

RETURN TO MAIN MENU

Recital/SQL

Recital/SQL

Recital Corporation,
100 Cummings Center, Suite 318J
Beverly, MA 01915

Recital may have patents and/or patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT ©1988-2006 Recital Corporation. All rights reserved. All Recital products are trademarks or
registered trademarks of Recital Corporation, Inc. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Last updated August, 2006

Index

OVERVIEW 1
DATA TYPES 2

SYSTEM TABLES 5
SYSACTIVEUSERS 6
SYSBESTROWIDENTIFIER 7
SYSCATALOGS 8
SYSCOLUMNCONSTRAINTS 9
SYSCOLUMNPRIVILEGES 10
SYSCOLUMNS 11
SYSCROSSREFERENCE 12
SYSEXPORTEDKEYS 13
SYSIMPORTEDKEYS 14
SYSINDEXINFO 15
SYSIOSTATS 16
SYSLOGGING 17
SYSPRIMARYKEYS 18
SYSPROCEDURECOLUMNS 19
SYSPROCEDURES 20
SYSRESULTSET 21
SYSSCHEMAS 22
SYSTABLECONSTRAINTS 23
SYSTABLEPRIVILEGES 24
SYSTABLES 25
SYSTABLETYPES 26
SYSTYPEINFO 27
SYSUDTS 28
SYSVERSIONCOLUMNS 29

PSEUDO COLUMNS 30
CURRVAL 31
NEXTVAL 32
ROWID 33
ROWNUM 34
SQLCNT 35
SQLCODE 36
SYNCNUM 37

OPERATORS 38
NUMERIC OPERATORS 39
STRING OPERATORS 40
DATE OPERATORS 41
LOGICAL OPERATORS 42
RELATIONAL OPERATORS 44

PREDICATES 46
BETWEEN 47
IN 48
LIKE 49
NULL 50

TABLE CONSTRAINTS 51
CHECK 52
ERROR 53
FOREIGN KEY 54
INDEX 55
KEY 56
ONCLOSE 57
ONDELETE 58
ONINSERT 59
ONOPEN 60
ONROLLBACK 61
ONUPDATE 62
PRIMARY KEY 63
UNIQUE 64

COLUMN CONSTRAINTS 65
AUTO_INCREMENT 66
AUTOINC 67
CALCULATED 68
CHECK 69
DEFAULT 70
DESCRIPTION 71
ERROR 72
FOREIGN KEY 73
NOCPTRANS 74
NOT NULL 75
NULL 76
PRIMARY KEY 77
RANGE 78
RECALCULATE 79
REFERENCES 80
SET CHECK 81
UNIQUE 82

COMMANDS
ADD TABLE 83
ALTER INDEX 84
ALTER TABLE 85
BACKUP DATABASE 88
BEGIN TRANSACTION 90
CLOSE 92
CLOSE DATABASES 93
CLOSE TABLES 94
COMMIT 95
COMPILE DATABASE 96
CREATE BRIDGE 97

CREATE CONNECTION 100
CREATE CURSOR 103
CREATE DATABASE 105
CREATE INDEX 106
CREATE PROCEDURE 107
CREATE TABLE 109
CREATE TRIGGER 112
CREATE VIEW 114
DECLARE CURSOR 115
DELETE FROM 116
DELETE TRIGGER 117
DISPLAY DATABASE 118
DISPLAY TABLES 120
DROP BRIDGE 122
DROP CONNECTION 123
DROP CURSOR 124
DROP DATABASE 125
DROP INDEX 126
DROP PROCEDURE 127
DROP TABLE 128
DROP VIEW 129
END TRANSACTION 130
EXEC SQL 132
EXECUTE 133
EXECUTE IMMEDIATE 134
FETCH 135
GRANT 137
INSERT 139
LIST DATABASE 141
LIST TABLES 143
LOCK TABLE 145
OPEN 146
OPEN DATABASE 147
PACK DATABASE 150
PREPARE 151
REBUILD DATABASE 152
REINDEX DATABASE 153
RESTORE DATABASE 154
REVOKE 156
ROLLBACK 158
SAVE TRANSACTION 160
SAVEPOINT 161
SELECT 162
UPDATE 170
USE 172

DATABASE EVENTS 173
DBC_CLOSEDATA 174
DBC_OPENDATA 176

AGGREGATE FUNCTIONS 178
AVG() 179
COUNT() 180
MAX() 181
MIN() 182
SUM() 183

REMOTE DATA CONNECTIVITY FUNCTIONS 184
SQLCANCEL() 185
SQLCOLUMNS() 187
SQLCOMMIT() 189
SQLCONNECT() 191
SQLDISCONNECT() 193
SQLEXEC() 194
SQLGETPROP() 196
SQLMORERESULTS() 197
SQLPREPARE() 199
SQLROLLBACK() 200
SQLSETPROP() 202
SQLSTRINGCONNECT() 204
SQLTABLES() 206

FUNCTIONS
ADATABASES() 208
BETWEEN() 209
BITAND() 210
BITCLEAR() 211
BITLSHIFT() 212
BITNOT() 213
BITOR() 214
BITRSHIFT() 215
BITSET() 216
BITTEST() 217
BITXOR() 218
CAST() 219
CDOW() 221
CLEARRESULTSET() 222
CMONTH() 223
CONNECTED() 224
CTOT() 225
CURSORNAME() 226
DATABASE() 227
DATE() 228
DATETIME() 229
DAY() 230
DBUSED() 231
DMY() 232
DOW() 233
DTOC() 234
DTOS() 235
EMPTY() 236
FINDCURSOR() 237

GATEWAY() 238
GETRESULTSET() 239
GOMONTH() 240
HOUR() 241
HOURS() 242
ICASE() 243
IF() 244
IIF() 245
ISNULL() 246
LIKE() 247
MINUTE() 248
MINUTES() 249
MONTH() 250
NVL() 251
QUARTER() 252
REFERENCES() 253
SEC() 254
SECONDS() 255
SECS() 256
SEQNO() 257
SETRESULTSET() 258
SQLVALUES() 259
TIME() 260
TTOC() 261
TTOD() 262
TXNISOLATION() 263
TXNLEVEL() 264
TYPE() 265
VARTYPE() 267
YEAR() 269

SET COMMANDS
SET… 270
SET AUTOCATALOG 271
SET CENTURY 272
SET GATEWAY 273
SET HOURS 274
SET NULL 275
SET NULLDISPLAY 277
SET SECONDS 278
SET SEQNO 279
SET SQL 280
SET SQLPROMPT 282
SET SQLROWID 283
SET TCACHE 284
SET TRANSACTION 286
SET XMLFORMAT 288

ENVIRONMENT

1

OVERVIEW

Recital SQL is SQL ANSI 92 compliant and compatible with both Microsoft® Visual FoxPro® and
MySQL™ SQL. Where Recital, MySQL and Visual FoxPro differ in their SQL syntax, the SET SQL TO
<dialect> command can be used to select the syntax to be used.

Recital SQL commands may be used interactively at the command prompt in Recital Terminal Developer
products, embedded within Recital/4GL programs, issued from ‘.sql’ programs or sent from SQL clients
for direct execution by the Recital Database Server.

Recital Terminal Developer Interactive Mode
Recital SQL statements may be typed interactively at the command prompt. The command SET SQL ON
must first be issued. This changes the command prompt to the following: ‘Recital/SQL>’.

When in interactive SQL mode, Recital SQL and Recital/4GL commands can be intermixed. The
following Recital SQL commands take precedence over their Recital/4GL equivalents:
CLOSE, DELETE, INSERT, SELECT, UPDATE

In interactive SQL mode, Recital SQL statements must be terminated with a semi-colon (;). Pressing
[RETURN] without terminating the statement with a semi-colon continues the statement onto the next line.
NOTE: If SQL is set to VFP, the semi-colon is not required.

The default Recital/SQL> prompt may be changed with the SET SQLPROMPT TO <expC> command.

Embedded Recital SQL
SQL statements may be embedded in Recital/4GL programs. If SQL is set to the default RECITAL, SQL
statements must be preceded by the EXEC SQL command and terminated with a semi-colon (;).

// Embedded Recital SQL statement in program
exec sql
select * from accounts
where account_no = “00010”;
dialog box [end of select]
//

All lines that follow the EXEC SQL line up to the terminating semi-colon are treated as a single SQL
statement. SET SQL ON may be used as an alternative to EXEC SQL.

.sql Programs
Programs consisting entirely of SQL statements may be given a ‘.sql’ file extension to differentiate them
from standard Recital/4GL programs (.prg files). When a ‘.sql’ file is run, SQL is automatically set ON
and SQL is set to MYSQL. Compiled ‘.sql’ files are given a ‘.sqo’ file extension.

Database Server execution
Database Server SQL clients such as the Recital Universal JDBC Driver and the Recital Universal ODBC
Driver, send individual SQL commands for execution and process the results.

rs = stmt.executeQuery(“SELECT * from jdbctest”);

ENVIRONMENT

2

DATA TYPES

Class
SQL Applications

See Also
ALTER TABLE, CONSTRAINTS, CREATE TABLE, SELECT, INSERT, UPDATE

Description
The Recital database engine recognizes the following data types.

Data Types Description
BIGINT[(p[,s])]
[UNSIGNED]

Same as NUMERIC.

BIT Same as LOGICAL.
CHAR(size)
[BINARY]

Fixed length character data of length size bytes. The maximum size is 254
bytes and the minimum size is 1 byte. If BINARY is specified then column
values are sorted and compared in case-sensitive fashion according to their
ASCII order. If a BINARY flagged column is used in an expression, the
whole expression is evaluated as a BINARY value.

