INDEX *acc_prefix+acc_no,acc_prefix+str(ord_total)”

or

CREATE BRIDGE rmsidxdemo.dbf
AS “type=RMSIDX;external=rmsidx.dat;metadata=rmsidxdemao.str;alias=rmsidxdemo;;
indexkeyl=acc_prefix+acc_no;indexkey2=acc_prefix+str(ord_total)”

For RMS Sequential and RMS Relative files, up to 7 Recital single indexes can be built and associated with
the bridge.

e.g.

CREATE BRIDGE rmsreldemo.dbf
TYPE “RMSREL”

EXTERNAL “rmsrel.dat”
METADATA “rmsreldemo.str”
ALIAS “rmsreldemo”

INDEX “ind1.ndx,ind2.ndx,ind3.ndx”

or
CREATE BRIDGE rmsreldemo.dbf

AS “type=RMSREL ;external=rmsrel.dat;metadata=rmsreldemo.str;alias=rmsreldemo;;
indexkeyl=ind1.ndx;indexkey2=ind2.ndx,indexkey3=ind3.ndx”

15

CREATE BRIDGE FROM <ini>

Firstly, an “ini’ file should be created on the server in the data directory where the external data file is held.
The ini file has the following contents:

[bridge]

bridgetype=<bridgetype>

externalname=<name of the external data file>
databasename=<name of the Recital structure table>

alias=<the name to use to access your file>

indexkeyl=<optional RMS index key or Recital index filename>
indexkey2=<optional RMS index key or Recital index filename>
indexkey3=<optional RMS index key or Recital index filename>
indexkey4=<optional RMS index key or Recital index filename>
indexkey5=<optional RMS index key or Recital index filename>
indexkey6=<optional RMS index key or Recital index filename>
indexkey7=<optional RMS index key or Recital index filename>

e.g. rmsreldemo.ini

[bridge]

bridgetype=RMSREL
externalname=rmsrel.dat
databasename=rmsreldemo.str
alias= rmsreldemo
indexkeyl=ind1.ndx
indexkey2=ind2.ndx

e.g. rmsidxdemao.ini

[bridge]

bridgetype=RMSIDX
externalname=rmsidx.dat
databasename=rmsdemao.str
alias=rmsidxdemo
indexkeyl=acc_prefix+acc_no
indexkey2=acc_prefix

NOTE: The SQL CREATE BRIDGE or 4GL CREATE BRIDGE FROM <ini> command needs to be
reissued to add in details of newly built Recital indexes.

Then the CREATE BRIDGE command should be issued:
execute immediate create bridge rmsidxdemo.dbf from rmsidxdemo

Using the Bridge
The Bridge can now be used. To access the RMS file, use the “alias’ specified in the Bridge definition.

e.g.

Select * from rmsseqdemo

16

Accessing VAX COBOL Data Types

The following table provides details of the COBOL data types that can be directly accessed by RECITAL

using the RECITAL RMS Bridge.

COBOL COBOL RECITAL Storage
Picture Clause Usage Clause Data type in bytes
PIC 9(n) USAGE IS DISPLAY (N)umeric n
[n <=18]
PIC 9(n) USAGE IS COMP (S)hort 2
[n <=4]
PIC 9(n) USAGE IS COMP (Dnteger 4
[5 <=n <=9]
PIC 9(n) USAGE IS COMP (Q)uad 8
[10 <=n <=18]
PIC S9(n) USAGE IS COMP (S)hort 2
[n <=4]
PIC S9(m) USAGE IS COMP (I)nteger 4
[6 <=n <=9]
PIC S9(n) USAGE IS COMP (Q)uad 8
[10 <=n <=18]
USAGE IS COMP (I)nteger 4
USAGE IS POINTER (I)nteger 4
USAGE IS COMP-1 (R)eal 4
USAGE IS COMP-2 (F)loat 8
PIC S9(n) USAGE IS COMP-3 (P)acked *1
[n <=18]
PIC 9(n) USAGE IS COMP-3 (P)acked *1
[n <=18]
PIC X(n) USAGE IS DISPLAY (C)haracter n
[n <=254]
PIC A(n) USAGE IS DISPLAY (C)haracter n
[n <=254]
PIC 9(n)V9I(s) USAGE IS DISPLAY (S)hort 2
PIC S9(n)VI(s) USAGE IS COMP (S)hort 2
[(n+s) <=4]
PIC S9(n)VI(s) USAGE IS COMP (Dnteger 4
[6<=(n+s)<=9]
PIC S9(n)VI(s) USAGE IS COMP (Q)uad 8
[10<=(n+s)<=18]
PIC 9(n)VI(s) USAGE IS COMP-3 (P)acked *1
[n <=18]
PIC S9(n)VI(s) USAGE IS COMP-3 (P)acked *1
[n <=18]
PIC S9(n) USAGE IS DISPLAY --not currently supported--
[n <=18]
PIC S9(n) USAGE IS DISPLAY --not currently supported--
[n <=18] SIGN IS TRAILING
PIC S9(n) USAGE IS DISPLAY --not currently supported--
[n <=18] SIGN IS LEADING
PIC S9(n) USAGE IS DISPLAY --not currently supported--
[n <=18] SIGN IS TRAILING

