

RETURN TO MAIN MENU

Recital Environment

Guide to the Recital Environment

Recital Corporation,
100 Cummings Center, Suite 318J
Beverly, MA 01915

Recital may have patents and/or patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.
COPYRIGHT ©1988-2006 Recital Corporation. All rights reserved. All Recital products are trademarks or
registered trademarks of Recital Corporation, Inc. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Last Updated August, 2006

INDEX

CONSTANTS 1
MEMORY VARIABLES 2
MATHEMATICAL OPERATORS 4
LOGICAL OPERATORS 5
RELATIONAL OPERATORS 6
SPECIAL PURPOSE OPERATORS 7
RECITAL/4GL BASICS 8
PARAMETER PASSING 9
DEFAULT FILE EXTENSIONS 10
COMMANDS INVOKED FROM THE OPERATING SYSTEM 11
RECITAL/LINKER 12
USERS FILES 14
DBEXEC – Running Background Server Programs 15
PRINTING 16
DATABASE TABLE ENCRYPTION 19
FUNCTION KEYS 20
NATIONAL CHARACTER SETS 21
EXTENSIBLE MARKUP LANGUAGE (XML) 23
ERROR HANDLING AND DEBUGGING 24
RECITAL/4GL ERROR MESSAGES 26
SERVER ERROR MESSAGES 33
RECITAL/SQL ERROR MESSAGES 34
ACCESSING RMS FILES 36
ACCESSING C-ISAM FILES 41
C-ISAM RDD ERROR MESSAGES 44
USING XBASE FILES 45
XBASE RDD ERROR MESSAGES 48
ASCII CHART 50
UPGRADE INFORMATION 53
OPTIMIZING INDEXES WITH SYNCNUM 55

ENVIRONMENT VARIABLES / SYMBOLS
DB_CONFIG 56
DB_DATADIR 57
DB_DATE 58
DB_ENCRYPTION 58
DB_ERRORDIR 59
DB_FIRECATLOG 59
DB_FOXMEM 60
DB_FOXPLUSBUGS 61
DB_FOXPROKEYS 61
DB_HOSTNAME 62
DB_HTTP_ALLOW 63
DB_HTTP_DENY 63
DB_INDEXSEQNO 64
DB_LICENSE_SERVER 65
DB_LOCAL_LOGIN 65
DB_LOGDIR 66
DB_LOGVER 66
DB_MAXROW 67

DB_MAXWKA 67
DB_MIRAGE 68
DB_MIRAGE_COMMAND 69
DB_MIRAGE_CONFIG 69
DB_MIRAGE_DIRECTORY 69
DB_MIRAGE_PATH 70
DB_NOPAM 71
DB_ODBC_INI 71
DB_OPTLOG 72
DB_PRINTEREJECT 73
DB_PRINTERROR 73
DB_PROCDIR 74
DB_REREAD_COLORFILE 75
DB_RUNLOG 75
DB_RUNOPTS 76
DB_RUNOPTS2 76
DB_SAMBA 77
DB_SAVEHISTORY 77
DB_TMPDIR 78
DB_TSINDEX 79
DB_UAS_ALLOW 80
DB_UAS_DENY 80
DB_UNIXPATH 81
DB_USERLOG 81
DB_XMLREP 82

Recital Environment

1

Constants

The Recital/4GL supports the following constants:

Datatype Description
Character A string of ASCII characters up to 8191 characters in length.

Delimited by double quotes “”, single quotes ‘’ or square brackets []
Numeric An integer number of up to 16 digits (0-9) or a floating point number of up to 25

digits (9 are reserved for decimal places) and one decimal point.
Date A combination of digits and separators delimited by curly braces {}. The format is

determined by the SET DATE and SET CENTURY commands.
Logical A choice of two values, .T. for true, .F. for false

The TYPE() function can be used to determine the data type of any expression.

uMemvar TYPE(“uMemvar”) Type
[hello] ‘C’ Character
‘goodbye’ ‘C’ Character
“RECITAL” ‘C’ Character
1234 ‘N’ Numeric
1234.56 ‘N’ Numeric
“1234.56” ‘C’ Character
{01/01/96} ‘D’ Date
{01/01/1996} ‘D’ Date
“01/01/96” ‘C’ Character
.T. ‘L’ Logical
.F. ‘L’ Logical
opentags ‘P’ Procedure
OMyObj ‘O’ Object
Undetermined Type ‘U’ Undefined

Recital Environment

2

Memory Variables

Naming
Memory variable names must begin with a letter (A-Z, a-z) or an underscore (-), followed by any
combination of letters, digits or underscores. The variable name can be of any length, but only the first ten
characters are significant, so these must be unique. The Recital/4GL ignores the case of letters, so m_var,
M_VAR, and m_VaR would all be treated as the same memory variable name. The name given to a
memory variable has no bearing on the type of data that is, or can be, stored in it. In fact, the type of data
stored in a particular variable can be changed at any time, although this needs to be carefully controlled so
that inappropriate operations are not attempted. e.g.

m_var = 1234
m_var = ‘a character value’
? m_var + 100

Assignment
Values are assigned to memory variables using the STORE command or the equals = operator.

store ‘new value’ to cVAR1
cVAR1 = ‘new value’

Note that the STORE command can assign a value to more than one memory variable in a single command.

store ‘new value’ to cVAR1, cVAR2

Declaration and Visibility
Values can be assigned to memory variables without those memory variables having been pre-declared, but
it is generally accepted that the pre-declaration of memory variables is good programming practice.
Variables can be declared as PUBLIC, PRIVATE or LOCAL and will be initialized as a logical false (.F.).

public cVar1
private cVar2
local cVar3

PUBLIC variables are globally visible: they are accessible and can be changed from any part of an
application. If the application is run from the Interactive Prompt, then any public variables can still be
accessed even after the application ends. Any variables created at the Interactive Prompt are automatically
created as public variables.

PRIVATE variables are only visible within the declaring module (program, procedure, User Defined
Function) and any modules called by that declaring module. Any variables accessed within a module that
are not pre-declared are automatically created as private variables. When the module returns, then all of the
memory variables and arrays that were declared by the PRIVATE command are released.

LOCAL variables are only visible within the declaring module and are released when the module returns.
LOCAL variables differ from PRIVATE variables in that a LOCAL variable is not visible to lower level
procedures or functions.

Arrays
The Recital/4GL supports the use of both one-dimensional and two-dimensional static arrays. In almost all
cases, arrays must be pre-declared before reference can be made to them.

Declaration can be made using the DECLARE / DIMENSION commands or the PUBLIC / PRIVATE /
LOCAL commands. The size of the array can be specified in parentheses or square brackets.

Recital Environment

3

private aArr1[10]
public aArr2(10)
declare aArr3[10,9]

Values can be assigned to a single element by specifying its element number, or to all the elements in an
array.

// Assign value to all elements
aArr1 = [hello]

// Assign value to one element
aArr1[1] = [hello]
aArr3[2,4] = [hello]

Arrays are always passed to procedures or functions by REFERENCE i.e. any changes made in the called
program will be reflected in the actual array.

Dynamic Arrays
The Recital/4GL also supports the definition of dynamic arrays - arrays to which additional elements can
be added. To declare a dynamic array, simply omit the number of elements.

private aDynarray[]

Elements are added using arrayname.element syntax.

aDynarray.name = [Recital Corporation]
aDynarray.email = [info@recital.com]

They can then be referenced by element number or by element name.

? aDynarray.name
Recital Corporation
? aDynarray[2]
info@recital.com

Recital Environment

4

Mathematical Operators

The Recital/4GL supports the use of the following Mathematical Operators:

Operator Operation Precedence Data Types
() Parentheses 1 N,C,D
** Exponentiation 2 N
* Multiplication 3 N
/ Division 3 N
% Modulus/Remainder 3 N
+ Addition 4 N,C,D
- Subtraction 4 N,C,D

When dealing with Character data types, the operators have the following definitions:

Operator Operation
+ Concatenate the right hand string to the end of the left hand string
- Concatenate the right hand string to the end of the left hand string after trimming

the left hand string of trailing spaces

Example

? 2*3^2
 18
? 2*25%7
 1.00
? [Hello] - [World]
Hello World

Recital Environment

5

Logical Operators

The Recital/4GL supports the following Logical Operators:

Operator Operation

.AND. Logical AND
AND Logical AND
.OR. Logical OR
OR Logical OR

.NOT. Logical NOT
! Logical NOT

.XOR. Logical Exclusive OR
XOR Logical Exclusive OR

Statements containing Logical Operators are automatically optimized in the following way:

If the Left Hand Side (LHS) of an AND statement is false, then the Right Hand Side (RHS) is parsed, but
not evaluated, unless the statements are enclosed in parentheses.

If the LHS of an OR statement is TRUE, then the RHS is parsed, but not evaluated, unless the statements
are enclosed in parentheses.

The above optimizations can be disabled, causing all entries with the statement to be evaluated, if the
optional Environment Symbol DB_OPTLOG is defined as either “OFF” or “NO”, prior to starting the
Recital product.

The Logical Operators are evaluated from left to right in the following order:

1. Statements enclosed in parentheses
2. .NOT./!
3. .AND.
4. .OR., .XOR.

Example

? .T. .and. .F. .or. .T.
.T.
// Default setting of DB_OPTLOG
? .F. .and. .T. .or. .T.
.F.
? (.F. .and. .T.) .or. .T.
.T.

Recital Environment

6

Relational Operators

The following Relational Operators are supported in the Recital/4GL:

Operator Operation
= Equal To
== Exactly Equal To / Matches Pattern
<> Not Equal To
!= Not Equal To
Not Equal To
> Greater Than
>= Greater Than or Equal To
< Less Than
<= Less Than or Equal To
$ Substring is Contained In
| Contains Substring

The Relational Operators are always evaluated from left to right.

The following ‘wildcard’ characters can be used for == pattern matching:

Character Action
? Matches any one character
% Matches any one character
* Matches zero or more characters

In SQL mode (SET SQL ON or embedded EXEC SQL statements), the following wildcard characters are
available:

Characters Description
_ Matches any one character
% Matches zero or more characters

Note: For FoxPro compatibility reasons, wildcard pattern matching is not available when SET
COMPATIBLE is set to FOXPRO/FOXBASE/FOXPLUS/VFP.

Example

cSTR1 = [Welcome to the Recital/4GL]
? “Recital” $ cSTR1
.T.

cSTR2 = [Welcome]
// Compares to the end of cSTR2
? cSTR1 = cSTR2
.T.

// Compare contents & size
? cSTR1 == cSTR2
.F.

Recital Environment

7

Special Purpose Operators

Three special operators exist within the Recital/4GL. These are:

The Macro Operator (&)
When an ‘&’ ampersand character precedes a variable or an expression contained within parentheses, the
result of the expression is substituted into the command. Nested macros are not supported.

The Alias Operator (->)
An open table can be referred to by its alias name and its fields can be accessed using the alias operator.
The alias name is either a name you have specified in the USE <table> ALIAS <alias name> command, or,
by default, the first ten characters of the table basename. The letters a-z (excluding m) can also be used as
an alias to the work areas 1-26 (excluding 13). M is used to reference memory variables, so is not available
as a table alias

The Dot Operator (.)
The dot operator ‘.’ is used to reference either the properties of objects, or it can be used interchangeably
with the alias operator.

Example

// Macro Operator Example
cTABLE = [employees]
use &cTABLE

// Alias Operator Example
cEMPNAME = &(cTABLE + “->NAME”)

// Dot Operator Example
use employees

class EmpRecord
 public:

property NAME
property SALARY

 public:
method IDENT
return “Employee Record”

endclass

oMYREC = new EmpRecord()
cTYPE = oMYREC.IDENT()
? cTYPE

Recital Environment

8

Recital/4GL Basics

Recital/4GL statements can be entered in a free-form fashion. Spaces and indents can be added where
required to make the code more readable. Commands can be entered in upper, lower or mixed case and in
almost all instances, only the first four letters of a command need be entered, e.g.

MODIFY STRUCTURE
MODI STRU
SET EXCLUSIVE ON
SET EXCL ON

Comments
Comments are ignored by the compiler but are, of course, very useful to the developer and even more so to
anyone who has to maintain or alter the code later in its lifetime.

Symbol Position Effect
* Start of line Line is ignored
// Anywhere in line All text that follows is ignored
&& Anywhere in line All text that follows is ignored

Line Continuation
The semi-colon “;” placed at the end of a line can be used to continue a command onto the next line.
Commands can be up to 8192 characters long.

use customer;

in 1;
order customer

Is the equivalent of:

use customer in 1 order customer

Multiple Commands
By contrast, a semi-colon within a line signifies the end of a command and that the text that follows is a
new command.

select 1; use customer; set order tag customer

Is the equivalent of:

select 1
use customer
set order tag customer

Recital Environment

9

Parameter Passing

By VALUE / By REFERENCE
Parameters can be passed to procedures, programs and UDFs (User Defined Functions) by VALUE or by
REFERENCE. The called module must have a PARAMETERS statement at the top of the code.

e.g.
PROCEDURE MyProc
PARAMETERS cPARA1
//…
//…
RETURN

When a parameter is passed by VALUE, a copy of the memory variable is passed to the module and the
original memory variable is not accessible within the called module.