CURRENCY Stores double precision floating numbers corresponding to the double data
type in C. The precision is fixed at 25. The scale is fixed at 4. Internal
storage is 8 bytes.

DATE Internal storage size of 4 bytes. Valid date range from January 1, 1900 to
January 1, 3000.

DATETIME Internal storage size of 8 bytes. Valid date range from January 1, 1900 to
January 1, 3000. Valid time range from 12:00:00 AM to 11:59:59 PM.

DEC[IMAL][(p[,s])]
[UNSIGNED]

Same as NUMERIC.

DOUBLE
[PRECISION][(p[,s])]
[UNSIGNED]

Same as NUMERIC.

FLOAT[(p[,s])]
[UNSIGNED]

Stores double precision floating numbers corresponding to the double data
type in C. The precision p can range from 1 to 25. The scale s can range from
0 to 9. The precision and scale only affect display, a FLOAT is always stored
internally as 8 bytes. If the scale is omitted, it defaults to 0. If the precision is
omitted, it defaults to 25 and the scale defaults to 6. If UNSIGNED is
specified, only positive values are allowed.

GENERAL Same as OBJECT.
INT[EGER][(p[,s])]
[UNSIGNED]

Stores whole numbers from -2147483647 to +2147483647. The precision p
can range from 1 to 25. The scale s can range from 0 to 9. The precision and
scale only affect display, an INTEGER is always stored as 4 bytes. If the
scale is omitted, it defaults to 0. If the precision is omitted, it defaults to 11
and the scale defaults to 0. If UNSIGNED is specified, only positive values
are allowed.

LOGICAL Fixed length of 1 byte. This is a Boolean value that takes .T. for True or .F.
for False.

LONG VARCHAR Same as MEMO.
LONG VARBINARY Same as OBJECT.
MEDIUMINT[(p[,s])]
[UNSIGNED]

Stores whole numbers from -2147483647 to +2147483647. The precision p
can range from 1 to 25. The scale s can range from 0 to 9. The precision and
scale only affect display, an INTEGER is always stored as 4 bytes. If the

ENVIRONMENT

3

scale is omitted, it defaults to 0. If the precision is omitted, it defaults to 11
and the scale defaults to 0. If UNSIGNED is specified, only positive values
are allowed.

MEMO Variable length character data. Length up to 2 gigabytes, or 2 to the power
31. An 8 byte pointer is stored in the record, the data is stored in an
associated file.

NUM[ERIC][(p[,s])]
[UNSIGNED]

Stores whole numbers from -2147483647 to +2147483647 depending on p.
The precision p can range from 1 to 25. The scale s can range from 0 to 9.
The precision and scale affect the internal storage size. If the scale is omitted,
it defaults to 0. If the precision is omitted, it defaults to 25 and the scale
defaults to 6. If UNSIGNED is specified, only positive values are allowed.

OBJECT Variable length binary data. Length up to 2 gigabytes, or 2 to the power 31.
An 8 byte pointer is stored in the record, the data is stored in an associated
file.

REAL[(p[,s])]
[UNSIGNED]

Stores single precision floating numbers corresponding to the float data type
in C. The precision p can range from 1 to 25. The scale s can range from 0 to
9. The precision and scale only affect display, a REAL is always stored
internally as 4 bytes. If the scale is omitted, it defaults to 0. If the precision is
omitted, it defaults to 25 and the scale defaults to 6. If UNSIGNED is
specified, only positive values are allowed..

SHORT[(p[,s])]
[UNSIGNED]

Stores whole numbers from -32768 to +32767. The precision p can range
from 1 to 25. The scale s can range from 0 to 9. The precision and scale only
affect display, a SHORT is always stored as 2 bytes. If the scale is omitted, it
defaults to 0. If the precision is omitted, it defaults to 6 and the scale defaults
to 0. If UNSIGNED is specified, only positive values are allowed.

SMALLINT[(p[,s])]
[UNSIGNED]

Stores whole numbers from -32768 to +32767. The precision p can range
from 1 to 25. The scale s can range from 0 to 9. The precision and scale only
affect display, a SMALLINT is always stored as 2 bytes. If the scale is
omitted, it defaults to 0. If the precision is omitted, it defaults to 6 and the
scale defaults to 0. If UNSIGNED is specified, only positive values are
allowed.

TEXT Same as MEMO.
TIME An 8 character field for use to store time data in the format “HH:MM:SS”.
TIMESTAMP A 19 character field for use to store timestamp data in the format

“YYYY-MM-DD HH:MM:SS”.
TINYINT[(length)]
[UNSIGNED]

Fixed length of 1 byte. Stores whole numbers from 0 to 255. Display width
is 3. The (length) and UNSIGNED are included for compatibility reasons
only.

VARCHAR(size)
[BINARY]

Variable length character data of length size bytes. The maximum size is 254
bytes and the minimum size is 1 byte. If BINARY is specified then column
values are sorted and compared in case-sensitive fashion according to their
ASCII order. If a BINARY flagged column is used in an expression, the
whole expression is evaluated as a BINARY value.

ENVIRONMENT

4

Data Type Abbreviations:

Abbreviations Data Type Numeric DATA_TYPE
B TINYINT/DOUBLE -6
C CHARACTER 1
D DATE 91
F FLOAT 8
G LONG VARBINARY/GENERAL -4
I INTEGER 2
L LOGICAL/BIT -7
M LONG VARCHAR/MEMO -4
N NUMERIC 2
P PACKED DECIMAL 0
Q QUAD 0
R REAL 7
S SHORT 5
T DATETIME 93
U UNKNOWN 0
V VAXDATE 93
Y CURRENCY 0
Z ZONED 0

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

5

SYSTEM TABLES

Class
SQL Applications

Purpose
System-defined read-only views

See Also
SELECT, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement. The following is an alphabetical reference of the System Tables accessible to all users.

Table Remarks
SYSACTIVEUSERS Description of currently active users on the system
SYSBESTROWIDENTIFIER Description of a table’s optimal set of columns that uniquely identifies a

row
SYSCATALOGS Catalog names available in the database
SYSCOLUMNCONSTRAINT
S

Description of the constraints for a table's columns

SYSCOLUMNPRIVILEGES Description of the access rights for a table’s columns
SYSCOLUMNS Description of the table columns available in the catalog
SYSCROSSREFERENCE Description of how one table imports the keys of another table
SYSEXPORTEDKEYS Description of the foreign key columns that reference the primary key

columns
SYSIMPORTEDKEYS Description of the primary key columns that are referenced by the

foreign key
SYSINDEXINFO Description of a table’s indices and statistics
SYSIOSTATS Facility for monitoring table and index file I/O operations
SYSLOGGING System Logging information
SYSPRIMARYKEYS Description of the primary key columns in the table
SYSPROCEDURECOLUMNS Description of the input, output and results associated with certain

stored procedures available
SYSPROCEDURES Description of the stored procedures available in the catalog
SYSRESULTSET Used to return the singleton result from any Recital expression
SYSSCHEMAS Schema names available in the database
SYSTABLECONSTRAINTS Description of the constraints for each table available in the catalog
SYSTABLEPRIVILEGES Description of the access rights for each table available in the catalog
SYSTABLES Description of the tables available in the catalog
SYSTABLETYPES Table types available in the database system
SYSTYPEINFO Description of all data types supported by the database
SYSUDTS Description of the user-defined types (UDTs) defined in the schema
SYSVERSIONCOLUMNS Description of the columns in a table that are automatically updated

when any row is updated

SYSTEM TABLES

6

SYSACTIVEUSERS

Class
SQL Applications

Purpose
Description of currently active users on the system

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
ACTIVE N 1 True if Active, False if exited uncleanly
GID C 8 Group ID
UID N 8 User ID
PID C 8 Process ID
USER_NAME C 25 User name
TERMINAL N 25 Terminal name
CLIENT C 25 Client connection
DATE D 4 Login date
TIME C 8 Login time

Example
EXEC SQL

SELECT user_name
FROM sysactiveusers;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

7

SYSBESTROWIDENTIFIER

Class
SQL Applications

Purpose
Description of a table’s optimal set of columns that uniquely identifies a row

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
SCOPE N 1 Actual scope of result
COLUMN_NAME C 30 Column name
DATA_TYPE N 2 SQL data type
TYPE_NAME C 30 Data source dependent type name
COLUMN_SIZE N 3 Precision
BUFFER_LENGTH N 1 Reserved
DECIMAL_DIGITS N 2 Scale
PSEUDO_COLUMN N 1 Is this a pseudo column?

Example
EXEC SQL

SELECT column_name
FROM sysbestrowidentifier;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

8

SYSCATALOGS

Class
SQL Applications

Purpose
Catalog names available in the database

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TABLE_CAT C 30 Catalog name

Example
EXEC SQL

SELECT *
FROM syscatalogs;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

9

SYSCOLUMNCONSTRAINTS

Class
SQL Applications

Purpose
Description of the constraints for a table's columns

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TABLE_CAT C 30 Table catalog
TABLE_SCHEM C 30 Table schema
TABLE_NAME C 30 Table name
COLUMN_NAME C 32 Column name
CONSTRAINT_NAME C 30 Constraint Name (see below)
CONSTRAINT C 100 Constraint

Constraint names:

• AUTOINC NEXT
• AUTOINC STEP
• CALCULATED
• CHECK
• CHOICES
• DEFAULT
• ERROR
• HELP
• NOT NULL
• NULL SUPPORT
• PICTURE
• RANGE
• RECALCULATE
• WHEN

Example
EXEC SQL

SELECT column_name
FROM syscolumnconstraints
WHERE table_name = ‘example’;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

10

SYSCOLUMNPRIVILEGES

Class
SQL Applications

Purpose
Description of the access rights for a table’s columns

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TABLE_CAT C 30 Table catalog
TABLE_SCHEM C 30 Table schema
TABLE_NAME C 30 Table name
COLUMN_NAME C 32 Column name
GRANTOR C 30 Grantor of access
GRANTEE C 100 Grantee of access
PRIVILEGE C 30 Name of access (SELECT, INSERT etc)
IS_GRANTABLE C 3 “YES” if grantee is permitted to grant to others;

“NO” if not; .NULL. if unknown.