SEPARATE

17

PIC S9(n)
[n <=18]

USAGE IS DISPLAY
SIGN IS LEADING
SEPARATE

--not currently supported--

PIC S9(n)V9(s)
[(n+s) <=18]

USAGE IS DISPLAY
SIGN IS TRAILING

--not currently supported--

PIC S9(n)V9(s)
[(n+s) <=18]

USAGE IS DISPLAY
SIGN IS TRAILING

--not currently supported--

PIC S9(n)V9(s)
[(n+s) <=18]

USAGE IS DISPLAY
SIGN IS TRAILING
SEPARATE

--not currently supported--

PIC S9(n)V9(s)
[(n+s) <=18]

USAGE IS DISPLAY
SIGN IS LEADING
SEPARATE

--not currently supported--

NOTE:

The storage occupied by packed decimal data types is calculated as follows:

if (n+s) is odd then storage = ((n+s)+1)/2
else storage = ((n+s)+2)/2

When defining the “width” for binary data types, this value denotes the output display width. The storage

occupied by the data type is as specified above.

When defining the number of decimal places for binary data types, this value represents the “scale” of the
value. When the field is referenced, RECITAL scales it down by successive divisions of 10, as specified by
“scale”, and evaluates all arithmetic in double precision floating point. When fields of this type are

updated, then the result to be stored in the field is again re-scaled.

18

Example Java Program for JDBC RMS Access

[*#
*# Copyright (C) 2006 Recital Corporation Inc.
*# As an unpublished licensed proprietary work.
*# All rights reserved worldwide.

4
#

* MODULE : rms_test.java

* PURPOSE : Recital Universal JDBC Driver RMS file access
* AUTHOR : Recital Corporation

* DATE : Aug-2006

*

I
//-- Standard imports required by Recital JDBC Driver
I
import java.sgl.*;

import java.io.*;

import java.net.URL;

import java.math.BigDecimal;
import Recital.sql.*;

public class rms_test {

public static void main(String argv[]) {
inti;
ResultSet rs;
ResultSetMetaData rsmd;

try {
17

/I-- Load the Client Driver for the
/I-- Recital Database Server
Il

new RecitalDriver();

Il
/I-- Build the connection URL:
Il

String url = “jdbc:Recital:” +
“SERVERNAME=servername;” +
“DATABASE=|jdbc_test;” +
“USERNAME=username;” +
“PASSWORD=password”;

I
/I-- Connect

I

Connection con = DriverManager.getConnection(url);
I

/I-- Create a statement on the connection

I

Statement stmt = con.createStatement();

I

/I-- Query info from the driver

19

*/

I

DatabaseMetaData dbmd = con.getMetaData();

System.out.printin(dbmd.getDriverVersion() + “\n” +
dbmd.getDriverName());

I
//-- Create table to define the metadata of the RMS table on the server
I
System.out.printIn(“Create Metadata file rmsdemao.str.”);
stmt.execute(““create table rmsdemao.str ” +
“ (ord_no char(8), ” +
“ord_date date, " +
“name char(20), ” +
“street char(25), ” +
“city char(25), ” +
“state char(13), ” +
“goods char(40), ” +
“order_value num(11,2), ” +
“rec_date date, ” +
“paid_date date, ” +
“paid_value num(11,2), ” +
“acc_start date, ” +
“acc_end date, ” +
“acc_prefix char(3), ” +
“acc_no char(5), ” +
“batch_no char(4)) ™;