When a parameter is passed by REFERENCE, the called module is given the address of the memory
variable so the memory variable itself can be altered.

Function calling syntax passes parameters by VALUE by default.

MyUdf(cVAL)

To pass by REFERENCE, the parameter should be preceded by an @ sign.

MyUdf(@cREF)

Procedure calling syntax passes parameters by REFERENCE by default.

do MyProc with cREF

To pass by VALUE, the parameter must be enclosed by parentheses.

do MyProc with (cVAL)

The PARAMETERS() function and the PCOUNT() function return the number of parameters passed to a
module.

Parameter Passing from the Operating System
When Recital Terminal Developer programs are run from the Operating System, up to nine parameters may
be passed to the program (compiled .dbo or non-compiled .prg). No PARAMETERS statement is required
within the program, since the arguments will be stored in automatically declared public memory variables
named _para1 to _para9.

$ dbrt myapp “one” “two” “three” “four” “five” “six” “seven” “eight” “nine”

Recital Environment

10

Default File Extensions

Extension File Type
.brg BRIDGE
.cat CATALOG
.clo COMPILED CLASS LIBRARY
.cls CLASS LIBRARY
.col COLOR SCHEME DEFINITION
.dbd DICTIONARY
.dbf TABLE
.dbj AFTER IMAGE JOURNAL TABLE
.dbj AFTER IMAGE JOURNAL MEMO
.dbo COMPILED SOURCE CODE
.dbt MEMO
.dbx MULTIPLE INDEX
.def TERMINAL DEFINITION
.dkf DES3 ENCRYPTION KEY
.dtd DOCUMENT TYPE DEFINITION
.fmo COMPILED FORMAT
.fmt ASCII CUSTOM FORMAT
.frm REPORT WRITER REPORT
.gtw GATEWAY
.his HISTORY TRACE
.hlm HELP MENU
.hlt HELP TEXT
.img SCREEN IMGE
.kgw GATEWAY DEFINITION
.kqy SQL QUERY
.lbl LABEL FORMAT
.log BEFORE IMAGE JOURNAL
.mdf MENU DEFINITION
.mem MEMORY VARIABLES / ERROR FILE
.ncs NATIONAL CHARACTER SET
.ndx SINGLE INDEX
.qry QUERY
.prg SOURCE CODE
.scr FORMS DESIGNER BINARY
.sdb SCHEDULE TABLE
.sdt SCHEDULE MEMO
.sdx SCHEDULE INDEX
.src LINKED SOURCE
.str STRUCTURE TABLE
.trf TREPORT REPORT
.txt ASCII TEXT
.vue VIEW
.win WINDOW DEFINITION
.xml XML

Recital Environment

11

Commands invoked from the Operating System

The following commands for Recital Terminal Developer are invoked from the Operating System.

db [-p <license text file>] | [-r] | [-w] [-q] [-f] [-x <compiled program>]
Starts Recital Terminal Developer in development mode. In development mode, the command window or
prompt and the development tools are accessible. Development mode access requires a valid development
license.

-p Loads the information from a license text file into the Product Registration Screen, and then allows

the license to be saved before starting.
-r Displays the Product Registration Screen, allowing license details to be added or amended before

starting.
-w Start without the default windows active. The default windows are defined in the main config.db.
-q Start without the default windows active and without showing the license information screen.
-f Start in Fox compatibility mode. The following are active: SET COMPATIBLE TO FOXPRO and

SET FILETYPE TO FOXPRO. This can also be achieved using the fox script instead of the db
script.

-x Execute the specified program.

dbdemo
Starts Recital Terminal Developer in Assistant mode in the demo directory.

dbl -i <input file> -o <output file> -x <first procedure> -m <message file>
Calls the Recital/Linker to link program source. Please see the Recital/Linker documentation for full
details.

dbrt <compiled program>
Runs the specified <compiled program> in runtime mode. In runtime mode the development tools are not
accessible and all source files must be compiled. For more information on compiling, please see the
COMPILE command. Runtime mode access requires a valid runtime license. The following alternative
syntax can also be used:

db [-q] -x <compiled program>

dbstop <pid>
Cleanly stops the Recital process identified by the process identification number in <pid>.

dbusers –c | -l | -r
Creates, resets or lists the users file or files. Please see the Users Files documentation for full details.

dbvideo
Starts the Recital interactive feature demonstration.

Recital Environment

12

The Recital/Linker

Recital Terminal Developer includes the Recital/Linker utility, which can be used to link individual
program files into a single file that can then be compiled. This limits the number of files that need to be
open at one time, thus using less OS file handles and making more efficient use of shared memory when
running applications with SET PSHARE ON.

With SET PSHARE ON, compiled programs are loaded into shared memory when called. All users
accessing a particular program can access the same area of shared memory rather than loading the program
into private memory. The program is removed from shared memory when it no longer has any attached
users. A single compiled program therefore, need only be loaded once and accessed by all users. Multiple
smaller compiled programs cause an increased amount of loading and unloading activity in shared memory.

The linker is run from the Operating System. You must specify the name of an input file and an output file.
You can optionally specify the first procedure to be run and the name of a file to which all linker messages
will be sent.

$ dbl -i <input file> -o <output file> -x <first procedure> -m <message file>

Input File
The input file should contain the name of each procedure to be linked. These should be listed one to a line
and must be unique e.g.

prog1.prg
prog2.prg
prog3.prg

Output File
The output file is the file that will be compiled and run. To distinguish this from the .prg files from which
it is comprised, the convention is to give this file a .src extension.

First Procedure
If the first procedure to be run is specified, a ‘do <first procedure>’ line will be included in the output file.
The file can be run as a self-contained module rather than being used as a procedure library.

Message File
If no message file is specified, the messages will be displayed on the screen (standard output) while the
linker is running. The name of each file is listed as it is linked and a warning message is given if any
duplicate names are found.

Compiling large files
When you come to compile your .src file, the linker output file, you may find the following error message
is generated part way through the compilation:

Maximum compile file size (MAXDBO) of <value> exceeded with file <.src file>.

If this occurs, you need to increase the SET MAXDBO TO <expN> value. This setting controls the size of
compiled file that can be created. The <expN> needs to be 4x the size of the compiled file in kilobytes.
The default is 256.

SET MAXDBO TO <expN> is set in the main config.db file, but can also be issued at the interactive
prompt.

Recital Environment

13

Invoking the Recital/Linker from the Recital/4GL
The Recital/Linker can also be invoked through the Recital/4GL using the LINK command.

LINK FROM <.dbl file> | <skeleton> TO <.src file>
[MESSAGE <.map file>]
[COMMAND <expC>]
[COMMENTS]

Please see the LINK command for full details.

Recital Environment

14

DBUSERS

Class
Utilities

Purpose
Recital Terminal Developer utility to reset or create the users files or to display the currently active users

Syntax
dbusers –c | -l | -r

See Also
DISPLAY USERS, LIST USERS

Description
The DBUSERS utility is used to reset or create the users files or to display the currently active users.
When Development users log in, their details are logged in the users.db file. When Runtime users log in,
their details are logged in the rtusers.db file. When a user logs out, their details are removed from the
appropriate users file. The users files are created when the license is installed using ‘db-r’ or ‘db –p’. If
the license file is created manually, the users files are not created automatically. To manually create the
users files, the following command should be issued at the Operating System prompt:

dbusers –c

Please note, that the users files are created based on the license file – users.db is only created if the system
is licensed for Development users, rtusers.db if the system is licensed for Runtime users.

If the users files become out of sync with the actual users logged in, for example if a connection is broken
and the session is not closed down cleanly, the users files can be reset. All users must exit the Recital
product. To reset the users files, the following command should be issued at the Operating System prompt:

dbusers –r

From within the Recital environment, the DISPLAY USERS or LIST USERS commands can be used to
view the users logged in to the current users file (rtusers.db if the command is run in the Runtime
environment, users.db if in the Development environment). To view current Development and Runtime
users from the Operating System, the following command should be issued at the Operating System
prompt:

dbusers –l

Example
dbusers -r
Recital: Users file reset.
Recital: Runtime users file reset.

Products
Recital Terminal Developer

Recital Environment

15

DBEXEC

Class
Utilities

Purpose
Used to run program files in the background via the Recital Database and Mirage Servers

Syntax
dbexec <program-file> [<_para1> <_para2> … <_para9>]

Description
The DBEXEC utility is used to run program files in the background via the Recital Database Server or
Recital Mirage Server. It gives the ability to run source code directly on the server without any client
connection in place. The DBEXEC command should be issued from the Operating System prompt and
followed by the name of the program file to be run. Parameters can be passed to the program by specifying
them after the program name. When specifying more than one parameter, white space should separate each
parameter. A maximum of nine parameters can be passed. The parameters are stored in predefined
variables _para1 to _para9 and no parameters statement is required in the program itself.

Example
dbexec maint_prog “customers” “contacts”

Products
Recital Database Server, Recital Mirage Server

Recital Environment

16

Printing

The printing commands within the Recital/4GL allow you to send output to a system printer, to a file or to a
local printer attached to the printer port of your terminal.

Printing to a System Printer
When you have a default printer destination set on your system, the following command will send the
specified file to that printer:

print <filename>

To redirect output to a system printer, the command SET PRINTER TO \\SPOOLER is used. This picks
up the environment variable DB_PRINT (set in profile.db). The value of DB_PRINT must be either a valid
Operating System print command, e.g. on UNIX:

DB_PRINT=“lp -dmyprinter -onobanner”

or the name of a file which contains such a command (and any other processing required.) By default,
DB_PRINT is set to the file ‘print.<os>’ in the product home directory, e.g. “print.unix” in the UD
directory. This can be modified if required, to suit your particular printing environment. The ‘print.<os>’
file contains a further environment variable, called DB_PRINTOPT, which can be set to the options that
you require on the OS print command. By default, the value of DB_PRINTOPT is set in profile.db, but the
PUTENV() function can be used to change this value, and the GETENV() function to query it. The
following commands will cause an environment status listing to be printed according to the command(s)
specified by DB_PRINT:

set printer to \\spooler
list status to print
set printer to

The following will send output to the system printer (and the screen):

set printer to \\spooler
set print on
&& …output
set print off
set printer to

Stopping Output to the Screen
To send output solely to the specified printer, and not to the screen, the following commands are required:

set screenmap off
set console off
set device to print

And to return control to the screen:

set device to screen
set console on
set screenmap on

Printing to a File
For printing to a file, the same commands apply, but you should specify the filename in the SET PRINTER
TO command:

Recital Environment

17

set printer to myfile.txt
list memory to print
set printer to

Printing to a Slave Printer
If you have a printer attached to the printer port of your terminal or PC, the SET PRINTER TO command is
not required. Use the SET PRINT ON / OFF command to redirect output to the printer. To prevent output
also being sent to the screen, use the commands as listed above. To switch your terminal output to screen /
printer or printer only mode, the control sequences specified in entries 4, 5 and 6 of the Terminal Definition
File are used.

// Program to send display to local printer

set screenmap off
set console off
set device to print
set print on
@1,1 say [hello world!]
set print off
set device to screen
set console on
set screenmap on

Sending Control Sequences
Control sequences can be sent to your printer using the ? or ?? commands. The command SET
SCREENMAP OFF must be issued before sending the sequences to prevent them being re-mapped, e.g.

// Program sending control sequences and text to a file

set printer to myfile.txt
set screenmap off
set console off
set print on

// Switch into ‘emphasis mode’
? CHR(27) + “E”
?? [HELLO]
// Switch out of ‘emphasis mode’
? CHR(27) + “F”
?
? [HELLO AGAIN]
set printer to
set print off
set console on
set screenmap on

Control sequences sent must be appropriate to your printer.

Recital Environment

18

PRINTSCREEN()
The PRINTSCREEN() function can be used to dump a copy of the current screen to a file or to the printer.
The function is most often called from within a hot key procedure to enable screen dumps of full screen
forms, e.g.

// Hot key procedure
procedure pscreen
set printer to \\spooler
printscreen()
set printer to
return

// Current screen is sent to system printer when [TAB] key is pressed
on key label tab do pscreen

Printing on Windows
Since Recital Database Server processes are not GUI based, print jobs on Windows systems can only be
sent to printers configured for DOS access. The required DOS print command should be specified using
the command SET PRINTER TO <OS command>.

For Recital Mirage applications, please see the PRINTFILE() function.

Recital Environment

19

Database Table Encryption

From Recital 8.5 onwards, Recital installations that have the additional DES3 license option have the
ability to encrypt the data held in Recital database tables. Once a database table has been encrypted, the
data cannot be accessed unless the correct three-part encryption key is specified, providing additional
security for sensitive data.

For more information on using DES3 Encryption, please see the following commands:

• DECRYPT
• ENCRYPT
• SET ENCRYPTION

Encryption also affects the following commands:

• APPEND FROM
• COPY FILE
• COPY STRUCTURE
• COPY TO
• DIR
• USE
• SQL INSERT
• SQL SELECT
• SQL UPDATE

Recital Environment

20

Form & Worksurface Function Keys

The Function Keys within the Recital user interface have specific actions in the screen forms and in the
Recital Terminal Developer Development Tools. Each Function Key also has a matching ‘alternate key’,
which is a combination of the Control key and a letter.