Example
EXEC SQL

SELECT column_name
FROM syscolumnprivileges
WHERE table_name = ‘example’;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

11

SYSCOLUMNS

Class
SQL Applications

Purpose
Description of the table columns available in the catalog

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TABLE_CAT C 30 Table catalog
TABLE_SCHEM C 30 Table schema
TABLE_NAME C 30 Table name
COLUMN_NAME C 25 Column name
DATA_TYPE N 2 SQL data type
TYPE_NAME C 30 Data source dependent type name
COLUMN_SIZE N 3 Precision
BUFFER_LENGTH L 1 Reserved
DECIMAL_DIGITS N 2 Scale
NUM_PREC_RADIX N 2 Radix (typically either 10 or 2)
NULLABLE N 2 Is NULL allowed?
REMARKS C 25 Comment describing column
COLUMN_DEF C 30 Default value
SQL_DATA_TYPE N 1 Reserved
SQL_DATETIME_SUB N 1 Reserved
CHAR_OCTET_LENGT
H

N 1 For char types the maximum number of bytes in
the column

ORDINAL_POSITION N 4 Index of column in table (starting at 1)
IS_NULLABLE C 3 “NO” means column definitely does not allow

NULL values; “YES” means the column might
allow NULL values. An empty string means
unknown.

Example
EXEC SQL

SELECT *
FROM syscolumns
WHERE type_name = ‘DATETIME’;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

12

SYSCROSSREFERENCE

Class
SQL Applications

Purpose
Description of how one table imports the keys of another table

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
PKTABLE_CAT C 30 Primary key table catalog
PKTABLE_SCHEM C 30 Primary key table schema
PKTABLE_NAME C 30 Primary key table name
PKCOLUMN_NAME C 30 Primary key column name
FKTABLE_CAT C 30 Foreign key table catalog being exported
FKTABLE_SCHEM C 30 Foreign key table schema being exported
FKTABLE_NAME C 30 Foreign key table name being exported
FKCOLUMN_NAME C 30 Foreign key column name being exported
KEY_SEQ N 2 Sequence number within foreign key
UPDATE_RULE N 2 What happens to foreign key when primary is

updated
DELETE_RULE N 2 What happens to the foreign key when primary is

deleted
FK_NAME C 30 Foreign key name
PK_NAME C 30 Primary key name
DEFERRABILITY N 2 Can the evaluation of foreign key constraints be

deferred until commit?

Example
EXEC SQL

SELECT *
FROM syscrossreference;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

13

SYSEXPORTEDKEYS

Class
SQL Applications

Purpose
Description of the foreign key columns that reference the primary key columns

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
PKTABLE_CAT C 30 Primary key table catalog
PKTABLE_SCHEM C 30 Primary key table schema
PKTABLE_NAME C 30 Primary key table name
PKCOLUMN_NAME C 30 Primary key column name
FKTABLE_CAT C 30 Foreign key table catalog being exported
FKTABLE_SCHEM C 30 Foreign key table schema being exported
FKTABLE_NAME C 30 Foreign key table name being exported
FKCOLUMN_NAME C 30 Foreign key column name being exported
KEY_SEQ N 2 Sequence number within foreign key
UPDATE_RULE N 2 What happens to foreign key when primary is

updated
DELETE_RULE N 2 What happens to the foreign key when primary is

deleted
FK_NAME C 30 Foreign key name
PK_NAME C 30 Primary key name
DEFERRABILITY N 2 Can the evaluation of foreign key constraints be

deferred until commit?

Example
EXEC SQL

SELECT *
FROM sysexportedkeys;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

14

SYSIMPORTEDKEYS

Class
SQL Applications

Purpose
Description of the primary key columns that are referenced by the foreign key

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
PKTABLE_CAT C 30 Primary key table catalog being imported
PKTABLE_SCHEM C 30 Primary key table schema being imported
PKTABLE_NAME C 30 Primary key table name being imported
PKCOLUMN_NAME C 30 Primary key column name being imported
FKTABLE_CAT C 30 Foreign key table catalog
FKTABLE_SCHEM C 30 Foreign key table schema
FKTABLE_NAME C 30 Foreign key table name
FKCOLUMN_NAME C 30 Foreign key column name
KEY_SEQ N 2 Sequence number within foreign key
UPDATE_RULE N 2 What happens to foreign key when primary is

updated
DELETE_RULE N 2 What happens to the foreign key when primary is

deleted
FK_NAME C 30 Foreign key name
PK_NAME C 30 Primary key name
DEFERRABILITY N 2 Can the evaluation of foreign key constraints be

deferred until commit?

Example
EXEC SQL

SELECT *
FROM sysimportedkeys;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

15

SYSINDEXINFO

Class
SQL Applications

Purpose
Description of a table’s indices and statistics

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TABLE_CAT C 30 Table catalog
TABLE_SCHEM C 30 Table schema
TABLE_NAME C 30 Table name
NON_UNIQUE L 1 Can index values be non-unique?
INDEX_QUALIFIER C 30 Index catalog
INDEX_NAME C 30 Index name
TYPE N 2 Index type
ORDINAL_POSITION N 3 Column sequence number within index
COLUMN_NAME C 30 Column name
ASC_OR_DESC C 1 Column sort sequence, “A” is ascending, “D” is

descending
CARDINALITY N 10 The number of rows in the table or the number of

unique values in the index, depending on the
index type

PAGES N 2 The number of pages used for the table or the
number of pages used for the current index,
depending on the index type

FILTER_CONDITION C 30 Filter condition

Example
EXEC SQL

SELECT *
FROM sysindexinfo;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

16

SYSIOSTATS

Class
SQL Applications

Purpose
Facility for monitoring table and index file I/O operations

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TABLE_NAME C 30 Table name
READS N 10 # of row reads for table
UPDATES N 10 # of row updates for table
DELETES N 10 # of row deletes for table
RECALLS N 10 # of row recalls for table
INSERTS N 10 # of row inserts for table
DCACHEREADS N 10 # of cache reads for table
DCACHEWRITES N 10 # of cache writes for table
INDEXREADS N 10 # of index reads for table
INDEXWRITES N 10 # of index writes for table
ICACHEREADS N 10 # of index cache reads for table
ICACHEWRITES N 10 # of index cache writes for table

Example
EXEC SQL

SELECT icachereads
FROM sysiostats;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

17

SYSLOGGING

Class
SQL Applications

Purpose
Provides System Logging information. When SET SYSLOGGING is ON internal system logging is
performed while the process is running. The information logged can be used to find performance problems
or track down system errors.

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
LEVEL N 1 Logging level: 0-FATAL, 1-ERROR,

2-WARNING, 3-INFORMATION,
4-LOGON/LOGOFF

PID N 8 Process ID
USER_NAME C 30 User name
DATE D 4 Date logged
TIME C 8 Time logged
FILE_NAME C 10 Internal
LINE_NUMBER N 6 Internal
OS_ERROR_NUMBER N 4 OS error number
PRODUCT_NAME C 28 Name of logging product
PATCH_LEVEL C 30 Patch level of logging product
COMPILE_DATETIME C 20 Compile date of logging product
MESSAGE C 100 Textual information

Example
EXEC SQL

SELECT user_name, level
FROM syslogging;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

18

SYSPRIMARYKEYS

Class
SQL Applications

Purpose
Description of the primary key columns in the table

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TABLE_CAT C 30 Table catalog
TABLE_SCHEM C 30 Table schema
TABLE_NAME C 30 Table name
COLUMN_NAME C 30 Column name
KEY_SEQ N 2 Sequence number within primary key
PK_NAME C 30 Primary key name

Example
EXEC SQL

SELECT *
FROM sysprimarykeys;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

19

SYSPROCEDURECOLUMNS

Class
SQL Applications

Purpose
Description of the input, output and results associated with certain stored procedures available

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
PROCEDURE_CAT C 100 Procedure catalog
PROCEDURE_SCHEM C 30 Procedure schema
PROCEDURE_NAME C 30 Procedure name
COLUMN_NAME C 30 Column/parameter name
COLUMN_TYPE N 1 Kind of column/parameter
DATA_TYPE N 2 SQL data type
TYPE_NAME C 30 SQL type name
PRECISION N 2 Precision
LENGTH N 4 Length in bytes of data
SCALE N 2 Scale
RADIX N 1 Radix
NULLABLE N 1 Can it contain NULL
REMARKS C 30 Comment describing parameter/column

Example
EXEC SQL

SELECT *
FROM sysprocedurecolumns;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

20

SYSPROCEDURES

Class
SQL Applications

Purpose
Description of the stored procedures available in the catalog

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
PROCEDURE_CAT C 100 Procedure catalog
PROCEDURE_SCHEM C 30 Procedure schema
PROCEDURE_NAME C 30 Procedure name
R1 L 1 Reserved
R2 L 1 Reserved
R3 L 1 Reserved
REMARKS C 30 Comment describing procedure
PROCEDURE_TYPE N 1 Kind of procedure

Example
EXEC SQL

SELECT *
FROM sysprocedures;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

21

SYSRESULTSET

Class
SQL Applications

Purpose
Used to return the singleton result from any Recital expression

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

The SYSRESULTSET system table is used to return the singleton result from any Recital expression.