I
/I-- Create Bridge file
I
System.out.printIn(“Create Bridge File rmsdemao.dbf.”);
stmt.execute(““create bridge rmsdemo.dbf ” +
“type ‘RMSIDX’”+
“external ‘rmsidx.dat’” + // Name of the RMS data file.
“metadata ‘rmsdemo.str’”+ // Name of the Metadata file.
“alias ‘rmsdemo’” +
“index ‘acc_prefix+acc_no’”);

I
/I-- Query for data
I
System.out.printIn(“Select rows from rmsdemo.”);
rs = stmt.executeQuery(“SELECT * from rmsdemo”);
rsmd = rs.getMetaData();
int nr_cols = rsmd.getColumnCount();
while (rs.next()) {

for (i =1; i <=nr_cols; i++) {

System.out.printin(“rs Column[“ +i+ 7] :” +
rsmd.getColumnName(i) + “ <” +
rsmd.getColumnTypeName(i) + “> ="+
rs.getString(i));

X
System.out.printIn(“Got results:”);
}
Il
//-- Release the statement
Il

20

stmt.close();

Il

/I-- Disconnect from the server
Il

con.close();

} catch (Exception e) {
System.out.flush();
System.err.flush();
DriverManager.printin(“Recital JDBC driver exception: ” + e.getMessage());
e.printStackTrace();
}

try {
System.out.printin(“Press any key to continue...”);

System.in.read();
} catch(IOException ie) {

}

21

Accessing a Resultset from a Stored Procedure

Stored procedures and user-defined functions are collections of SQL statements and optional control-of-
flow statements written in the Recital 4GL (compatible with VFP) stored under a name and saved in a
Database. Both stored procedures and user-defined functions are just-in-time compiled by the Recital
database engine.

Stored Procedures can return a Resultset using the 4GL SETRESULTSET() function. The ‘recital’
command is used to execute the 4GL Stored Procedure and return the Resultset to the client application for
processing. Resultset that are returned from Stored Procedures are read-only.

In this example, the getexamplecursor.prg stored procedure is in the ‘southwind’ database on the server. It
accepts a parameter and runs a query, saving the results into a cursor. This cursor is then returned as a
Resultset using the SETRESULTSET() 4GL function.

/I Stored Procedure getexamplecursor.prg
Iparameters IcAccountNo

exec sl

select * from example

where account_no = IcAccountNo

into cursor curExample;

return setresultset(“curExample™)

I/ end of getexamplecursor.prg

The Java program establishes the JDBC connection, calls the Stored Procedure and displays the data.

import java.sgl.*;
import java.io.*;
import java.net.URL;
import Recital.sql.*;

public class rs_example {
public static void main(String[] args) {

int i;

ResultSet rs;
ResultSetMetaData rsmd;
String s;

System.out.printIn(“Recital resultset example program started.”);
try {
new RecitalDriver();
String url = “jdbc:Recital:” +
“SERVERNAME=?;" +
“DATABASE=southwind;” +
“USERNAME=?;" +
“PASSWORD=?";
Connection con = DriverManager.getConnection(url);
Statement stmt = con.createStatement();

rs = stmt.executeQuery(“recital getexamplecursor(‘0001°)");
rsmd = rs.getMetaData();

22

int nr_cols = rsmd.getColumnCount();
while (rs.next()) {
for (i=1;i<=nr_cols; i++) {
s = rs.getString(i);
System.out.printIn(rsmd.getColumnName(i) +“ ("+ rsmd.getColumnTypeName(i)+*) = +s);

}

System.out.printIn("***** Next Record *****");
}
System.out.printin(“End of results:”);
stmt.close();
con.close();
} catch (Exception e) {
System.out.flush();
System.err.flush();
DriverManager.printin(“Driver exception: ” + e.getMessage());
e.printStackTrace();
}

try {
System.out.printIn(“Press any key to continue...”);

System.in.read();
} catch(IOException ie) {

}

23