In the Recital Terminal Developer Development Tools, a Key Help Panel appears at the top of the screen,
listing the key to use for functions within that Work Surface. Press the [TAB] key to display the Key Help
Panel if it is not displayed. The keys and their labels are taken from the Terminal Definition file; section 5
entries 114 to 139.

The caret ^ in the alternate key sequence indicates that the [Ctrl] control key and the key that follows
should be pressed simultaneously.

Name VT Keyboard PC Keyboard Alternate
HELP Help F1 ^C
ABANDON F11 F11 / Esc ^G
EXIT/SAVE F20 End ^W
MENUBAR Do Home /
NEXT RECORD/PAGE DOWN Next PgDn ^N
PREVIOUS RECORD/PAGE UP Prev PgUp ^R
FIND Find F9 ^K
FIND NEXT Select F10 ^L
DELETE RECORD F19 F5 ^U
DELETE CHAR F12 Del ^H
DELETE FIELD Remove F8 ^Y
TAB Tab Tab ^I
PAN RIGHT F9 F7 ^B
PAN LEFT F10 F6 ^Z
UPDATE MODE F17 F4 ^T
REFRESH F18 F12 ^D
CARRY MODE (APPEND) F17 F4 ^T
INSERT Insert Ins ^V
WORD LEFT F13 F2 ^A
WORD RIGHT F14 F3 ^F

Recital Environment

21

National Character Sets

To enable the use of National Character Sets, the Recital 4GL supports the following functionality:

• Alternative collating sequences for indexes and sorts
• The input of 8 bit characters.

These are achieved using the SET LANGUAGE TO <language-keyword> command and in the case of
alternative collating sequences, the COLLATE() function.

On execution of the SET LANGUAGE TO command, the appropriate National Character Set file is loaded
from the ‘terminals’ directory. The following <languages-keyword> values are supported:

• AMERICAN
• BELGIAN
• BRITISH
• CHINESE
• DANISH
• DUTCH
• FINNISH
• FLEMISH
• FRENCH
• GERMAN
• ITALIAN
• JAPANESE
• NORWEGIAN
• RUSSIAN
• SPANISH
• SWEDISH

Please note that the <language-keyword> specified is used to reference the appropriate National Character
Set file and not to ‘switch’ to a particular language. If the <language-keyword> is any of the above, apart
from AMERICAN or BRITISH, then 8 bit characters supported by the current terminal will be enabled.
For example, SET LANGUAGE TO FRENCH will still allow Russian or German specific characters
supported by the current terminal to be entered.

The National Character Set files reside in the ‘terminals’ directory and have filenames equivalent to:

<terminal-type>-<first-3-characters-of-language>.ncs

For example, the GERMAN National Character Set file for the VT200 terminal is vt200-ger.ncs.

If the National Character Set file is being used solely to enable 8 bit characters, its contents are disregarded
and it can in fact be empty.

Recital Environment

22

To enable alternative collating sequences for indexes and for the SORT command, the National Character
Set file must contain the appropriate collating sequence. This consists of ASCII value pairs, the first being
the ASCII value of the character, the second its position in the collating sequence, e.g.

97=65
65=66
224=67
192=68
225=69
193=70
226=71

Indexes and sorts must use the COLLATE() function to make use of this alternative collating sequence, and
the SET LANGUAGE TO <language-keyword> must be in effect before the index or sort operation is
carried out and at all times when any such indexes are being used. To give system wide National Character
Set support, the SET LANGUAGE TO <language-keyword> should be issued in the config.db file.

Recital Environment

23

Extensible Markup Language (XML)

Extensible Markup Language allows data and data structures to be defined in an agreed format so that they
can be shared. The Recital 4GL and Recital SQL provide commands to export Recital data in XML format
and import XML data into Recital format. The Recital 4GL also includes a series of functions for
accessing XML files and their associated Document Type Definition (DTD) files.

Format of XML files

The format for XML files can be either RECITAL or ADO (Microsoft® ActiveX® Data Objects). Any
XML files created in the ADO format can be loaded with the Open method of an ADO Recordset object.
The default XMLFORMAT setting is ADO. The default XMLFORMAT setting can be changed using the
SET XMLFORMAT command or overridden using the FORMAT clause on the SQL SELECT statement.

Note: The XMLFORMAT setting determines whether Recital creates an accompanying DTD file when
creating XML files. A DTD file is only created when XMLFORMAT is set to Recital.

• SET XMLFORMAT - Toggle XML file format (RECITAL/ADO).

Exporting Recital Data in XML Format

• COPY TO ... TYPE XML - The COPY TO command allows records from the active table to be
copied out in XML format (RECITAL/ADO).

• SELECT ... SAVE AS XML - The Recital/SQL SELECT command allows data from one or more
tables or views to be saved in XML format (RECITAL/ADO).

• FETCH ... INTO XML - The Recital/SQL FETCH command allows individual rows from a
SELECT statement to be saved into a RECITAL XML format file.

Importing XML Data into Recital Format

• CREATE TABLE...FROM XML - The Recital/SQL UPDATE command allows a Recital table to
be created from a structure or structure and data from an ADO XML format file.

• INSERT...FROM XML - The Recital/SQL UPDATE command allows a Recital table to be
updated with data from an ADO XML format file.

• UPDATE ... FROM XML - The Recital/SQL UPDATE command allows a Recital table to be
updated with data from a RECITAL XML format file.

Functions for Accessing XML and DTD files

• XMLCOUNT() - Function to return the number of records from an XML file.
• XMLCREATEDTD() - Function to create a Document Type definition file for a particular table.
• XMLFIRST() - Function to read the first record contained in the specified XML file.
• XMLNEXT() - Function to read the next record contained in the XML file specified with the

XMLFIRST() function.
• XMLVALIDATE() - Function to return the number of records from an XML file.

Recital Environment

24

Error Handling & Debugging

Error Handling
At runtime, the Recital/4GL will stop execution display an error message and create an error.mem file
whenever an error occurs in the application, unless an alternative error handling procedure has been
specified.

The error.mem file includes the following information:

• The Recital Product version, release, platform and compile date information
• System information, such as maximum file size and maximum process stack
• Recital License information
• User and Node names and process ID
• The error number
• The error message
• The program line
• The program line number
• A stack trace of the programs and procedures called
• A list of all active public and private memory variables and classes
• Status of open tables, indexes and current records.
• Settings listing as per LIST STATUS

The error.mem file will be named error.mem and will be overwritten by subsequent errors unless SET
ERRORVERSION is ON. If SET ERRORVERSION is ON, multiple numbered error.mem files are
created with the following naming format:

error0001.mem
error0002.mem
error0003.mem

The error.mem file(s) will be created in the directory that is current when the error occurs unless the
DB_ERRORDIR environment variable/symbol is set. If set, DB_ERRORDIR points to a directory in
which the error.mem file(s) will be created.

Alternative error handling procedures can be specified using the ON ERROR command. When there is an
active ON ERROR setting, no error.mem file will be created and program execution willl not be halted. It
is now up to ON ERROR error handler to trap the information required in order to trace the error and to
take appropriate action based on the error that has occurred.

Note: The SAVE ERROR command allows for the creation of an equivalent of the error.mem file.
Several functions are available to give information about errors:

FUNCTION RETURNS
ERRNO() Operating System Error Number
ERROR() Recital 4GL Error Number
MESSAGE() Error Message
MESSAGE(1) Line which caused the error
PROCLINE() Currently executing procedure line number
PROCNAME() Currently executing procedure name

Recital Environment

25

It is important to note that the PROCLINE() and PROCNAME() functions return information about the
CURRENTLY executing procedure. If these functions are called from within the error handling procedure,
they will give information based on the error handling procedure itself and not the procedure in which the
error occurred. They should, therefore, be specified as parameters to the error handler, e.g.

on error do MyErrProc with procname(), procline()

Debugging
In Recital Terminal Developer, the DEBUG command displays a pop-up debugger allowing the specified
program to be monitored during execution. The pop-up debugger can also be activated by using the SET
STEP ON command. To debug an entire program, issue SET STEP ON before starting. To debug just a
particular section of the program, insert the command into the code. The Debugger can be toggled on and
off while running your program by means of a hot key procedure, e.g.:

procedure SetStep
// set step to opposite of current value
set step (!(set([step])))
return

procedure DefineKey
// set [TAB] as the hot key to call SetStep
on key label tab do SetStep
return

During the debugging process, the program must be running in interpreted mode, not in compiled mode.
The DEBUG command will do this automatically. To ensure that the program is running in interpreted
mode when using SET STEP ON/OFF, issue the following two commands before starting program
execution:

SET COMPILE OFF
SET DEVELOPMENT OFF

When running in interpreted mode, a complete history trace of all commands executed can be generated.
This requires the use of the SET HISTORY and SET DOHISTORY commands.

Example
set compile off
set development off
set history on
set dohistory on
set history to file myhis
use demo
edit
set history to
set dohistory off
vi myhis.his

Recital Environment

26

Recital/4GL Error Messages by Number

ERROR() Error Message
1 Line exceeds maximum width of <expN> characters
2 Syntax Error in command
3 Illegal character in command line
4 Unterminated string
5 String is too long
6 Name is too long
7 Insufficient memory
8 Boolean operator was expected
9 DOs nested too deep
10 Unrecognized phrase/keyword
11 Filename was expected
12 File cannot be found or is not executable
13 This command/feature is not available in RECITAL
14 File already exists
15 Too many files are open [errno() is 24]
15 File does not exist [errno() is 2]
15 File access permission denied
15 File is in use by another user [errno() is 11]
15 Cannot open <filename> - error <error #>
16 No database is in USE
17 Invalid filename
18 Number was expected
19 Maximum files allowed open is <maximum number of workareas>
20 Value is out of range
21 Record is out of range
22 Syntax error in expression
23 Expression is too complicated
24 Fatal system error
25 Keyword TO was expected
26 Variable name was expected
27 Data type mismatch
28 Keyword RETURN or end of file was expected
29 Bad statement nesting or command used out of context
30 Logical expression was expected
31 Cannot erase <filename>
32 Skeleton name was expected
33 Unexpected end of file encountered
34 Memory variable was expected
35 Memory variable does not exist
36 Syntax error
37 PROCEDURE name was expected
38 Too many @…GETs defined
39 Invalid screen co-ordinates
40 Invalid picture
41 String was expected
42 Variable/field <variable/field name> not found
43 Field variable was expected
44 Database <database name> is already open
45 Keyword WITH was expected

Recital Environment

27

46 Expression was expected
47 Keyword FROM was expected
48 Keywords ON or OFF were expected
49 Field variable is not in currently selected database
50 Keyword FOR or WHILE were expected
51 Comma was expected
52 Record number is out of range
53 Help text for GET is too long
54 RANGE can only be checked on dates and numerics
55 Invalid LOOKUP field
56 Keyword FILE was expected
57 Keyword BY was expected
59 No such window
60 File is not of recognizable format
61 Invalid key
62 Database is not indexed
63 Invalid parameter
64 File <filename> already exists
65 Keyword ON was expected
66 Keyword VIA was expected
67 Database is not indexed
68 Keyword INTO was expected
69 ALIAS name was expected
70 Illegal data format in FROM file
71 Too many SUM expressions, maximum is <maximum # of sum expressions>
72 ‘(‘ was expected
73 ‘)’ was expected
74 Data type mismatch
75 Value should not have any decimal places
76 FOR was expected
77 Invalid WITH file
78 Invalid join field
79 Too many fields in field list
80 Keyword FIELD was expected
81 Database is already open
82 No such index
83 Database is not shareable
84 Field definitions in view file too long
85 Keyword REPLACE was expected
86 Maximum database records exceeded
87 Invalid date
88 Syntax error in terminal definition file
89 LOCK failed
90 UNLOCK failed
91 Incorrect use of reserved word
92 PROCEDURE name already in use
93 Relation expression too long to save
94 Internal Error - View Workarea Number
95 Filter expression too long to save
96 Cannot run <filename> - errno <error #>
97 Unrecognized command verb
98 Too many strings - increase STRINGBUF
99 INDEX key is too long, maximum length is <expN>