Column Data Type Width
<expression1> <result1 type> <result1 width>
… … …
<expression256> <result256 type> <result256 width>

An error will occur if any expression is specified that returns more than one result.

Example
EXEC SQL

set(“EXCLUSIVE”) as Excl, time() as Time from sysresultset;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

22

SYSSCHEMAS

Class
SQL Applications

Purpose
Schema names available in the database

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TABLE_SCHEM C 30 Table schema

Example
EXEC SQL

SELECT *
FROM sysschemas;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

23

SYSTABLECONSTRAINTS

Class
SQL Applications

Purpose
Description of the constraints for each table available in the catalog

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TABLE_CAT C 30 Table catalog
TABLE_SCHEM C 30 Table schema
TABLE_NAME C 30 Table name
CONSTRAINT_NAME C 30 Constraint name (see below)
CONSTRAINT C 100 Constraint

Constraint names:

• CHECK
• CLOSE
• DELETE
• ERROR
• INSERT
• OPEN
• ROLLBACK
• UPDATE

Example
EXEC SQL

SELECT *
FROM systableconstraints;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

24

SYSTABLEPRIVILEGES

Class
SQL Applications

Purpose
Description of the access rights for each table available in the catalog

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TABLE_CAT C 30 Table catalog
TABLE_SCHEM C 30 Table schema
TABLE_NAME C 30 Table name
GRANTOR C 30 Grantor of access
GRANTEE C 100 Grantee of access
PRIVILEGE C 30 Name of access (SELECT, INSERT etc)
IS_GRANTABLE C 3 “YES” if grantee is permitted to grant to others;

“NO” if not; .NULL. if unknown.

Example
EXEC SQL

SELECT *
FROM systableprivileges;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

25

SYSTABLES

Class
SQL Applications

Purpose
Description of the tables available in the catalog

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TABLE_CAT C 30 Table catalog
TABLE_SCHEM C 30 Table schema
TABLE_NAME C 30 Table name
TABLE_TYPE C 15 Table type
REMARKS C 100 Comment describing table

Example
EXEC SQL

SELECT *
FROM systables
WHERE table_type = ‘TABLE’;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

26

SYSTABLETYPES

Class
SQL Applications

Purpose
Table types available in the database system

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TABLE_TYPE C 15 Table type

Example
EXEC SQL

SELECT *
FROM systabletypes;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

27

SYSTYPEINFO

Class
SQL Applications

Purpose
Description of all data types supported by the database

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TYPE_NAME C 30 Type name
DATA_TYPE N 3 SQL data type
PRECISION N 3 Maximum precision
LITERAL_PREFIX C 1 Prefix used to quote a literal
LITERAL_SUFFIX C 1 Suffix used to quote a literal
CREATE_PARAMS C 30 Parameters used in creating the type
NULLABLE N 1 Can you use NULL for this type?
CASE_SENSITIVE L 1 Is it case sensitive?
SEARCHABLE N 1 Can you use “WHERE” based on this type?
UNSIGNED_ATTRIBUT
E

L 1 Is it unsigned?

FIXED_PREC_SCALE L 1 Can it be a money value?
AUTO_INCREMENT L 1 Can it be used for an auto-increment value?
LOCAL_TYPE C 30 Localized version of type name
MINIMUM_SCALE N 2 Minimum scale supported
MAXIMUM_SCALE N 2 Maximum scale supported
SQL_DATA_TYPE N 1 Reserved
SQL_DATETIME_SUB N 1 Reserved
NUM_PREC_RADIX N 2 Usually 2 or 10

Example
EXEC SQL

SELECT *
FROM systypeinfo;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

28

SYSUDTS

Class
SQL Applications

Purpose
Description of the user-defined types (UDTs) defined in the schema

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
TYPE_CAT C 30 Type catalog
TYPE_SCHEM C 30 Type schema
TYPE_NAME C 30 Type name
CLASS_NAME C 30 Class name
DATA_TYPE N 2 SQL data type
REMARKS C 30 Comment describing type

Example
EXEC SQL

SELECT *
FROM sysudts;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SYSTEM TABLES

29

SYSVERSIONCOLUMNS

Class
SQL Applications

Purpose
Description of the columns in a table that are automatically updated when any row is updated

See Also
SELECT, SYSTEM TABLES, DATA TYPES

Description
System Tables are system defined read-only tables. You can query these tables using the SELECT
statement.

Column Data Type Width Description
SCOPE N 1 Reserved
COLUMN_NAME C 30 Column name
DATA_TYPE N 2 SQL data type
TYPE_NAME C 30 Data source-dependent type name
COLUMN_SIZE N 3 Precision
BUFFER_LENGTH N 1 Length of column value in bytes
DECIMAL_DIGITS N 2 Scale
PSEUDO_COLUMN N 1 Is this a pseudo column?

Example
EXEC SQL

SELECT *
FROM sysversioncolumns;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

PSEUDO COLUMNS

30

PSEUDO COLUMNS

Class
SQL Applications

Purpose
Provide extra information about a SELECT row set

See Also
INSERT, SELECT, UPDATE

Description
A Pseudo Column behaves like a table column, but is not actually stored in the table. You can select from
Pseudo Columns, but they can not be updated. They provide extra information about a row set.

Pseudo Columns Description
CURRVAL The CURRVAL Pseudo Column will return the current sequence number from the

specified table. Sequence numbers can be used for primary and unique index keys.
NEXTVAL The NEXTVAL Pseudo Column will return the next unique sequence number from

the specified table. Sequence numbers can be used for primary and unique index
keys.

ROWID The ROWID Pseudo Column will return a number identifying the row’s physical
stored position in the table. The ROWID Pseudo Column can be used to perform
singleton selects, or optimize updates of a known ROWID.

ROWNUM The ROWNUM Pseudo Column will return a number indicating the order in which
the rows are selected from the table.

SQLCNT The SQLCNT Pseudo Column will return the number of rows affected by the last
SQL statement. For example, after a SELECT statement, SQLCNT will contain
the number of rows selected.

SQLCODE The SQLCODE Pseudo Column will return a number indicating the result of the
last SQL statement.

SYNCNUM The SYNCNUM pseudo column will return the unique sequence number assigned
to a row from the specified table.

PSEUDO COLUMNS

31

CURRVAL

Class
Pseudo Columns

Purpose
Return the current sequence number from the specified table

Syntax
CURRVAL

See Also
INSERT, SELECT, UPDATE

Description
A Pseudo Column behaves like a table column, but is not actually stored in the table. You can select from
Pseudo Columns, but they can not be updated. Pseudo Columns provide extra information about a
SELECT row set.

The CURRVAL Pseudo Column will return the current sequence number from the specified table.
Sequence numbers can be used for primary and unique index keys.

Example
// config.db
set sql to recital
set sql on
// end of config.db

CREATE TABLE cust (acc_num INT , acc_name char(20));
INSERT INTO cust (acc_num, acc_name) VALUES (NEXTVAL, “Smith”);
INSERT INTO cust (acc_name) VALUES (“Brown”);
INSERT INTO cust (acc_num, acc_name) VALUES (CURRVAL+2, “Jones”);
SELECT * from cust;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

PSEUDO COLUMNS

32

NEXTVAL

Class
Pseudo Columns

Purpose
Return the next unique sequence number from the specified table

Syntax
NEXTVAL

See Also
INSERT, SELECT, UPDATE

Description
A Pseudo Column behaves like a table column, but is not actually stored in the table. You can select from
Pseudo Columns, but they can not be updated. Pseudo Columns provide extra information about a
SELECT row set.

The NEXTVAL Pseudo Column will return the next unique sequence number from the specified table.
Sequence numbers can be used for primary and unique index keys.

Example
// config.db
set sql to recital
set sql on
// end of config.db

CREATE TABLE cust (acc_num INT , acc_name char(20));
INSERT INTO cust (acc_num, acc_name) VALUES (NEXTVAL, “Smith”);
INSERT INTO cust (acc_name) VALUES (“Brown”);
INSERT INTO cust (acc_num, acc_name) VALUES (CURRVAL+2, “Jones”);
SELECT * from cust;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

PSEUDO COLUMNS

33

ROWID

Class
Pseudo Columns

Purpose
Return a number identifying the row’s physical stored position in the table

Syntax
ROWID

See Also
INSERT, SELECT, UPDATE

Description
A Pseudo Column behaves like a table column, but is not actually stored in the table. You can select from
Pseudo Columns, but they can not be updated. Pseudo Columns provide extra information about a
SELECT row set.

The ROWID Pseudo Column will return a number identifying the row’s physical stored position in the
table. The ROWID Pseudo Column can be used to perform singleton selects, or optimize updates of a
known ROWID.

Example
// Optimized update accounts row 35 with a 15% commission charge
EXEC SQL

UPDATE accounts
SET ord_value=ord_value*1.15, due_date = date()+30
WHERE ROWID=35;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

PSEUDO COLUMNS

34

ROWNUM

Class
Pseudo Columns

Purpose
Return a number indicating the order in which the rows are selected from the table

Syntax
ROWNUM

See Also
INSERT, SELECT, UPDATE

Description
A Pseudo Column behaves like a table column, but is not actually stored in the table. You can select from
Pseudo Columns, but they can not be updated. Pseudo Columns provide extra information about a
SELECT row set.

The ROWNUM Pseudo Column will return a number indicating the order in which the rows are selected
from the table.