Recital Environment

28

100 Maximum accumulators exceeded
101 Syntax error in column[<column #>] / subtotal[<subtotal #>] expression
102 Command not available with RMS indexed sequential files
103 Required facility is not available with this license
104 ALIAS name already in use
105 Lock failed - database not available
106 No assistance available
107 Index file does not match database
108 Error text for GET is too long
109 IN was expected
110 Cannot replace as key already exists
111 Exclusive use of database is required
112 Unrecognized function name
113 Database <database name> locked by another user
114 Mismatched IF.ELSE.ENDIF
115 Mismatched DO WHILE and ENDDO
116 Cannot lock database - exceeded enqueue quota (ENQLM)
116 Cannot lock database - errno <error #>
117 Cannot lock index - exceeded enqueue quota (ENQLM)
117 Cannot lock index - errno <error #>
118 Cannot lock record - exceeded enqueue quota (ENQLM)
118 Cannot lock record - errno <error #>
119 Lock table is full
120 Record not in index
121 Too many SORT fields, maximum is <maximum sort fields>
122 Cannot rename <filename> - errno <error #>
123 Illegal use of SUSPEND
124 <Reserved>
125 Cannot update record - errno <error #>
126 Cannot delete record - errno <error #>
127 Cannot append record - errno <error #>
128 Too many relationships - maximum is <maximum workareas - 1>
129 Related database is not indexed
130 Cyclic relation
131 Database access permission is Read Only
132 Key field does not exist in both databases
133 You cannot update a database from itself
134 Too many lines in footer block
135 Too many lines in header block
136 FORMAT file is active
137 Fatal I/O error reading index file - exceeded quota
137 Fatal I/O error reading index file - errno <error #>
138 Fatal I/O error writing to index file - exceeded quota
138 Fatal I/O error writing to index file - errno <error #>
139 Fatal I/O error reading from database file - exceeded quota
139 Fatal I/O error reading record <rec #> from database file - errno <error #>
140 Fatal I/O error writing to database file - exceeded quota
140 Fatal I/O error writing record <rec #> to database file - errno <error #>
141 Variable name already in use as a PROCEDURE
142 SUBSTR() start point out of range
143 Variable/field <variable/field name> already exists
144 Unrecognized bridge type
145 Cannot execute as replay mode is already active

Recital Environment

29

146 Cannot execute as capture mode is already active
147 Cannot unlock database - exceeded enqueue quota (ENQLM)
147 Cannot unlock database - errno <error #>
148 Not suspended
149 Valid only in programs
150 Syntax error in browse character expression
151 Memo (.DBT) file cannot be opened
152 Record is in use by another user
153 Dictionary (.DBD) file cannot be opened
154 Dictionary (.DBD) file cannot be created
155 TO clause must be specified
156 ON clause must be specified
157 ARRAY reference is out of bounds
158 ARRAY not found
159 ‘]’ was expected
160 ARRAY name was expected
161 ‘[‘ was expected
162 Illegal use of ARRAY
163 Internal Error - <VMS Operating System Error Message>
164 Internal error - <error #>
165 Validation on field <field name> failed
166 Syntax error in field <field name> expression
167 Calculated field <field name> cannot be updated
168 Incompatible data type for field <field name> default
169 <Reserved>
170 Syntax error in field <field name> default expression
171 Incompatible data type for field <field name> default
172 Incompatible data type in calculation expression for field <field name>
173 Syntax error in calculation expression for field <field name>
174 Position is off the screen
175 Keyword was expected
176 Bad keyword
177 FUNCTION name already in use
178 FUNCTION name was expected
179 Function <function name> did not return a value
180 Illegal use of MEMO field
181 Not a RECITAL database
182 Record is out of range
183 Internal locking error in ‘lock_current_record()’
184 Too many screens saved. Maximum is <maximum saved screens>
185 Screen memory variable was expected
186 Invalid workarea specified
187 Command not available with this type of bridge
188 This key cannot be redefined
189 Nested transactions are not supported
190 Cannot open transaction log file <log file>
191 Command illegal when transaction in progress
192 Transaction log file I/O error
193 Internal transaction log error
194 TRIM functions cannot be used in index expressions
195 Database structure and RMS record length do not match
196 Too many @...MENUs defined
197 Procedure/Function <procedure name/function name> not declared

Recital Environment

30

198 Data type mismatch in parameter list
199 SQL functions are only valid in SQL commands
200 Nested SQL functions are not supported
201 Invalid parameters for COUNT()
202 Required facility is not available with this license
203 Keyword AT expected
204 Maximum file size (ulimit) of <max file size> exceeded
205 Shared files are not available with a single user license
206 Array name <array name> conflicts with function name
207 Unrecognized Treport (RDL) directive
208 Language definition file not available for this terminal
209 Conflicting keywords/clauses or dictionary entry for @...GET
210 Specified keyword/clause cannot be used with a MEMO in @...GET
211 SORT key is to long, maximum is <maximum index length>
212 MENU name was expected
213 Duplicate MENU name
214 PAD name was expected
215 MENU not defined
216 Keyword PROMPT expected
217 Duplicate PAD name
218 POPUP name not specified
219 Duplicate POPUP name
220 POPUP not defined
221 BAR position exceeds menu size
222 BAR position already in use
223 BAR definition invalid on this type of POPUP
224 Keyword OF expected
225 PAD not defined
226 Keyword MENU expected
227 Nested CALCULATE functions not supported
228 Too many CALCULATE expressions, maximum is <maximum number of sum exp.>
229 File is already open
230 Invalid function parameter
231 No current record - database is empty
232 No current record database at EOF
233 You do not have authorization to perform this operation
234 You do not have authorization to modify this field
235 Too many PROCEDURE libraries
236 Get memory variable expected
237 Too many paths specified. Max is 10
238 Character expression was expected
239 Number is too large
240 File is not a valid RECITAL report format
241 WINDOW name was expected
242 WINDOW already declared
243 WINDOW not defined
244 Bad color specification
245 Table name expected
246 Table already declared
247 Table not declared
248 Too many parameters. Maximum is 40.
249 No such workarea. Range is 1 to <Max # of workareas>
250 Keyword “MEMO” expected

Recital Environment

31

251 <Remote server error message>
252 Distributed cache failure - exceeded enqueue quota (ENQLM)
253 Attempt to UPDATE an unlocked record
254 Operation not allowed with this type of server
255 Variable has undefined contents
256 A database is already active in this workarea
257 RSI is already active in this workarea
258 Cannot establish gateway to server <servername>
259 Unrecognized type of network protocol
260 Keyword “DATABASE” expected
261 No client/server gateway active
262 Operation not allowed with this type of gateway
263 Menu memory variable was expected
264 Cannot connect to <servername> server on <machine name> host machine
265 Fatal lseek() error on index file - <index filename>
266 MEMO field expected
267 WINDOW is too small to contain a TITLE
268 FORMAT file is not active
269 Invalid SET expression
270 TAG name was expected
271 Multiple index file <index filename> is not open
272 Cannot create TAG <tag name>
273 Index TAG <tag name> already exists
274 Too many indexes, maximum is 20
275 TAG not found
276 Multiple index file not open in current work area
277 Cannot open multiple index file <index filename>
278 No more work areas available
279 This database already has a dictionary
280 Invalid file structure
281 BAR not found
282 Expressions and TO variables do not match
283 Keyword PRODUCTION was expected
284 Mismatched ‘)’
285 INDEX key expression is too long, maximum length is 511
286 Exceeded file limit while appending record <record #>
287 <MPE TurboImage database specific error message>
288 Database <table name> is opened <file I/O mode> in another workarea
289 Fatal System Error - PACK of RDD table failed
290 Fatal System Error - ZAP of RDD table failed
291 Command/Function is not supported on MSDOS
292 PROPERTY not found
293 Objects and dynamic arrays cannot be redefined
294 Objects cannot be redefined
295 Operation not allowed with objects or dynamic arrays
296 Object not found
297 CLASS name was expected
298 Duplicate CLASS name
299 PROPERTY name was expected
300 CLASS not found
301 METHOD name was expected
302 ‘::’ was expected
303 METHOD not found

Recital Environment

32

304 PROPERTY <property name> already exists
305 METHOD declared EXTERNAL but not defined
306 Attempt to assign incompatible data type
307 Access to LOCAL member of object denied
308 Access to PRIVATE member of object denied
309 Too many CLASS libraries defined. Maximum is 20
310 STATIC variable <variable name> in CLASS <class name> not found
311 Unknown System Function in CLASS definition
312 Illegal System OBJECT operation
313 Unknown value returned from SYSTEM object
314 TAB not declared
315 TAB name was expected
316 Invalid file pointer used
317 No primary key has been specified on server table
318 Cannot lock global memory - errno <error #>
319 Error accessing data table, error number 319. Contact Recital support
330 Invalid VERSION/REVISION id
331 Invalid PRODUCT id
332 Invalid authorization code
333 Unauthorized software license, Invalid RDD type
334 Unauthorized software license, Invalid SERVER type
335 Unauthorized software license, Invalid VAX license
336 Unauthorized software license, Invalid CPU type
337 Number of users has been exceeded maximum of <max # of users>
338 Too many REPOSITORY libraries defined. Maximum is 10
339 Could not install NetObject <object name>
340 Universal Object Exchange not active on <node name>
341 This command/feature is not available with this product
342 Warning level set to fatal, trace with iologging
343 Keyword AND expected
344 Keyword NULL expected
345 Keyword AS expected
346 Trial version maximum record limit of <expN> exceeded
347 Database must be converted for version 8.0.
348 Illegal use of GRAPHIC field
349 Dictionary (.DBD) file is corrupted
350 Directory not found ‘<path name>‘
351 Unable to load mail
352 Unable to send mail message
353 Could not install COM object
354 Could not install JAVA object
355 Could not install CORBA object
356 Object type not supported
357 COM method error
358 COM get property error
359 COM set property error
360 JAVA method error
361 JAVA get property error
362 JAVA set property error
363 DLL error
1000 User defined error message

Recital Environment

33

Recital Database and Mirage Server Error Messages

Number Error Message
-1 Incorrect version in license
-2 Incorrect product code in license
-3 Invalid authorization code in license
-4 Expired license
-5 The host name/TCP/IP address in the license does not match the system it is running on
-6 A connection request was made from a different system and the current license is not an

Enterprise Edition
-7 The license file cannot be found.
-8 The license file cannot be opened.
-9 The license file cannot be opened for reading.
-10 Invalid option string in the license.
-11 Client is not licensed to use the Server in the option string.
-12 The number of CPU’s is greater than the license allows.

Recital Environment

34

Recital/SQL Error Messages

ERROR() Error Message
5000 Unrecognized phrase/keyword near column <expN>
5001 Table name was expected
5002 Column name was expected
5003 Column name already exists
5004 Data type was expected
5005 Unrecognized data type for column <column name>
5006 Invalid specification for column <column name>
5007 Keyword PRECISION was expected
5008 Cannot create table <table name>
5009 Invalid table specification
5010 Cannot open table <table name>
5011 Keyword TABLE expected
5012 Keyword ADD expected
5013 <command expression> - operation aborted
5014 Keyword INTO expected
5015 Keyword VALUES expected
5016 Keyword SQL expected
5017 Keyword FROM expected
5018 ‘=‘ expected
5019 Keyword SET expected
5020 Keyword INDEX expected
5021 Index name expected
5022 Keyword ON expected
5023 Keyword BY expected
5024 Keyword UPDATE expected
5025 FROM clause missing
5026 Bad ORDER BY clause
5027 Bad GROUP BY clause
5028 Cursor name was expected
5029 Cursor already declared
5030 Keyword CURSOR was expected
5031 Keyword FOR was expected
5032 Too many cursors declared
5033 Cursor is not open
5034 Cursor not declared
5035 Cursor is already open
5036 INTO list does not match SELECT list
5037 Specified cursor is not updateable
5038 Keyword TO expected
5039 No CURRENT record
5040 Exclusive tables cannot be locked
5041 Keyword SHARE or EXCLUSIVE expected
5042 Keyword MODE expected
5043 Keyword IN expected
5044 Keyword SELECT expected
5045 Keyword JOIN expected
5046 Invalid join expression
5047 Operation not supported on a VIEW
5048 View not declared

Recital Environment

35

5049 VIEW already declared
5050 View name was expected
5051 Column ‘<column name>‘ not found
5052 Table privilege expected
5053 User name was expected
5054 User name <user name> was not found

Recital Environment

36

Accessing RMS Data Files

On OpenVMS, Recital Terminal Developer and the Recital Database and Mirage Servers support access to
the following fixed length RMS File types:

• RMS Sequential
• RMS Indexed Sequential
• RMS Relative

Data access is achieved through an RMS Bridge. This requires the creation of a Bridge file and an empty
Recital table that has the same structure as the RMS file.

Creating the Recital Table
Create a Recital table with the same structure as the RMS file. The fields/columns in the structure file must
exactly match the data type and length of those in the RMS file. The Recital table will have one byte more
in total record length due to the Recital record deletion marker.

To create the table, use the SQL CREATE TABLE command or the Recital Terminal Developer for
OpenVMS CREATE worksurface. The table should be given a ‘.str’ file extension (rather than the default
‘.dbf’) to signify that this is a structure file only.

Please see the end of this document for information on accessing VAX COBOL data types.

Creating the Bridge File
In Recital Terminal Developer for OpenVMS, the Bridge File can be created using the CREATE BRIDGE
worksurface. For Recital Database and Mirage Server clients, the Bridge File can be created in two ways:
by using an ‘ini’ file, or by the SQL CREATE BRIDGE command.

Maximums Widths
The following maximum widths apply to the bridge elements:

Element Maximum Width in Characters Description
Type 10 Bridge type: RMSSEQ, RMSIDX, RMSREL
External 80 External file name
Metadata 80 Recital ‘structure’ table name
Alias 10 Alias name
Index 50 Index key or filename

Recital Environment

37

CREATE BRIDGE (SQL)
The CREATE BRIDGE SQL command defines and creates the bridge in one step:

e.g.
exec sql
CREATE BRIDGE rmsseqdemo.dbf
TYPE “RMSSEQ”
EXTERNAL “rmsseq.dat”
METADATA “rmsseqdemo.str”
ALIAS “rmsseqdemo”;

or

exec sql
CREATE BRIDGE rmsseqdemo.dbf
AS “type=RMSSEQ;external=rmsseq.dat;metadata=rmsseqdemo.str;alias=rmsseqdemo”;

For RMS Indexed Sequential files, the RMS index keys to be used can also be included in the bridge
definition. Up to 7 different keys may be specified:

e.g.
exec sql
CREATE BRIDGE rmsidxdemo.dbf
TYPE “RMSIDX”
EXTERNAL “rmsidx.dat”
METADATA “rmsidxdemo.str”
ALIAS “rmsidxdemo”
INDEX “acc_prefix+acc_no,acc_prefix+str(ord_total)”;

or

exec sql
CREATE BRIDGE rmsidxdemo.dbf
AS “type=RMSIDX;external=rmsidx.dat;metadata=rmsidxdemo.str;alias=rmsidxdemo;;
indexkey1=acc_prefix+acc_no;indexkey2=acc_prefix+str(ord_total)”;

For RMS Sequential and RMS Relative files, up to 7 Recital single indexes can be built and associated with
the bridge.

e.g.
exec sql
CREATE BRIDGE rmsreldemo.dbf
TYPE “RMSREL”
EXTERNAL “rmsrel.dat”
METADATA “rmsreldemo.str”
ALIAS “rmsreldemo”
INDEX “ind1.ndx,ind2.ndx,ind3.ndx”;

or

exec sql
CREATE BRIDGE rmsreldemo.dbf
AS “type=RMSREL;external=rmsrel.dat;metadata=rmsreldemo.str;alias=rmsreldemo;;
indexkey1=ind1.ndx;indexkey2=ind2.ndx,indexkey3=ind3.ndx”;

Recital Environment

38

CREATE BRIDGE FROM <ini>

Firstly, an ‘ini’ file should be created on the server in the data directory where the external data file is held.
The ini file has the following contents:

[bridge]
bridgetype=<bridgetype>
externalname=<name of the external data file>
databasename=<name of the Recital structure table>
alias=<the name to use to access your file>
indexkey1=<optional RMS index key or Recital index filename>
indexkey2=<optional RMS index key or Recital index filename>
indexkey3=<optional RMS index key or Recital index filename>
indexkey4=<optional RMS index key or Recital index filename>
indexkey5=<optional RMS index key or Recital index filename>
indexkey6=<optional RMS index key or Recital index filename>
indexkey7=<optional RMS index key or Recital index filename>

e.g. rmsreldemo.ini

[bridge]
bridgetype=RMSREL
externalname=rmsrel.dat
databasename=rmsreldemo.str
alias= rmsreldemo
indexkey1=ind1.ndx
indexkey2=ind2.ndx

e.g. rmsidxdemo.ini

[bridge]
bridgetype=RMSIDX
externalname=rmsidx.dat
databasename=rmsdemo.str
alias=rmsidxdemo
indexkey1=acc_prefix+acc_no
indexkey2=acc_prefix

NOTE: Recital Terminal Developer users can use the MODIFY BRIDGE to add in details of newly built
Recital indexes. In client/server environments the SQL CREATE BRIDGE or 4GL CREATE BRIDGE
FROM <ini> command needs to be reissued.

Then the CREATE BRIDGE command should be issued:

create bridge rmsidxdemo.dbf from rmsidxdemo

Using the Bridge
The Bridge can now be used. To access the RMS file, use the ‘alias’ specified in the Bridge definition.

e.g.

Select * from rmsseqdemo

Recital Environment

39

Accessing VAX COBOL Data Types
The following table provides details of the COBOL data types that can be directly accessed by RECITAL
using the RECITAL RMS Bridge.

COBOL Picture Clause COBOL Usage Clause RECITAL Data type Storage in

bytes
PIC 9(n)[n <=18] USAGE IS DISPLAY (N)umeric n
PIC 9(n)[n <=18] USAGE IS COMP-3 (P)acked Variable
PIC 9(n)[n <=4] USAGE IS COMP (S)hort 2
PIC 9(n)[5 <=n <=9] USAGE IS COMP (I)nteger 4
PIC 9(n)[10 <=n <=18] USAGE IS COMP (Q)uad 8
PIC S9(n)[n <=4] USAGE IS COMP (S)hort 2
PIC S9(n)[5 <=n <=9] USAGE IS COMP (I)nteger 4
PIC S9(n)[10 <=n <=18] USAGE IS COMP (Q)uad 8
PIC S9(n)[10 <=n <=18] USAGE IS INDEX (I)nteger 4
PIC S9(n)[10 <=n <=18] USAGE IS POINTER (I)nteger 4
PIC S9(n)[10 <=n <=18] USAGE IS COMP-1 (R)eal 4
PIC S9(n)[10 <=n <=18] USAGE IS COMP-2 (F)loat 8
PIC S9(n)[n <=18] USAGE IS COMP-3 (P)acked Variable
PIC 9(n)[n <=18] USAGE IS COMP-3 (P)acked Variable
PIC X(n)[n <=254] USAGE IS DISPLAY (C)haracter n
PIC A(n)[n <=254] USAGE IS DISPLAY (C)haracter n
PIC 9(n)V9(s) USAGE IS DISPLAY (S)hort 2
PIC S9(n)V9(s)[(n+s) <=4] USAGE IS COMP (S)hort 2
PIC S9(n)V9(s)[5<=(n+s)<=9] USAGE IS COMP (I)nteger 4
PIC S9(n)V9(s)[10<=(n+s)<=18] USAGE IS COMP (Q)uad 8
PIC 9(n)V9(s)[n <=18] USAGE IS COMP-3 (P)acked Variable
PIC S9(n)V9(s)[n <=18] USAGE IS COMP-3 (P)acked Variable
PIC S9(n)[n <=18] USAGE IS DISPLAY not supported
PIC S9(n)[n <=18] USAGE IS DISPLAY

SIGN IS TRAILING
not supported

PIC S9(n)[n <=18] USAGE IS DISPLAY
SIGN IS LEADING

not supported

PIC S9(n)[n <=18] USAGE IS DISPLAY
SIGN IS TRAILING
SEPARATE

not supported

PIC S9(n)[n <=18] USAGE IS DISPLAY
SIGN IS LEADING
SEPARATE

not supported

PIC S9(n)V9(s)[(n+s) <=18] USAGE IS DISPLAY
SIGN IS TRAILING

not supported

PIC S9(n)V9(s)[(n+s) <=18] USAGE IS DISPLAY
SIGN IS TRAILING

not supported

PIC S9(n)V9(s)[(n+s) <=18] USAGE IS DISPLAY
SIGN IS TRAILING
SEPARATE

not supported

PIC S9(n)V9(s)[(n+s) <=18] USAGE IS DISPLAY
SIGN IS LEADING
SEPARATE

not supported

Recital Environment

40

NOTE:
The storage occupied packed decimal data types is calculated as follows:

if (n+s) is odd then storage = ((n+s)+1)/2
else storage = ((n+s)+2)/2

When defining the “width” for binary data types, this value denotes the output display width. The storage
occupied by the data type is as specified above.

When defining he number of decimal places for binary data types, this value represents the “scale” of the
value. When the field is referenced, RECITAL scales it down by successive divisions of 10, as specified
by “scale”, and evaluates all arithmetic in double precision floating point. When fields of this type are
updated, then the result to be stored in the field is again re-scaled.

Recital Environment

41

Accessing C-ISAM Data Files

On UNIX and Linux platforms, Recital Terminal Developer, Recital Mirage Server and the Recital
Database Server support access to Informix compliant C-ISAM files.

Data access is achieved through a C-ISAM Bridge. This requires the creation of a Bridge file and an empty
Recital table that has the same structure as the C-ISAM file.

Creating the Recital Table
Create a Recital table with the same structure as the C-ISAM file. The fields/columns in the structure file
must exactly match the data type and length of those in the C-ISAM file. The Recital table will have one
byte more in total record length due to the Recital record deletion marker.

To create the table, use the SQL CREATE TABLE command or the Recital Terminal Developer CREATE
worksurface. The table should be given a ‘.str’ file extension (rather than the default ‘.dbf’) to signify that
this is a structure file only.

Please see the end of this section for information on matching Informix and Recital data types.

Creating the Bridge File
In Recital Terminal Developer, the Bridge File can be created using the CREATE BRIDGE worksurface.
For Recital Database and Mirage Server clients, the Bridge File can be created in two ways: by using an
‘ini’ file, or by the SQL CREATE BRIDGE command.

Maximums Widths
The following maximum widths apply to the bridge elements:

Element Maximum Width in Characters Description
Type 10 Bridge type: CISAM
External 80 External file name
Metadata 80 Recital ‘structure’ table name
Alias 10 Alias name

‘ini’ file
Firstly, an ‘ini’ file should be created on the server in the data directory where the C-ISAM file is held.
The ini file has the following structure:

[bridge]
bridgetype=<bridgetype>
externalname=<name of the C-ISAM file>
databasename=<name of the Recital structure table>
alias=<the name to use to access your file>

e.g. cisamdemo.ini

[bridge]
bridgetype=CISAM
externalname=cisam.dat
databasename=cisamstru.str
alias=cisamdemo

NOTE: There should be no white space either side of the ‘=’ signs.

Recital Environment

42

The Bridge file can now be created from the ini file. This can be given a ‘.dbf’ file extension (rather than
the default ‘.brg’) so that it can be accessed like a normal Recital table. The SQL EXECUTE
IMMEDIATE command is used to run the Recital/4GL CREATE BRIDGE FROM command:

e.g.

create bridge cisamdemo.dbf from cisamdemo

CREATE BRIDGE (SQL)
The CREATE BRIDGE SQL command defines and creates the bridge in one step:

e.g.
exec sql
CREATE BRIDGE cisamdemo.dbf
TYPE “CISAM”
EXTERNAL “cisamdemo.dat”
METADATA “cisamdemo.str”
ALIAS “cisamdemo”;

//or

exec sql
CREATE BRIDGE cisamdemo.dbf
AS “TYPE=CISAM;EXTERNAL=cisamdemo.dat;METADATA=cisamdemo.str;ALIAS=cisamdemo”;

Using the Bridge
The Bridge can now be used. To access the C-ISAM file, use the ‘alias’ specified in the Bridge definition.

e.g.

Select * from cisamdemo

Recital Environment

43

Data Types

Informix Recital
Byte Numeric
Char Character
Character Character
Date Date
Datetime Character
Decimal Numeric
Double Precision Float
Float Real
16 Bit Integer Short
Integer Numeric
Interval Character
32 Bit Long Integer
Money Numeric
Numeric Numeric
Real Numeric
Smallfloat Numeric
Smallint Numeric
Text Unsupported
Varchar Character

Recital Environment

44

C-ISAM RDD Error Messages

The following errors relate to the use of the Recital CISAM Replaceable Database Driver (RDD). They
can be received as an ‘errno <expN>‘ on Recital error messages:

ERRNO() Error Description
100 Duplicate record
101 File not open
102 Invalid argument
103 Invalid key description
104 Out of file descriptors
105 Invalid ISAM file format
106 Exclusive lock required
107 Record claimed by another user
108 Key already exists
109 Primary key may not be used
110 Beginning or end of file reached
111 No match was found
112 There is no “current” established
113 Entire file locked by another user
114 File name too long
115 Cannot create lock file
116 Memory allocation request failed
117 Bad custom collating
118 Duplicate primary key allowed
119 Invalid transaction identifier
120 Exclusively locked in a transaction
121 Internal error in journaling
122 Object not locked

Recital Environment

45

Using Xbase Data Files

To facilitate the migration of Xbase applications, Recital products contain the following features:

REPLACEABLE DATABASE DRIVERS (SET FILETYPE)
Replaceable Database Drivers allow Xbase tables and indexes to be used in their native format. The
Replaceable Database Drivers are not available on OpenVMS or 64-bit UNIX. Please see below and the
main SET FILETYPE entry in the SET COMMANDS documentation for further details.

DBCONVERT | CONVERT
The DBCONVERT utility and the CONVERT Recital/4GL command can be used to convert binary Xbase
files to Recital format and to alter the line feed character of ASCII files to the correct format for the new
host platform. The dbconvert utility is available in Recital Terminal Developer; the CONVERT command
can also be used with Recital server products. For more on the DBCONVERT utility, please see below.
The CONVERT command is in the main COMMANDS documentation.

SET COMPATIBLE
The SET COMPATIBLE command can be used in all Recital products to give added compatibility with
Xbase dialects. For full details, please see the main entry in the SET COMMANDS documentation.