Example
// Display all overdue accounts with 15% commission in
// Sorted “name” and “paid date” order with the row number.
EXEC SQL

SELECT ROWNUM, name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date()
ORDER BY name, paid_date;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

PSEUDO COLUMNS

35

SQLCNT

Class
Pseudo Columns

Purpose
Return the number of rows affected by the last SQL statement

Syntax
CURRVAL

See Also
INSERT, SELECT, UPDATE

Description
A Pseudo Column behaves like a table column, but is not actually stored in the table. You can select from
Pseudo Columns, but they can not be updated. Pseudo Columns provide extra information about a
SELECT row set.

The SQLCNT Pseudo Column will return the number of rows affected by the last SQL statement. For
example, after a SELECT statement, SQLCNT will contain the number of rows selected.

Example
// Display all overdue accounts with 15% commission in
// Sorted “name” and “paid date” order with the row number.
EXEC SQL

SELECT ROWNUM, name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date()
ORDER BY name, paid_date;

// Check return code and number of rows returned
EXEC SQL

SELECT DISTINCT sqlcode, sqlcnt from accounts;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

PSEUDO COLUMNS

36

SQLCODE

Class
Pseudo Columns

Purpose
Return a number indicating the result of the last SQL statement

Syntax
SQLCODE

See Also
INSERT, SELECT, UPDATE

Description
A Pseudo Column behaves like a table column, but is not actually stored in the table. You can select from
Pseudo Columns, but they can not be updated. Pseudo Columns provide extra information about a
SELECT row set.

The SQLCODE Pseudo Column will return a number indicating the result of the last SQL statement.

SQLCODE return values:

SQLCODE Description
0 The SQL statement completed successfully
+100 No rows were found or the end of the set reached
<0 An error occurred

Example
// Display all overdue accounts with 15% commission in
// Sorted “name” and “paid date” order with the row number.
EXEC SQL

SELECT ROWNUM, name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date()
ORDER BY name, paid_date;

// Check return code and number of rows returned
EXEC SQL

SELECT DISTINCT sqlcode, sqlcnt from accounts;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

PSEUDO COLUMNS

37

SYNCNUM

Class
Pseudo Columns

Purpose
Return the unique sequence number assigned to a row from the specified table

Syntax
SYNCNUM

See Also
INSERT, SELECT, UPDATE

Description
A Pseudo Column behaves like a table column, but is not actually stored in the table. You can select from
Pseudo Columns, but they can not be updated. Pseudo Columns provide extra information about a
SELECT row set.

The SYNCNUM pseudo column will return the unique sequence number assigned to a row from the
specified table. Each new row inserted into a table will be assigned a unique sequence number for that
table. Even if the row is deleted later or if all the rows are deleted from the table, that number will not be
issued again.

Note: The SYNCNUM pseudo column for existing Recital 9 tables can be populated using the dbconvert
utility and the CONVERT command.

Example
// Display all overdue accounts with 15% commission in
// Sorted “name” and “paid date” order with the unique row sequence number.
EXEC SQL

SELECT SYNCNUM, name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date()
ORDER BY name, paid_date;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

OPERATORS

38

OPERATORS

Class
SQL Applications

Purpose
Operators

See Also
INSERT, SELECT, UPDATE, PREDICATES

Description
The following operators are available:

Operators
Numeric operators
String operators
Date operators
Logical operators
Relational operators

OPERATORS

39

NUMERIC OPERATORS

Class
SQL Applications

Purpose
Numeric operators

Syntax
<expression1> operator <expression2>[operator <expression3>…]

See Also
INSERT, SELECT, UPDATE

Description
Operators used with Numeric expressions:

Operator Operation
** Exponentiation
* Multiplication
/ Division
% Modulus/Remainder
+ Addition
- Subtraction

Example
EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date() AND ord_value > 10000
ORDER BY name, paid_date;

EXEC SQL
SELECT account_no, ord_value – paid_value as “Outstanding Balance”
FROM accounts
ORDER BY account_no;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

OPERATORS

40

STRING OPERATORS

Class
SQL Applications

Purpose
String operators

Syntax
<expression1> operator <expression2>[operator <expression3>…]

See Also
INSERT, SELECT, UPDATE

Description
Operators used with Character expressions:

Operator Operation
|| Concatenate the <expression2> to the end of the <expression1> string
+ Concatenate the <expression2> to the end of the <expression1> string
- The <expression1> string is trimmed of trailing spaces, the <expression2> string is

concatenated to the end of the <expression1> string and the previously trimmed
spaces concatenated to the end of the <expression2> string

Example
EXEC SQL

SELECT trim(title) || ‘ ’ || last_name as “Full Name”
FROM customers
ORDER BY last_name;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

OPERATORS

41

DATE OPERATORS

Class
SQL Applications

Purpose
Date operators

Syntax
<expression1> operator <expression2>[operator <expression3>…]

See Also
INSERT, SELECT, UPDATE

Description
Operators used with Date expressions and Date/Numeric expressions:

Operator Expression1 Expression2 Operation
+ Date Numeric Adds the <expression2> number of days to the date and

returns a date
- Date Numeric Subtracts the <expression2> number of days from the date

and returns a date
- Date Date Returns a numeric signifying the number of days between the

two dates. If <expression2> is later, a negative number is
returned

Example
EXEC SQL

SELECT account_no, ord_date – rec_date as “Delivery Delay”
FROM accounts
ORDER BY account_no;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

OPERATORS

42

LOGICAL OPERATORS

Class
SQL Applications

Purpose
Logical Operators

Syntax
<condition1> AND <condition2>
NOT <condition>
<condition1> OR <condition2>
<condition1> XOR <condition2>

See Also
INSERT, SELECT, UPDATE

Description

Operator Description
AND True if <condition1> and <condition2> conditions are both true, otherwise False
NOT True if the <condition> is false, otherwise False
OR True if <condition1> or <condition2> is true or if both conditions are true, otherwise False
XOR True if <condition1> or <condition2> is true but not both, otherwise False

Example
// AND
EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date() AND ord_value > 10000
ORDER BY name, paid_date;

// NOT
EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date() AND NOT ord_value BETWEEN 0 AND 10000
ORDER BY name, paid_date;

// OR
EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date() OR ord_value > 10000
ORDER BY name, paid_date;

OPERATORS

43

// XOR
EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date() OR ord_value > 10000
ORDER BY name, paid_date;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

OPERATORS

44

RELATIONAL OPERATORS

Class
SQL Applications

Purpose
Relational Operators

Syntax
<expression1> operator <expression2>

See Also
INSERT, SELECT, UPDATE

Description
Relational Operators compare two expressions and evaluate to either True or False.

Operator Description
= True if <expression1> and <expression2> are equal, otherwise False
< True if <expression1> is less than <expression2>, otherwise False
<= True if <expression1> is less than or equal to <expression2>, otherwise False
> True if <expression1> is greater than the <expression2>, otherwise False
>= True if <expression1> is greater than or equal to <expression2>, otherwise False
<> True if <expression1> and <expression2> are not equal, otherwise False
!= True if <expression1> and <expression2> are not equal, otherwise False
True if <expression1> and <expression2> are not equal, otherwise False
$ True if <expression1> is a sub string of <expression2>. Both <expression1> and

<expression2>must be character strings.
| True if <expression2> is a sub string of <expression1>. Both <expression1> and

<expression2>must be character strings.
== True if <expression1> and <expression2> match, otherwise False. Both <expression1> and

<expression2>must be character strings. The <expression2> can contain the wildcards below.

Wildcards for == pattern matching:

_ Any single character
% Zero or more characters

Example
EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE paid_date = date()
ORDER BY name, paid_date;

EXEC SQL
SELECT name, address, balance, cost*1.15
FROM accounts
WHERE paid_date <= date()
ORDER BY name, paid_date;

OPERATORS

45

EXEC SQL
SELECT name, address, balance, cost*1.15
FROM accounts
WHERE paid_date <> date()
ORDER BY name, paid_date;

EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE name == “%inc%”
ORDER BY name, paid_date;

EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE name | “inc”
ORDER BY name, paid_date;

EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE name $ “BigCo inc, BigCo plc”
ORDER BY name, paid_date;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

PREDICATES

46

PREDICATES

Class
SQL Applications

Purpose
Special operators

See Also
INSERT, SELECT, UPDATE

Description
Predicates are special operators. They are used to evaluate an expression and return True (.T.), False (.F.)
or Unknown (.NULL.).

Predicate Description
BETWEEN Evaluate whether an expression is between two other expressions.
IN Evaluate whether an expression matches one of a set of values.
LIKE Evaluate whether an expression is like another expression
NULL Evaluate whether an expression is equal to .NULL.

PREDICATES

47

BETWEEN PREDICATE

Class
SQL Applications

Purpose
Special predicate

Syntax
<expression1> [NOT] BETWEEN <expression2> AND <expression3>

See Also
INSERT, SELECT, UPDATE

Description
BETWEEN is a special predicate to evaluate whether the specified <expression1> is greater than or equal
to <expression2> and less than or equal to <expression3>. The data type must be the same for
<expression1>, <expression2> and <expression3>.

The optional NOT evaluates whether <expression1> is not greater than or equal to <expression2> and not
less than or equal to <expression3>.

Example

EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date() AND ord_value NOT BETWEEN 0 AND 10000
ORDER BY name, paid_date;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

PREDICATES

48

IN PREDICATE

Class
SQL Applications

Purpose
Special predicate

Syntax
<expression> [NOT] IN (<value list>)
<expression> [NOT] IN (<nested select>)

See Also
INSERT, SELECT, UPDATE

Description
IN is a special predicate to evaluate whether the specified <expression> is equal to one of the values in the
<value list> or <nested select>. The <value list> contains a list of comma separated values. The <nested
select> is an SQL SELECT clause.