SET FILECASE
The SET FILECASE command determines whether references to file and directory names on UNIX and
Linux are case-sensitive. If SET FILECASE is OFF, all file and directory names are treated as lower case.
If SET FILECASE is ON, file and directory names are case-sensitive. For full details, please see the main
entry in the SET COMMANDS documentation.

compat.db
The first time you start Recital Terminal Developer, or at any subsequent startup when the compat.db file
does not exist in the Recital Terminal Developer home directory, you will be prompted to select the
Language and Database compatibility settings. These correspond to the SET COMPATIBLE and SET
FILETYPE settings and once saved are written to the compat.db file, which will be run every time Recital
Terminal Developer is started. The following choices are available:

• Recital
• Visual FoxPro
• FoxPro
• FoxBase
• dBASE IV
• dBase 3
• Clipper 5
• Clipper ‘87

The settings dialog can be redisplayed by issuing the SET COMPATIBLE command with no ON, OFF or
TO clause.

fox
Calling Recital Terminal Developer with the fox script will automatically SET FILETYPE TO FOXPRO
and SET COMPATIBLE TO FOXPRO. This can also be achieved by passing the –f argument to the db
script.

Recital Environment

46

Replaceable Database Drivers
Recital provides Replaceable Database Drivers (RDDs) for popular Xbase products. These allow
transparent use and creation of data and index files in the following product formats:

dBASE
Clipper
FoxPro

Use the SET FILETYPE command to set the required filetype.

SET FILETYPE TO [RECITAL | DBASE3 | DBASE4 | DB4 | FOXBASE | FOXPRO | FOXPLUS |
CLIPPER | VFP]

Example
use demo
select accounts
set filetype to foxpro
copy to foxacc
dir

The file type is shown in parentheses next to the file name in the DIR listing. Notice that although we have
specified that the file type should be FOXPRO, the file foxacc.dbf has (DB3) next to it: where the file has
no memo fields, as in this case, all the file types use the dBASE III+ standard format.

Example
select customer
copy to foxcust
dir

The customer table does have a memo field and so, therefore, does the copy. The file foxcust.dbf is shown
with (FP2) next to its name.

The Replaceable Database Drivers can be used to enable a once only transfer of data into Recital format
when data and applications are being migrated from Xbase products. Each table is opened, then copied to
Recital format by ensuring that SET FILETYPE is set to Recital. They can also be used on a continuous
basis where the same data tables and indexes need to be used by both Recital products and one of the Xbase
products.

One further use of the Replaceable Database Drivers is where you need to transfer data files between binary
incompatible Recital platforms, since the formats are the same across all platforms.

Recital Environment

47

DBCONVERT
The DBCONVERT utility can be used to convert Xbase files into Recital format. The utility is run from
the Operating System prompt, with the following syntax:

$ dbconvert <filetype> [<filename>]

Xbase binary files must be converted into Recital format before they can be used, unless they are being
accessed using the Replaceable Database Drivers. ASCII format files can be used without conversion, but
the conversion will correct the line feed format of the file to that of the new host platform. The following
files can be converted:

File Contents File Extension Renamed extension

(OpenVMS)
Renamed extension
(UNIX/Linux)

Converted file
extension

table dbf old_dbf o_dbf dbf
program prg old_prg o_prg prg
format fmt old_fmt o_fmt fmt
memory mem old_mem o_mem mem
report frm old_frm o_frm frm
report frx old_frx o_frx frm
text txt old_txt o_txt txt

The file types are as follows:

File Type Description
ALL All convertible files in the current directory
DBF Tables and Memos
FMT Screen Format files
FRX FoxPro Report Format files
MEM Memory files
PRG Program files
TXT Text files
FRM Report Format files

The optional <filename> can be used to specify a single file or a group of files that match a pattern.

$ dbconvert dbf conv*.dbf

If the <filetype> is ALL, a ‘config.db’ file will automatically be created in the current directory containing
the following compatibility commands:

set pcfilter on
set pcgraphics on
set prompt to “.”
set pckeys on
set inkeydelay on

Recital Environment

48

Xbase RDD Error Messages

The following list of error messages can be received when using native Xbase file formats via Recital.

Error Description
-201 File write failure
-202 File read failure
-203 Memory allocation error
-204 File pointer reposition failed
-205 File not found
-206 File corrupted
-207 Bad user specified key expression
-208 No more file handles available
-209 No index pages loaded
-210 Index page was not loaded
-211 File close failure
-212 Invalid command
-213 Invalid file handle number
-214 Invalid filename
-215 Invalid date
-216 Invalid time
-217 File not in .DBT format
-218 Invalid Xbase file version
-219 File header length error
-220 Last file change date in error
-221 Invalid parameter address (NULL)
-222 Invalid index key type
-223 Invalid index key length
-224 Index key item length invalid
-225 Invalid index root page
-226 Invalid maximum number of index keys per page
-227 Invalid number of fields
-228 Invalid field name
-229 Invalid field length
-230 Invalid number of decimal places
-231 Invalid field data type
-232 Invalid record length
-233 Invalid data
-234 Invalid memo soft line length
-235 MDX flag in DBF file is invalid
-236 File open for read only
-237 File locking violation
-238 Sharing buffer overflow
-239 Path not found
-240 Access to file denied
-241 Invalid access code
-242 File must be locked first
-243 Destination device has changed
-244 Invalid minimum number of index keys per page
-245 Some files remain open
-246 Cannot open file
-247 Flush to disk failed

Recital Environment

49

-248 Invalid index tag handle
-249 Invalid block size
-250 Invalid index tag name
-251 Invalid block adder size
-252 Invalid maximum number of index tags
-253 Invalid index tag table element length
-254 Invalid index tag count
-255 Unknown index key format switches
-256 Unknown switch error
-257 Index tag already open
-258 Windows GlobalLock() failed
-259 Windows task lookup failed
-260 Internal lock buffer overflow
-261 Internal lock buffer underflow

Recital Environment

50

ASCII CHART

Hexadecimal Decimal Screen Control Sequence Control Key
00 0 NUL CTRL-@
01 1 SOH CTRL-A
02 2 STX CTRL-B
03 3 ETX CTRL-C
04 4 EOT CTRL-D
05 5 ENQ CTRL-E
06 6 ACK CTRL-F
07 7 BEL CTRL-G
08 8 BS CTRL-H
09 9 HT CTRL-I
0A 10 LF CTRL-J
0B 11 VT CTRL-K
0C 12 FF CTRL-L
0D 13 CR CTRL-M
0E 14 SO CTRL-N
0F 15 SI CTRL-O
10 16 DLE CTRL-P
11 17 DC1 CTRL-Q
12 18 DC2 CTRL-R
13 19 DC3 CTRL-S
14 20 DC4 CTRL-T
15 21 NAK CTRL-U
16 22 SYN CTRL-V
17 23 ETB CTRL-W
18 24 CAN CTRL-X
19 25 EM CTRL-Y
1A 26 SUB CTRL-Z
1B 27 ESC CTRL-[
1C 28 FS CTRL-\
1D 29 GS CTRL-]
1E 30 RS CTRL-^
1F 31 US CTRL-_
20 32
21 33 !
22 34 “
23 35 #
24 36 $
25 37 %
26 38 &
27 39 ‘
28 40 (
29 41)
2A 42 *
2B 43 +
2C 44 ,
2D 45 -
2E 46 .
2F 47 /
30 48 0

Recital Environment

51

31 49 1
32 50 2
33 51 3
34 52 4
35 53 5
36 54 6
37 55 7
38 56 8
39 57 9
3A 58 :
3B 59 ;
3C 60 <
3D 61 =
3E 62 >
3F 63 ?
40 64 @
41 65 A
42 66 B
43 67 C
44 68 D
45 69 E
46 70 F
47 71 G
48 72 H
49 73 I
4A 74 J
4B 75 K
4C 76 L
4D 77 M
4E 78 N
4F 79 O
50 80 P
51 81 Q
52 82 R
53 83 S
54 84 T
55 85 U
56 86 V
57 87 W
58 88 X
59 89 Y
5A 90 Z
5B 91 [
5C 92 \
5D 93]
5E 94 ^
5F 95 _
60 96 `
61 97 a
62 98 b
63 99 c
64 100 d
65 101 e

Recital Environment

52

66 102 f
67 103 g
68 104 h
69 105 i
6A 106 j
6B 107 k
6C 108 l
6D 109 m
6E 110 n
6F 111 o
70 112 p
71 113 q
72 114 r
73 115 s
74 116 t
75 117 u
76 118 v
77 119 w
78 120 x
79 121 y
7A 122 z
7B 123 (
7C 124 |
7D 125)
7E 126 ~

Recital Environment

53

Upgrading From Pre-9.0 Versions

Database tables (.dbf files) used by the Recital 9.0 and later product lines use a different file structure to
previous Recital versions.

Therefore, before you can use your existing Recital data tables, they must be converted to the new file
structure. This can be done by issuing the following command from the operating system prompt:

$ dbconvert ver90 <table name>.dbf

or, to convert all dbf files in the current directory:

$ dbconvert ver90

Recital Corporation strongly recommends that you perform a full backup of your Recital applications
upgrading and converting your tables. The dbconvert utility will attempt to backup your existing data
tables prior to converting, so you will need sufficient disk space available to hold these files. The Table
(.dbf) file, the Memo (.dbt) file and the Index (.dbx) file will be backed up (to a <basename>.o_dbf file, a
<basename>.o_dbt file and a <basename>.o_dbx file respecively). The Data Dictionary (.dbd) is not
backed up as it remains unchanged. Production tag index files are recreated by the dbconvert process, but
single index files (.ndx) will need to be rebuilt manually.

Upgrading From Pre-8.0 Versions

As part of Recital Corporation’s Year 2000 Certification Program, the Recital 8.0 release was enhanced to
provide date field storage up to the Year 2270. Because of this, the database tables (.dbf files) used by the
Recital 8.0 and later product lines use a different file structure to previous Recital versions.

Therefore, before you can use your existing Recital data tables, they must be converted to the new file
structure. This can be done by issuing the following command from the operating system prompt:

$ dbconvert year2000 <table name>.dbf

or, to convert all dbf files in the current directory:

$ dbconvert year2000

Recital Corporation strongly recommends that you perform a full backup of your Recital applications
upgrading and converting your tables. The dbconvert utility will attempt to backup your existing data
tables prior to converting, so you will need sufficient disk space available to hold these files. Note that
only the .dbf file will be backed up (to a <table name>.v73 file), as the Data Dictionary (.dbd) and Memo
(.dbt) files remain unchanged.

Recital Environment

54

Upgrading dbx Indexes From Pre-8.3 Versions

The permissible path and filename length stored in a .dbx multiple index file was increased in Recital 8.3.
All multiple index files (.dbx files) must be deleted and rebuilt when upgrading from pre-Recital 8.3
versions.

Example
erase file company.dbx
use company nodbx
index on co_code tag code
index on lower(co_name) tag name

NOTE: Recital Corporation recommends that program files are recompiled and indexes rebuilt whenever a
new version of the software is installed.

Recital Environment

55

Optimizing Indexes with SYNCNUM

See Also
CONVERT, DB_INDEXSEQNO, SYNCNUM

Recital Character and date indexes can be optimized based on the use of the pseudo column SYNCNUM to
ensure that all keys are unique. Every row/record in a table has a unique SYNCNUM value for that table.

The optimization is enabled using the DB_INDEXSEQNO environment variable/symbol. This updates the
SYNCNUM column of all new rows added to tables. In turn, any new character or date indexes include the
SYNCNUM column automatically: character indexes have SYNCNUM added to the end of the expression,
date indexes are converted to DTOS() and have the SYNCNUM added to the end. Numeric index are not
affected.

The SYNCNUM pseudo column for existing Recital 9 tables can be populated using the dbconvert utility
and the CONVERT command. The dbconvert utility is used from the operating system prompt:

$ dbconvert index <table name>.dbf

or, to convert all dbf files in the current directory:

$ dbconvert index

For more information on the CONVERT command, please see the main CONVERT entry under Recital
4GL Commands.

When DB_INDEXSEQNO is set to true, any tables and indexes that have not previously been converted,
will be converted to use the SYNCNUM optimization as they are opened. It is however recommended that
you use “dbconvert index” or “convert index” to manually convert your tables before setting
DB_INDEXSEQNO to true.

Environment Variables / Symbols

56

DB_CONFIG

Class
Environment Variables / Symbols

Purpose
Used to define the full path of the Recital Database Server and Recital Mirage Server configuration files

See Also
DB_MIRAGE

Description
The DB_CONFIG environment variable / symbol is set to the full path name of the configuration file for
the Recital Database and Mirage Servers. By default this is /usr/recitalxx/UAS/config.db.

Products
Recital Database Server, Recital Mirage Server

Environment Variables / Symbols

57

DB_DATADIR

Class
Environment Variables / Symbols

Purpose
Used to define a default data directory for SQL database creation and for the dbexec utility

See Also
CREATE DATABASE, CREATE TABLE, DROP DATABASE, DROP TABLE, USE, DBEXEC, SET
PATH

Description
The DB_DATADIR environment variable / symbol is used to define a default data directory for SQL
database creation and the dbexec utility. SQL Databases in Recital are implemented as directories
containing files that correspond to the tables and associated files in the database. Operating System file
protection can be applied individually to the files for added security. The directory is a sub-directory of the
Recital data directory as set in DB_DATADIR. SQL databases are created using the SQL CREATE
DATABASE command.

The dbexec utility is used to run program files via the Recital Database and Mirage Servers without
connecting from a client. If DB_DATADIR is set to a directory, this directory will be added to the search
path and is equivalent to using the SET PATH command.

Example
DB_DATADIR=“/usr/recital/data”; export DB_DATADIR
dbexec myapp

// create_dat.prg
CREATE DATABASE hr;
USE hr;
// end of create_dat.prg
> ? getenv([DB_DATADIR])
/usr/recital/data
> do create_dat
> ? default()
/usr/recital/data/hr

Products
Recital Database Server, Recital Mirage Server

Environment Variables / Symbols

58

DB_DATE

Class
Environment Variables / Symbols

Purpose
Used to define the date format for the license expiry date

See Also
SET DATE

Description
The DB_DATE environment variable / symbol is used to define the date format for the license expiry date.
DB_DATE is set to “american”. This setting must not be changed, as it could cause the license expiry date
to be read incorrectly and an expired license error to be generated. To change the date format for use
within the Recital environment, the SET DATE command should be used.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

DB_ENCRYPTION

Class
Environment Variables / Symbols

Purpose
Used to determine whether the Recital Database and Mirage Servers expect username and password
information in connection strings to be encrypted.

See Also
APPEND FROM, COPY FILE, COPY STRUCTURE, COPY TO, DECRYPT, DIR, ENCRYPT, USE,
SET ENCRYPTION, SQL INSERT, SQL SELECT, SQL UPDATE

Description
The DB_ENCRYPTION environment variable / symbol is used to determine whether the Recital Database
and Mirage Servers expect username and password information in connection strings to be encrypted. If
DB_ENCRYPTION is set to true (or “yes” or “on”), username and password information in connection
strings will be interpreted as DES3 encrypted data. If DB_ENCRYPTION is set to false (or “no” or “off”),
such data is not treated as DES3 encrypted.

Clients must have the appropriate settings to send the username and password information in DES3
encrypted format.

Products
Recital Database Server, Recital Mirage Server

Environment Variables / Symbols

59

DB_ERRORDIR

Class
Environment Variables / Symbols

Purpose
Used to specify the directory in which error files should be created

See Also
ERROR(), MESSAGE(), SET ERRORVERSION

Description
Set this environment variable (Linux/UNIX) or symbol (OpenVMS) to the name of the directory in which
error files should be created. If this environment variable / symbol is not set, error files will be created in
the directory that was current at the time of the error.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

DB_FIRECATLOG

Class
Environment Variables / Symbols

Purpose
Used to enable or disable Firecat Web Server Common Log Format access logging

See Also
DB_LOGDIR, USERLOG()

Description
The DB_FIRECATLOG environment variable / symbol is used to enable or disable Firecat Web Server
access logging. With DB_FIRECATLOG set to “True”, “On” or “Yes”, a Common Log Format access log
called firecat.log is created and updated in the log directory indicated by DB_LOGDIR.

Products
Recital Web Developer

Environment Variables / Symbols

60

DB_FOXMEM

Class
Environment Variables / Symbols

Purpose
Used to specify the creation of FoxPro binary format ‘.mem’ files for the SAVE TO command

See Also
RESTORE, SAVE, SET COMPATIBLE, SET FILETYPE, Using Xbase Files

Description
The DB_FOXMEM environment variable / symbol is used to specify that FoxPro binary format ‘.mem’
files should be created by the SAVE TO command, rather than Recital ASCII format ‘.mem’ files.

DB_FOXMEM should be set to “true”, “yes” or “on” to enable this behavior.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Environment Variables / Symbols

61

DB_FOXPLUSBUGS

Class
Environment Variables / Symbols

Purpose
Used for increased SCO FoxPlus compatibility

See Also
SET COMPATIBLE, SET FILETYPE, Using Xbase Files

Description
The DB_FOXPLUSBUGS environment variable / symbol is used to increase SCO FoxPlus compatibility.
If DB_FOXPLUSBUGS is set to “yes” or “on”, behavior of the sys(5), sys(2003) and sys(2004) functions
will be compatible with SCO FoxPlus.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

DB_FOXPROKEYS

Class
Environment Variables / Symbols

Purpose
Used for increased FoxPro READKEY() function compatibility

See Also
READKEY(), SET COMPATIBLE, SET FILETYPE, Using Xbase Files

Description
The DB_FOXPROKEYS environment variable / symbol is used to increase FoxPro compatibility. If
DB_FOXPROKEYS is set to “yes” or “on”, the return value from READKEY() for the [RETURN] /
[ENTER] key is 15.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Environment Variables / Symbols

62

DB_HOSTNAME

Class
Environment Variables / Symbols

Purpose
Used to define the Recital Server hostname/IP address when the server machine has more than one network
card/IP address

See Also
DB_LICENSE_SERVER

Description
The DB_HOSTNAME environment variable is used to define the Recital Server hostname/IP address when
the server machine has more than one network card/IP address.

DB_HOSTNAME should be set to the required hostname or IP address.

Products
Recital Database Server, Recital Mirage Server

Environment Variables / Symbols

63

DB_HTTP_ALLOW

Class
Environment Variables / Symbols

Purpose
Used to specify the name of a file containing IP addresses allowed to connect to the Recital Firecat Web
Server

See Also
DB_HTTP_DENY, DB_UAS_ALLOW, DB_UAS_DENY

Description
The name of a file in the UAS directory containing IP addresses that are allowed to connect to the Recital
Firecat Web Server. The default filename is the same as for the main Recital Server (defined in the
DB_UAS_ALLOW environment variable), hosts.allow. IP addresses should be listed in the file one to a
line.

Products
Recital Firecat Web Server

DB_HTTP_DENY

Class
Environment Variables / Symbols

Purpose
Used to specify the name of a file containing IP addresses denied from connecting to the Recital Firecat
Web Server

See Also
DB_HTTP_ALLOW, DB_UAS_ALLOW, DB_UAS_DENY

Description
The name of a file in the UAS directory containing IP addresses that are not allowed to connect to the
Recital Firecat Web Server. The default filename is the same as for the main Recital Server (defined in the
DB_UAS_DENY environment variable), hosts.deny. IP addresses should be listed in the file one to a line.

Products
Recital Firecat Web Server

Environment Variables / Symbols

64

DB_INDEXSEQNO

Class
Environment Variables / Symbols

Purpose
Used for data and character index optimization

See Also
Upgrading from pre-9.0 versions, INDEX, USE

Description
The DB_INDEXSEQNO environment variable / symbol environment variable has been added to help with
optimizing character and date indexes. The optimization is based on the use of the pseudo column
SYNCNUM to ensure that all keys are unique. Every row/record in a table has a unique SYNCNUM value
for that table.

When DB_INDEXSEQNO is set to true, any tables and indexes that have not previously been converted,
will be converted to use the SYNCNUM optimization as they are opened. It is however recommended that
you use “dbconvert index” or “convert index” to manually convert your tables before setting
DB_INDEXSEQNO to true.

New rows added to tables will always have the SYNCNUM column updated with a new unique number
regardless of the DB_INDEXSEQNO setting. Once .dbx files have been converted to use SYNCNUM
optimization, the DB_INDEXSEQNO value has no effect.

To disable SYNCNUM optimization after it has been enabled, you must set the value of
DB_INDEXSQNO to false and then recreate all the index and tag files. Tag files will need to be recreated
from scratch, so tables must be opened with USE <table> NODBX.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Environment Variables / Symbols

65

DB_LICENSE_SERVER

Class
Environment Variables / Symbols

Purpose
Used to define the Recital Server license hostname/IP address when the server machine has more than one
network card/IP address

Description
The DB_LICENSE_SERVER environment variable is used to define the Recital Server license
hostname/IP address when the server machine has more than one network card/IP address.

DB_LICENSE_SERVER should be set to the required hostname or IP address.

Products
Recital Database Server, Recital Mirage Server

DB_LOCAL_LOGIN

Class
Environment Variables / Symbols

Purpose
Used to determine whether the Recital Database and Mirage Servers allow local connections from specific
non-authenticated users.

Description
The DB_LOCAL_LOGIN environment variable / symbol is used to determine whether the Recital
Database and Mirage Servers allows local connections from specific non-authenticated users. Normally,
checks are made on all users attempting to connect to the Server to ensure that they are valid users. If
DB_LOCAL_LOGIN is set to true (or “on” or “yes”), then the username/password combinations of
recital/recital and ?/? are not checked providing the client is on the same machine as the Server. If
DB_LOCAL_LOGIN is set to false (or “off” or “no”), then all connecting users must provide valid
username and password information for the machine in question. DB_LOCAL_LOGIN has no effect on
connections from remote clients; all remote connections must be authenticated.

Products
Recital Database Server, Recital Mirage Server

Environment Variables / Symbols

66

DB_LOGDIR

Class
Environment Variables / Symbols

Purpose
Used to specify the directory in which log files should be created

See Also
SET SYSLOGGING, DB_LOGVER

Description
Set this environment variable (Linux/UNIX) or symbol (OpenVMS) to the name of the directory in which
log files should be created.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

DB_LOGVER

Class
Environment Variables / Symbols

Purpose
Used to specify the directory whether multiple log files should be created

See Also
SET SYSLOGGING, DB_LOGDIR

Description
If this environment variable (Linux/UNIX) or symbol (OpenVMS) is set to “NO”, “no”, “OFF” or “off”,
the Recital Database and Mirage Servers will overwrite existing log files rather than creating multiple
numbered log files. By default, multiple numbered log files will be created when logging is on.

Products
Recital Database Server, Recital Mirage Server

Environment Variables / Symbols

67

DB_MAXROW

Class
Environment Variables / Symbols

Purpose
Used to define the maximum number screen rows for Recital Mirage

See Also
COL(), MAXCOL(), MAXROW(), ROW(), @...SAY

Description
The DB_MAXROW is a Recital Mirage Server environment variable / symbol used to define the maximum
number of screen rows for Recital Mirage applications. By default the maximum number of screen rows is
25. DB_MAXROW can be set in the profile.uas configuration file (Linux, UNIX, OpenVMS) or in the
HKEY_LOCAL_MACHINE\SOFTWARE\Recital\UAS\NetServer\DB_MAXROW Registry entry
(Windows).

Please note: The SIZE parameter in the HTML file (browser based applications) or in the Mirage.conf file
(executables) must also be changed to match DB_MAXROW. For browser based applications, the applet
height may also need to be modified.

Products
Recital Mirage Server

DB_MAXWKA

Class
Environment Variables / Symbols

Purpose
Used to define the maximum number of available workareas

See Also
SELECT, USE, SELECT(), WORKAREA(), SET VIEW

Description
The DB_MAXWKA environment variable / symbol is used to define the maximum number of available
workareas. By default this is set to 20. The maximum value for DB_MAXWKA is 256.

Please note: DB_MAXWKA should be kept to the minimum required to avoid unnecessary memory
allocation.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Environment Variables / Symbols

68

DB_MIRAGE

Class
Environment Variables / Symbols

Purpose
Used to define the directory or folder containing the mirage_styles.conf configuration file

See Also
DB_CONFIG

Description
The DB_MIRAGE environment variable / symbol is set to the full path name of the directory or folder that
contains the mirage_styles.conf configuration file. The path name should not contain a trailing directory
separator character.

Products
Recital Mirage Server

DB_MIRAGE_COMMAND

Class
Environment Variables / Symbols

Purpose
Used to define a global command for Recital Mirage applications

See Also
DB_MIRAGE_CONFIG, DB_MIRAGE_DIRECTORY, DB_MIRAGE_PATH, DB_UAS_ALLOW,
DB_UAS_DENY

Description
DB_MIRAGE_COMMAND is used to define the command to be used for Recital Mirage applications.
This allows the value of the command applet parameter to be overridden. The ability to override the applet
parameters contained in the HTML file centrally from the server protects the server from misuse of these
parameters.

Products
Recital Mirage Server

Environment Variables / Symbols

69

DB_MIRAGE_CONFIG

Class
Environment Variables / Symbols

Purpose
Used to define a global configuration file for Recital Mirage applications

See Also
DB_MIRAGE_COMMAND, DB_MIRAGE_DIRECTORY, DB_MIRAGE_PATH, DB_UAS_ALLOW,
DB_UAS_DENY

Description
DB_MIRAGE_CONFIG is used to define the configuration file to be used for Recital Mirage applications.
This allows the value of the config applet parameter to be overridden. The ability to override the applet
parameters contained in the HTML file centrally from the server protects the server from misuse of these
parameters.

Products
Recital Mirage Server

DB_MIRAGE_DIRECTORY

Class
Environment Variables / Symbols

Purpose
Used to define a global login directory for Recital Mirage applications

See Also
DB_MIRAGE_COMMAND, DB_MIRAGE_CONFIG, DB_MIRAGE_PATH, DB_UAS_ALLOW,
DB_UAS_DENY

Description
DB_MIRAGE_DIRECTORY is used to define the login directory to be used for Recital Mirage
applications. This allows the value of the directory applet parameter to be overridden. The ability to
override the applet parameters contained in the HTML file centrally from the server protects the server
from misuse of these parameters.