The optional NOT evaluates whether the specified <expression> is not equal to any of the values in the
<value list> or <nested select>.

The data type must be the same for the <expression> and all the values in <value list> or returned by the
<nested select>.

Example
EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date() AND ord_value IN (100, 200, 300)
ORDER BY name, paid_date;

EXEC SQL

SELECT name, address, balance, rep_id
FROM accounts
WHERE rep_id IN (SELECT emp_id from employees where location = ‘MA’)
ORDER BY name;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

PREDICATES

49

LIKE PREDICATE

Class
SQL Applications

Purpose
Special predicate

Syntax
<expression1> [NOT] LIKE <expression2>

See Also
INSERT, SELECT, UPDATE

Description
LIKE is a special predicate to evaluate whether the specified <expression1> matches <expression2>. The
<expression2> can contain the following wildcards:

_ Any single character
% Zero or more characters

The optional NOT evaluates whether the specified <expression1> does not match <expression2>.

Example

EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date() AND name LIKE “%inc%”
ORDER BY name, paid_date;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

PREDICATES

50

NULL PREDICATE

Class
SQL Applications

Purpose
Special predicate

Syntax
<expression> IS [NOT] NULL

See Also
INSERT, SELECT, UPDATE

Description
NULL is a special predicate to evaluate whether the specified <expression> is NULL. The optional NOT
can be used to evaluate whether the specified <expression> is not NULL.

Example

EXEC SQL

SELECT name, address, balance, cost*1.15
FROM accounts
WHERE paid_date < date() AND ord_value IS NULL
ORDER BY name, paid_date;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

51

TABLE CONSTRAINTS

Class
SQL Applications

Purpose
To define rules that help to provide data integrity

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. There are two different types of
constraints, TABLE constraints, which do not require any column information and column constraints,
which are specific to the column name specified. You must have ALTER privilege on the table. The table
will be locked for EXCLUSIVE use during the operation.

Table Constraints

CHECK ERROR FOREIGN KEY
INDEX KEY ONCLOSE
ONDELETE ONINSERT ONOPEN
ONROLLBACK ONUPDATE PRIMARY KEY
UNIQUE

Column Constraints

AUTO_INCREMENT AUTOINC CALCULATED
CHECK DEFAULT DESCRIPTION
ERROR FOREIGN KEY NOCPTRANS
NOT NULL NULL PRIMARY KEY
RANGE RECALCULATE REFERENCES
SET CHECK UNIQUE

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

52

CHECK

Class
Table Constraints

Purpose
Table constraint activated when an operation to insert, update or delete records in the table is called

Syntax
CHECK <condition>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The CHECK table constraint is activated when an operation to insert, update or delete records in the table
is called. The <condition> specified must evaluate to True (.T.) for the operation to succeed. If the
<condition> evaluates to False (.F.) the operation is abandoned and the ERROR table constraint message is
displayed. If the ERROR table constraint has not been defined, a default error message is displayed.

Example
set sql to vfp
CREATE TABLE purchase_order (POid i PRIMARY KEY, SuppId i, POtotal n(10,2), ;

CHECK callauth() ERROR [Not authorized])

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

53

ERROR

Class
Table Constraints

Purpose
Table constraint to define an error message to be displayed when a validation check fails

Syntax
ERROR <expC>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The ERROR table constraint is used to define an error message to be displayed when a validation check
fails. The <expC> is a character string of up to 80 characters.

Example
set sql to vfp
CREATE TABLE purchase_order (POid i PRIMARY KEY, SuppId i, POtotal n(10,2), ;

CHECK callauth() ERROR [Not authorized])

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

54

FOREIGN KEY

Class
Table Constraints

Purpose
Table constraint to define a Foreign Key

Syntax
FOREIGN KEY <expr> TAG <cTagName> [COLLATE <cCollateSequence>]
[REFERENCES <cTableName> [TAG <cTagName2>]]

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The FOREIGN KEY table constraint is used to define <expr> as a Foreign Key for a parent table. The
<expr> can contain any valid index key. A tag index is built on the specified <expr>; it is given the name
as defined in <cTagName>. A table may have more than one Foreign Key index.

The optional COLLATE <cCollateSequence> clause is included for Visual FoxPro language compatibility
only.

The optional REFERENCES clause is used to create a relationship to an index key of another table. The
value of the <expr> is validated by checking that it already exists as a value in the referenced index key.

The name of the referenced table is specified in <cTableName>. The index tag to reference is specified in
<cTagName2>. If the optional TAG <cTagName2> clause is omitted, the primary index key of
<cTableName> is used. If <cTableName> has no index tags, an error is generated.

Example
set sql to vfp
CREATE TABLE supplier (SuppId i PRIMARY KEY, SuppName c(40) UNIQUE)
CREATE TABLE purchase_order (POid i PRIMARY KEY, SuppId i, POtotal n(10,2))
ALTER TABLE purchase_order ADD FOREIGN KEY SuppID TAG SuppId REFERENCES supplier

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

55

INDEX

Class
Table Constraints

Purpose
Table constraint to define an index key

Syntax
INDEX [<cTagName>] (column1[column2,…])

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The INDEX table constraint is used to define an index key. The index is built on the column or columns
specified and given the name as defined in <cTagName>. The KEY table constraint can be used in the
same way.

Example
set sql to mysql
CREATE TABLE contact (LastName char(25), FirstName char(25),

INDEX FullName (LastName, FirstName));

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

56

KEY

Class
Table Constraints

Purpose
Table constraint to define an index key

Syntax
KEY [<cTagName>] (column1[column2,…])

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The KEY table constraint is used to define an index key. The index is built on the column or columns
specified and given the name as defined in <cTagName>. The INDEX table constraint can be used in the
same way.

Example
set sql to mysql
CREATE TABLE contact (LastName char(25), FirstName char(25),

KEY FullName (LastName, FirstName));

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

57

ONCLOSE

Class
Table Constraints

Purpose
Table constraint activated when the table is closed

Syntax
ONCLOSE <procedure>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The ONCLOSE table constraint is activated when the table is closed. The <procedure> specified must be a
character expression evaluating to a procedure name. If no file extension is included, ‘.prg’ is assumed.
The specified procedure is run before the operation to close the table is executed.

Example
ALTER TABLE customer modify ONCLOSE “p_close”;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

58

ONDELETE

Class
Table Constraints

Purpose
Table constraint activated when an attempt is made to delete a record in the table

Syntax
ONDELETE <procedure>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The ONDELETE table constraint is activated when an attempt is made to delete a record in the table. The
<procedure> specified must be a character expression evaluating to a procedure name. If no file extension
is included, ‘.prg’ is assumed. The specified procedure is run before the operation to delete the record is
executed and must return True (.T.) or the delete operation is cancelled.

Example
ALTER TABLE customer modify ONDELETE “p_delete”;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

59

ONINSERT

Class
Table Constraints

Purpose
Table constraint activated when an attempt is made to insert a new record into the table

Syntax
ONINSERT <procedure>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The ONINSERT table constraint is activated when an attempt is made to insert a new record into the table.
The <procedure> specified must be a character expression evaluating to a procedure name. If no file
extension is included, ‘.prg’ is assumed. The specified procedure is run before the operation to insert the
record is executed and must return True (.T.) or the insert operation is cancelled.

Example
ALTER TABLE customer modify ONINSERT “p_insert”;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

60

ONOPEN

Class
Table Constraints

Purpose
Table constraint activated when the table is opened

Syntax
ONOPEN <procedure>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The ONOPEN table constraint is activated when the table is opened. The <procedure> specified must be a
character expression evaluating to a procedure name. If no file extension is included, ‘.prg’ is assumed.
The specified procedure is run after the operation to open the table is executed.

Example
ALTER TABLE customer modify ONOPEN “p_open”;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

61

ONROLLBACK

Class
Table Constraints

Purpose
Table constraint activated when a forms based operation is abandoned

Syntax
ONROLLBACK <procedure>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The ONROLLBACK table constraint is activated when a forms based operation is abandoned. The
<procedure> specified must be a character expression evaluating to a procedure name. If no file extension
is included, ‘.prg’ is assumed. The specified procedure is run when the user presses the [ABANDON] key.

Example
ALTER TABLE customer modify ONROLLBACK “p_rollback”;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

62

ONUPDATE

Class
Table Constraints

Purpose
Table constraint activated when an attempt is made to update a record in the table

Syntax
ONUPDATE <procedure>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The ONUPDATE table constraint is activated when an attempt is made to update a record in the table. The
<procedure> specified must be a character expression evaluating to a procedure name. If no file extension
is included, ‘.prg’ is assumed. The specified procedure is run before the operation to update the record is
executed and must return True (.T.) or the update operation is cancelled.

Example
ALTER TABLE customer modify ONUPDATE “p_update”;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

63

PRIMARY KEY

Class
Table Constraints

Purpose
Table constraint to define table’s Primary Key

Syntax
PRIMARY KEY <expr> TAG <cTagName> [COLLATE <cCollateSequence>]

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The PRIMARY KEY table constraint is used to define <expr> as the table’s Primary Key. The <expr> can
contain any valid index key. A unique tag index is built on the specified <expr>; it is given the name as
defined in <cTagName>. If a table already has a primary key defined, an error will be returned.

The optional COLLATE <cCollateSequence> clause is included for Visual FoxPro language compatibility
only.

Example
set sql to vfp
CREATE TABLE newcust (acc_ref char(5) default strzero(seqno(),5), acc_name char(20))
ALTER TABLE newcust ADD PRIMARY KEY acc_ref+acc_name TAG RefName
list structure index

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

TABLE CONSTRAINTS

64

UNIQUE

Class
Table Constraints

Purpose
Table constraint to define a candidate index

Syntax
UNIQUE <expr> TAG <cTagName> [COLLATE <cCollateSequence>]
UNIQUE [<cTagName>] (column1[column2,…])

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. TABLE constraints apply to table-
based operations. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

UNIQUE <expr> TAG <cTagName>
The UNIQUE table constraint is used to define <expr> as a candidate index for the table. The <expr> can
contain any valid index key. A unique tag index is built on the specified <expr>; it is given the name as
defined in <cTagName>. A table may have more than one candidate index.

COLLATE <cCollateSequence>
The optional COLLATE <cCollateSequence> clause is included for Visual FoxPro language compatibility
only.

UNIQUE [<cTagName>] (column1[column2,…])
The UNIQUE table constraint is used to define a unique index key. The index is built on the column or
columns specified and given the name as defined in <cTagName>.

Example
set sql to vfp
CREATE TABLE newcust (acc_ref char(5) default strzero(seqno(),5), acc_name char(20))
ALTER TABLE newcust ADD UNIQUE acc_ref+acc_name TAG RefName
list structure index

set sql to mysql
CREATE TABLE contact (ContRef char(5), LastName char(25), FirstName char(25),

UNIQUE FullName (LastName, FirstName, ContRef));

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

65

COLUMN CONSTRAINTS

Class
SQL Applications

Purpose
To define rules that help to provide data integrity

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. There are two different types of
constraints, TABLE constraints, which do not require any column information and column constraints,
which are specific to the column name specified. You must have ALTER privilege on the table. The table
will be locked for EXCLUSIVE use during the operation.

Table Constraints

CHECK ERROR FOREIGN KEY
INDEX KEY ONCLOSE
ONDELETE ONINSERT ONOPEN
ONROLLBACK ONUPDATE PRIMARY KEY
UNIQUE

Column Constraints

AUTO_INCREMENT AUTOINC CALCULATED
CHECK DEFAULT DESCRIPTION
ERROR FOREIGN KEY NOCPTRANS
NOT NULL NULL PRIMARY KEY
RANGE RECALCULATE REFERENCES
SET CHECK UNIQUE

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

66

AUTO_INCREMENT

Class
Column Constraints

Purpose
Column constraint to auto increment the value of a column

Syntax
AUTO_INCREMENT

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The AUTO_INCREMENT column constraint is used to auto increment the value of a column whenever a
new record is inserted. The first record to be inserted has a column value of 1 and for each new record the
value increments by 1. A column with the AUTO_INCREMENT constraint set is not read only; values can
be inserted into the field, but it will default to auto incrementing if no value or a .NULL. is specified.

The AUTO_INCREMENT value increases on a per-table basis, using the SEQNO() function in the
DEFAULT constraint of the column. Only one column per table can have the AUTO_INCREMENT
constraint set.

Example
set sql to mysql
CREATE TABLE newcust (acc_num INT AUTO_INCREMENT, acc_name char(20));
INSERT INTO newcust (acc_name) VALUES (“Smith”);
INSERT INTO newcust (acc_name) VALUES (“Jones”);
SELECT * FROM newcust;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

67

AUTOINC

Class
Column Constraints

Purpose
Column constraint to auto increment the value of a column

Syntax
AUTOINC [NEXTVALUE <NextValue> [STEP <StepValue>]]

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The AUTOINC column constraint is used to auto increment the value of a column whenever a new record
is inserted. The NEXTVALUE <NextValue> clause may optionally be used to set the column value of the
next inserted record to the integer <NextValue>. The optional STEP <StepValue> clause determines the
integer amount the value should be incremented each time a new record is inserted. By default, the first
record to be inserted has a column value of 1 and for each new record the value increments by 1.

Specifying the AUTOINC column constraint causes the column to be read only.

NOTE: AUTOINC is column based and multiple columns in the same table can have the AUTOINC
column constraint set. The Recital SEQNO() function works on a per table basis.

Example
set sql to vfp
CREATE TABLE newcust (acc_num INT AUTOINC NEXTVALUE 10 STEP 5, acc_name char(20))
INSERT INTO newcust (acc_name) VALUES (“Smith”)
INSERT INTO newcust (acc_name) VALUES (“Jones”)
SELECT * FROM newcust

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

68

CALCULATED

Class
Column Constraints

Purpose
Column constraint to calculate the value of a column

Syntax
CALCULATED <expr>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The CALCULATED column constraint is used to calculate the value of a column whenever it is accessed.
The <expr> specified must evaluate to the same data type as the target column. Specifying the
CALCULATED column constraint causes the column to be read only. If the <expr> is based on other
columns from the same table, these columns must have the RECALCULATE column constraint set, so that
any changes to their values cause calculated fields to be recalculated.

Example
ALTER TABLE customer

ALTER COLUMN available CALCULATED limit-balance
ALTER COLUMN limit RECALCULATE
ALTER COLUMN balance RECALCULATE;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

69

CHECK

Class
Column Constraints

Purpose
Column constraint to validate a change to the value of a column

Syntax
CHECK <condition>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The CHECK column constraint is used to validate any changes made to the value of a column. The
<condition> specified must evaluate to True (.T.) for the modification operation to succeed. If the
<condition> evaluates to False (.F.) the column value remains unchanged and the ERROR column
constraint message is displayed. If the ERROR column constraint has not been defined, a default error
message is displayed.

Example
set sql to recital
exec sql

ALTER TABLE customer ADD COLUMN timeref char(8) CHECK validtime(timeref)
ERROR “Not a valid time string”;

use customer
edit

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

70

DEFAULT

Class
Column Constraints

Purpose
Column constraint to set a default value for the specified column

Syntax
DEFAULT <expr>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The DEFAULT column constraint is used to set a default value for the specified column. The <expr> must
evaluate to the same data type as the target column. The column’s value can subsequently be updated.

Example
set sql to recital
exec sql

ALTER TABLE customer ADD COLUMN dateref date DEFAULT date();
use customer
list dictionary

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

71

DESCRIPTION

Class
Column Constraints

Purpose
Column constraint to set the column description for the specified column

Syntax
DESCRIPTION <expC>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The DESCRIPTION column constraint is used to set the column description for the specified column. The
<expC> is a character expression of up to 25 characters.

Example
set sql to recital
exec sql

ALTER TABLE customer ADD COLUMN dateref date
DEFAULT date() DESCRIPTION “Date Reference”;

use customer
list structure

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

72

ERROR

Class
Column Constraints

Purpose
Column constraint to define an error message to be displayed when a validation check fails

Syntax
ERROR <expC>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The ERROR column constraint is used to define an error message to be displayed when a validation check
fails. The <expC> is a character string of up to 80 characters.

Example
set sql to recital
exec sql

ALTER TABLE customer ADD COLUMN timeref char(8) CHECK validtime(timeref)
ERROR “Not a valid time string”;

use customer
edit

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

73

FOREIGN KEY

Class
Column Constraints

Purpose
Column constraint to define a column as a Foreign Key for a parent table

Syntax
FOREIGN KEY [COLLATE <cCollateSequence>]

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The FOREIGN KEY column constraint is used to define the column as a Foreign Key for a parent table. A
tag index is built on the specified column; it is given the same name as the column. More than one column
in the table can be defined as a Foreign Key.

The optional COLLATE <cCollateSequence> clause is included for Visual FoxPro language compatibility
only.

Example
set sql to recital
CREATE TABLE orderitem (ord_ref char(5) FOREIGN KEY, item_ref char(5) PRIMARY KEY);
use orderitem
list structure index

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

74

NOCPTRANS

Class
Column Constraints

Purpose
Column constraint to prevent code page translation for character and memo fields

Syntax
NOCPTRANS

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The NOCPTRANS column constraint is used to prevent code page translation for character and memo
fields.

Example
ALTER TABLE customer

ALTER COLUMN notes NOCPTRANS;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

75

NOT NULL

Class
Column Constraints

Purpose
Column constraint to disallow NULL values

Syntax
NOT NULL

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The NOT NULL column constraint is used to specify that the column cannot contain NULL values. The
NULL column constraint can be used to allow NULL values.

Example
set sql to recital
exec sql

ALTER TABLE customer ADD COLUMN custref char(5) NULL;
exec sql

ALTER TABLE customer ALTER COLUMN custref NOT NULL;
use customer
list dictionary

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

76

NULL

Class
Column Constraints

Purpose
Column constraint to allow NULL values

Syntax
NULL

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The NULL column constraint is used to specify that the column can contain NULL values. The NOT
NULL column constraint can be used to disallow NULL values.

Example
set sql to recital
exec sql
ALTER TABLE customer ADD COLUMN custref char(5) NULL;
exec sql
ALTER TABLE customer ALTER COLUMN custref NOT NULL;
use customer
list dictionary

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

77

PRIMARY KEY

Class
Column Constraints

Purpose
Column constraint to define table’s Primary Key

Syntax
PRIMARY KEY [COLLATE <cCollateSequence>]

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The PRIMARY KEY column constraint is used to define the column as the table’s Primary Key. A unique
tag index is built on the specified column; it is given the same name as the column. If a table already has a
primary key defined, an error will be returned.

The optional COLLATE <cCollateSequence> clause is included for Visual FoxPro language compatibility
only.