Products
Recital Mirage Server

Environment Variables / Symbols

70

DB_MIRAGE_PATH

Class
Environment Variables / Symbols

Purpose
Used to define a global file search path for Recital Mirage applications

See Also
DB_MIRAGE_COMMAND, DB_MIRAGE_CONFIG, DB_MIRAGE_DIRECTORY,
DB_UAS_ALLOW, DB_UAS_DENY

Description
DB_MIRAGE_PATH is used to define the search path to be used for Recital Mirage applications. This
allows the value of the path applet parameter to be overridden. The ability to override the applet
parameters contained in the HTML file centrally from the server protects the server from misuse of these
parameters.

Products
Recital Mirage Server

Environment Variables / Symbols

71

DB_NOPAM

Class
Environment Variables / Symbols

Purpose
Used to disable PAM (Pluggable Authentication Module) user authentication

Description
The DB_NOPAM environment variable is used to disable PAM (Pluggable Authentication Module) user
authentication for the Recital Database and Mirage Servers. If DB_NOPAM is set to “on” or “yes”, PAM
is disabled and users are authenticated using FTP. If DB_NOPAM is unset or is set to “off” or “no”, PAM
will be used for Server user authentication on those systems on which it is supported.

DB_NOPAM should be set to TRUE in the UAS/profile.xml file when using the Universal ODBC Driver
for Linux/UNIX.

Products
Recital Database Server, Recital Mirage Server (Both UNIX/Linux only)

DB_ODBC_INI

Class
Environment Variables / Symbols

Purpose
Used to define the odbc.ini file for Linux/UNIX ODBC data source definitions

Description
The DB_ODBC_INI environment variable is used to define the odbc.ini file for Linux/UNIX ODBC data
source definitions.

It is set in the UAS/profile.xml file for the Universal ODBC Driver for Linux/UNIX.

Products
Recital Database Server (UNIX/Linux only)

Environment Variables / Symbols

72

DB_OPTLOG

Class
Environment Variables / Symbols

Purpose
Used to determine whether the evaluation of logical expressions should be optimized

See Also
SET OPTLOG

Description
The DB_OPTLOG environment variable / symbol is used to determine whether the evaluation of logical
expressions should be optimized. If DB_OPTLOG is set to “no” (or “NO”), evaluating a logical expression
causes the entire expression to be evaluated. If DB_OPTLOG is unset, or is set to a value other than “no”
or “NO”, the evaluation of the logical expression is optimized. The optimization causes the evaluation to
stop as soon as the result of the evaluation is known.

For example:

If DB_OPTLOG is set to “no”, the following command will cause an error, assuming no function called
‘crash’ exists.

 ? .F. and crash()

If DB_OPTLOG is unset, or set to a non-‘no’ value, no error will occur, since the evaluation process will
stop after the .F. has been evaluated. At this point, the result of the expression can only be .F. (false).

In post-8.2 versions, DB_OPTLOG also affects the optimization of logical expressions containing the OR
operator.

For example:

If DB_OPTLOG is set to “no”, the following command will cause an error, assuming no function called
‘crash’ exists.

 ? .T. or crash()

If DB_OPTLOG is unset, or set to a non-‘no’ value, no error will occur, since the evaluation process will
stop after the .T. has been evaluated. At this point, the result of the expression can only be .T. (true).

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Environment Variables / Symbols

73

DB_PRINTEREJECT

Class
Environment Variables / Symbols

Purpose
Used to determine whether the printer eject command is issued by SET PRINT OFF

See Also
SET PRINT, SET PRINTER

Description
The DB_PRINTEREJECT environment variable / symbol is used to determine whether the printer eject
command is issued by SET PRINT OFF. If DB_PRINTEREJECT is set to “on” or “yes”, the printer eject
command will be issued automatically by SET PRINT OFF. If DB_PRINTEREJECT is set to “off” or
“no”, the printer eject command will not be issued automatically by SET PRINT OFF.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

DB_PRINTERROR

Class
Environment Variables / Symbols

Purpose
Used to define check for and report errors in Linux/UNIX printing scripts

See Also
SET PRINTER

Description
The DB_PRINTERROR environment variable is used to determine whether checking should be carried out
on Linux/UNIX printing scripts. If DB_PRINTERROR is set to “on” or “yes”, Recital will check for errors
in Linux/UNIX printing scripts and report them.

The SET PRINTER TO \\SPOOLER command is used to redirect printer output to a system printer. This
picks up the environment variable DB_PRINT, which by default is set to the OS script file print.unix in the
UD directory. This file can be replaced or modified to suit the particular printing environment.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer (All UNIX/Linux only)

Environment Variables / Symbols

74

DB_PROCDIR

Class
Environment Variables / Symbols

Purpose
Used to define a default procedures and programs directory for the dbexec utility

See Also
DB_DATADIR, DBEXEC, SET PATH

Description
The DB_PROCDIR environment variable / symbol is used to define a default procedures and programs
directory for the dbexec utility. The dbexec utility is used to run program files via the Recital Database and
Recital Mirage Servers without connecting from a client. If DB_PROCDIR is set to a directory, this
directory will be added to the search path and is equivalent to using the SET PATH command.

Example
DB_PROCDIR=“/usr/recital/UAS/netprocs”; export DB_PROCDIR
dbexec myapp

Products
Recital Database Server, Recital Mirage Server

Environment Variables / Symbols

75

DB_REREAD_COLORFILE

Class
Environment Variables / Symbols

Purpose
Used to determine which default.col file is used by SET COLOR TO

See Also
SET COLOR

Description
The DB_REREAD_COLORFILE environment variable / symbol is used to determine which default.col
file is used by SET COLOR TO when the current directory contains a different default.col file from the
starting directory. The default.col file in the current directory will be used when a SET COLOR TO is
issued unless DB_REREAD_COLORFILE=“no”. If DB_REREAD_COLORFILE=“no” then SET
COLOR TO will restore the colors defined at startup.

Products
Recital Mirage Server, Recital Terminal Developer

DB_RUNLOG

Class
Environment Variables / Symbols

Purpose
Used to determine whether calls to operating system commands should be enabled or disabled.

See Also
!, !!, RUN, RUN(), SET RUNCLEAR, SET RUNWAIT

Description
The DB_RUNLOG environment variable / symbol is used to determine whether calls to operating system
commands should be enabled or disabled. This is particularly useful when debugging applications,
particularly when they are being migrated from one product to another or from one platform to another.
If DB_RUNLOG is true (or “yes” or “on”), calls to operating system commands are disabled and any such
calls are logged in the recital.log file. If DB_RUNLOG is false (or “no” or “off”), the calls are processed
as normal.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Environment Variables / Symbols

76

DB_RUNOPTS

Class
Environment Variables / Symbols

Purpose
Used to issue an stty command after leaving Recital to execute a RUN command.

See Also
!, !!, RUN, RUN(), SET RUNCLEAR, SET RUNWAIT, DB_RUNLOG, DB_RUNOPTS2

Description
The DB_RUNOPTS environment variable is used to issue an stty command after leaving Recital Terminal
Developer to execute a RUN command. It works in conjunction with DB_RUNOPTS2, which can issue an
stty command to reset the environment before returning to Recital Terminal Developer. For example, they
can be used to set echo on and back off again for a RUN command:

profile.db extract
DB_RUNOPTS=“stty echo icrnl” ;export DB_RUNOPTS
DB_RUNOPTS2=“stty -echo -icrnl” ;export DB_RUNOPTS2

Products
Recital Terminal Developer

DB_RUNOPTS2

Class
Environment Variables / Symbols

Purpose
Used to issue an stty command before returning to Recital after executing a RUN command.

See Also
!, !!, RUN, RUN(), SET RUNCLEAR, SET RUNWAIT, DB_RUNLOG, DB_RUNOPTS

Description
The DB_RUNOPTS2 environment variable is used to issue an stty command before returning to Recital
Terminal Developer after executing a RUN command. It works in conjunction with DB_RUNOPTS,
which can issue an stty command to set the environment after leaving Recital Terminal Developer. For
example, they can be used to set echo on and back off again for a RUN command:

profile.db extract
DB_RUNOPTS=“stty echo icrnl” ;export DB_RUNOPTS
DB_RUNOPTS2=“stty -echo -icrnl” ;export DB_RUNOPTS2

Products
Recital Terminal Developer

Environment Variables / Symbols

77

DB_SAMBA

Class
Environment Variables / Symbols

Purpose
Used to enable support of Samba locking

See Also
SET COMPATIBLE, SET FILETYPE

Description
The DB_SAMBA environment variable / symbol is used to enable support of Samba locking.

For more information on configuring Recital products to work with Samba, please see
http://www.recital.com/products_samba.htm.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer (All UNIX/Linux only)

DB_SAVEHISTORY

Class
Environment Variables / Symbols

Purpose
Used to determine whether persistent history will be written to the command.his file

See Also
Error Handling & Debugging, SET DOHISTORY, SET HISTORY

Description
The DB_SAVEHISTORY environment variable / symbol is used to determine whether persistent history
will be written to the command.his command history file. If DB_SAVEHISTORY is true, a persistent
command history will be written to the command.his file in the current working directory. This command
history is not reset or restarted by a new session, but persists across multiple sessions. Previous commands
logged to the command.his file can be recalled using the cursor keys at the command line.

If DB_SAVEHISTORY is false, writing and reading of the command.his file is disabled.

Products
Recital Terminal Developer

Environment Variables / Symbols

78

DB_TMPDIR

Class
Environment Variables / Symbols

Purpose
Used to specify the full path name of a directory or folder to be used by the SYS(3) function for temporary
file creation

See Also
SET TMPDIR, SYS(3)

Description
The DB_TMPDIR environment variable / symbol is used to define a directory or folder that will be used by
the SYS(3) function for temporary file creation. If DB_TMPDIR is not defined, SYS(3) returns a unique
file name without path information. Defining DB_TMPDIR causes this directory to be included in the
return value from SYS(3). Please note that the DB_TMPDIR should include a trailing directory separator.

Example
? getenv([DB_TMPDIR])
/usr/tmp/
? sys(3)
/usr/tmp/000cf30006

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Environment Variables / Symbols

79

DB_TSINDEX

Class
Environment Variables / Symbols

Purpose
Must be set to enable Text Search Index functionality

See Also
TSPOS(), TSWORD(), SET TSLENGTH

Description
The DB_TSINDEX environment variable / symbol is used to enable Text Search Index functionality. It
must be set to “ON” for Text Search Indexes to operate correctly.

Text Search Indexes are created using the TSWORD() function in the key and searched using the TSPOS()
function.

Example
? getenv([DB_TSINDEX])
ON
use example
index on tsword(first_name+last_name,1) to namesearch

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Environment Variables / Symbols

80

DB_UAS_ALLOW

Class
Environment Variables / Symbols

Purpose
Used to specify the name of a file containing IP addresses allowed to connect to the Recital Database or
Recital Mirage Servers

See Also
DB_UAS_DENY

Description
The name of a file in the UAS directory containing IP addresses that are allowed to connect to the Recital
Database or Recital Mirage Servers. The default filename is hosts.allow. IP addresses should be listed in
the file one to a line.

Products
Recital Database Server, Recital Mirage Server

DB_UAS_DENY

Class
Environment Variables / Symbols

Purpose
Used to specify the name of a file containing IP addresses denied from connecting to the Recital Database
or Recital Mirage Servers

See Also
DB_UAS_ALLOW

Description
The name of a file in the UAS directory containing IP addresses that are not allowed to connect to the
Recital Database or Recital Mirage Servers. The default filename is hosts.deny. IP addresses should be
listed in the file one to a line.

Products
Recital Database Server, Recital Mirage Server

Environment Variables / Symbols

81

DB_UNIXPATH

Class
Environment Variables / Symbols

Purpose
Used to determine whether the Linux/UNIX PATH should be included in the SET PATH list

See Also
SET PATH

Description
The DB_UNIXPATH environment variable / symbol is used to determine whether the directories specified
in the Linux/UNIX PATH environment setting should be automatically included in the SET PATH list. If
DB_UNIXPATH is set to “on” or “yes”, the directories are automatically included. If DB_UNIXPATH is
set to “off” or “no”, the directories are not included.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer (All UNIX/Linux only)

DB_USERLOG

Class
Environment Variables / Symbols

Purpose
Used to specify a directory and filename to which user specific logging information should be written

See Also
USERLOG()

Description
The DB_USERLOG environment variable / symbol is used to specify a directory and filename to which
user specific logging information should be written. With DB_USERLOG set to a valid filename, the
USERLOG() function can be used to write to the log for debugging or audit trail purposes.

By default, the DB_USERLOG environment variable is:

DB_USERLOG=“${DB_ROOT}log/${LOGNAME}.log”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Environment Variables / Symbols

82

DB_XMLREP

Class
Environment Variables / Symbols

Purpose
Used to automatically switch on XML transaction journaling

See Also
XMLCOUNT(), XMLCREATEDTD(), XMLFIRST(), XMLNEXT(), XMLVALIDATE()

Description
The DB_XMLREP environment variable / symbol is used to automatically switch on XML transaction
journaling.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