Example
set sql to vfp
CREATE TABLE newcust (acc_ref char(5) default strzero(seqno(),5) PRIMARY KEY, ;

acc_name char(20))
list structure index

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

78

RANGE

Class
Column Constraints

Purpose
Column constraint to specify minimum and maximum values for a date or numerical column

Syntax
RANGE <expr1>,<expr2>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The RANGE column constraint is used to specify minimum and maximum values for a date or numerical
column. The minimum value is specified in <expr1>, the maximum in <expr2>. Attempting to update the
column with a value outside this range generates an error.

Example
set sql to recital
CREATE TABLE orderhead (ord_week INT RANGE 1,52 ,

ord_date DATE RANGE date(),gomonth(date(),12));

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

79

RECALCULATE

Class
Column Constraints

Purpose
Column constraint to force recalculation of calculated columns when a column’s value changes

Syntax
RECALCULATE

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The RECALCULATE column constraint is used to force recalculation of calculated columns when a
column’s value changes. Any column which forms part of the calculation expression of a CALCULATED
column must have the RECALCULATE column constraint set.

Example
ALTER TABLE customer

ALTER COLUMN available CALCULATED limit-balance
ALTER COLUMN limit RECALCULATE
ALTER COLUMN balance RECALCULATE;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

80

REFERENCES

Class
Column Constraints

Purpose
Column constraint to create a relationship to an index key of another table

Syntax
REFERENCES <cTableName> [TAG <cTagName>]

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The REFERENCES column constraint is used to create a relationship to an index key of another table. The
value of a column which has the REFERENCES column constraint set is validated by checking that it
already exists as a value in the referenced index key.

The name of the referenced table is specified in <cTableName>. The index tag to reference is specified in
<cTagName>. If the optional TAG <cTagName> clause is omitted, the primary index key of
<cTableName> is used. If <cTableName> has no index tags, an error is generated.

Example
set sql to vfp
CREATE TABLE supplier ;

(SuppId i PRIMARY KEY, ;
SuppName c(40) UNIQUE)

CREATE TABLE purchase_order ;
(POid i PRIMARY KEY, ;

SuppId i REFERENCES supplier TAG SuppId, ;
POtotal n(10,2))

list dictionary

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

81

SET CHECK

Class
Column Constraints

Purpose
Column constraint to validate a change to the value of a column

Syntax
SET CHECK <condition>

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The SET CHECK column constraint is used to validate any changes made to the value of a column. The
<condition> specified must evaluate to True (.T.) for the modification operation to succeed. If the
<condition> evaluates to False (.F.) the column value remains unchanged and the ERROR column
constraint message is displayed. If the ERROR column constraint has not been defined, a default error
message is displayed.

Example
set sql to recital
exec sql

ALTER TABLE customer ALTER COLUMN timeref SET CHECK validtime(timeref);
use customer
edit

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COLUMN CONSTRAINTS

82

UNIQUE

Class
Column Constraints

Purpose
Column constraint to define a candidate index for a table

Syntax
UNIQUE [COLLATE <cCollateSequence>]

See Also
ALTER TABLE, CREATE TABLE

Description
A constraint is used to define rules that help to provide data integrity. Column constraints are specific to
the column name specified. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

The UNIQUE column constraint is used to define the column as a candidate index for the table. A unique
tag index is built on the specified column; it is given the same name as the column. More than one column
can be defined as a candidate index for the table.

The optional COLLATE <cCollateSequence> clause is included for Visual FoxPro language compatibility
only.

Example
set sql to vfp
CREATE TABLE newcust (acc_ref char(5) default strzero(seqno(),5) UNIQUE, ;

acc_name char(20) UNIQUE)
list structure index

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

83

ADD TABLE

Class
Databases

Purpose
Add the specified table to the currently active database

Syntax
ADD TABLE <table>

See Also
ALTER INDEX, ALTER TABLE, BACKUP DATABASE, BUILD, CLOSE TABLES, COMPILE
DATABASE, CREATE DATABASE, CREATE TABLE, CREATE INDEX, CREATE VIEW, DISPLAY
DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP INDEX, DROP
TABLE, INSTALL, LIST DATABASE, LIST INDEXES, LIST TABLES, OPEN DATABASE, PACK
DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE DATABASE, USE, SET
EXCLUSIVE, ADATABASES(), DATABASE(), DBUSED(), GETENV()

Description
The ADD TABLE command is used to add an existing table to the currently active database. If no
database is currently active an error will be generated.

Keywords Description
table This is the name of the table to be added to the database.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can also be added to the database using the ADD
TABLE command or via the database catalog and SET AUTOCATALOG functionality.

Example
CREATE TABLE freetable (freeid char(10))
open database southwind
ADD TABLE freetable

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

84

ALTER INDEX

Class
SQL Applications

Purpose
Rebuilds an existing index file for the specified table

Syntax
ALTER INDEX <index> ON <table> REBUILD [SHARED | EXCLUSIVE]

See Also
ALTER TABLE, CREATE INDEX, CREATE TABLE, DROP INDEX, SET TCACHE

Description
The ALTER INDEX command is used to rebuild an existing index file for the specified table. The table
must be able to be locked for exclusive use during the operation.

Keywords Description
index This is the name of the index being rebuilt.
table This is the name of the table for which the index will be rebuilt on.
REBUILD Create the index anew using the existing index
SHARED Allows read-only transactions on the table while the index is being rebuilt.
EXCLUSIVE Prevents any transactions on the table while the index is being rebuilt.

Example
// Rebuild the index staff_no index on staff table
ALTER INDEX staff_no

ON staff
REBUILD
SHARED;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

85

ALTER TABLE

Class
SQL Applications

Purpose
Used to add, modify or delete table columns and constraints

Syntax
ALTER [IGNORE] TABLE [<database>!]<table>

ADD [COLUMN] (<column> <datatype> [<column constraints>] [,...])
| <table constraint>

| ALTER | MODIFY [COLUMN] <column> [SET DEFAULT <value> | DROP DEFAULT]
| (<column> <datatype> [<column constraint>] [,...])
| CONSTRAINT (<column> SET <column constraint> <value> [,...])
| <table constraint>

| DROP [COLUMN] <column>
| (<column> [,...])
| CONSTRAINT (<column> <column constraint> [,...]) | <table constraint>

| SET CHECK <condition> [ERROR <message>]
| RENAME (<column>,<new column>)

See Also
ADD TABLE, ALTER INDEX, CREATE TABLE, INSERT, SELECT, CONSTRAINTS, DATA TYPES,
GETENV(), SET TCACHE

Description
The ALTER TABLE command is used to add, modify or delete table columns and constraints and to
rename columns. The ALTER TABLE statement automatically reloads the original data of the table back
into the original columns. You must have ALTER privilege on the table. The table will be locked for
EXCLUSIVE use during the operation.

Keywords Description
IGNORE If IGNORE is omitted and there are duplicate UNIQUE keys in

the table, the ALTER TABLE is aborted with an error. If
IGNORE is specified, records containing a duplicate UNIQUE
key are deleted, leaving only the first row with that key.

database The name of the database to which the table to be altered
belongs. Databases in Recital are implemented as directories
containing files that correspond to the tables and associated files
in the database. Operating System file protection can be
applied individually to the files for added security. The
directory is a sub-directory of the Recital data directory. The
environment variable / symbol DB_DATADIR points to the
current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added
to the database using the ADD TABLE command or via the
database catalog and SET AUTOCATALOG functionality.
The ‘!’ character must be included between the database name
and the table name.

table The name of the table to be altered.
ADD This will insert one or more new columns into the table
COLUMN Optional COLUMN keyword.

COMMANDS

86

column The name of the column to operate on.
datatype The data type to be stored in the column, and the applicable

length or precision.
column constraint The column constraint.
table constraint The table constraint.
ALTER | MODIFY These are used to change existing column definitions and

column and table constraints.
SET DEFAULT <expr> Specify the DEFAULT column constraint to set a default value

for the specified column. The <expr> must evaluate to the same
data type as the target column. The column’s value can
subsequently be updated.

DROP DEFAULT Remove the DEFAULT column constraint for the specified
column.

DROP This is used to delete existing column definitions and column
and table constraints.

CONSTRAINT This keyword is used if the constraint refers to a column.
SET Precedes an existing column constraint whose value is being

changed.
value The new value for the specified column constraint.
SET CHECK <condition> Specify CHECK table constraint. This validation is activated

when an operation to insert, update or delete records in the table
is called. The <condition> specified must evaluate to True (.T.)
for the operation to succeed. If the <condition> evaluates to
False (.F.) the operation is abandoned and the ERROR table
constraint message is displayed. If the ERROR table constraint
has not been defined, a default error message is displayed.

ERROR <message> Specify ERROR table constraint. The <message> is the error
message to be displayed if the CHECK table constraint
evaluates to False (.F.).

RENAME This is used to change the name of an existing column.
new column The new name for the column.

Example
// Add new column with column constraints
EXEC SQL

ALTER TABLE customer ADD COLUMN timeref char(8)
CHECK validtime(timeref)
ERROR “Not a valid time string”;

// Alter existing columns to add column constraints
EXEC SQL

ALTER TABLE customer
ALTER COLUMN available CALCULATED limit-balance
ALTER COLUMN limit RECALCULATE
ALTER COLUMN balance RECALCULATE;

//or
EXEC SQL

ALTER TABLE customer
ALTER (available CALCULATED limit-balance,

limit RECALCULATE,
balance RECALCULATE);

// Add new column, add column constraint,

COMMANDS

87

// modify column datatype and drop constraints then drop column
EXEC SQL

ALTER TABLE customer ADD (timeref char(8));

EXEC SQL

ALTER TABLE customer
ALTER CONSTRAINT
(timeref SET CHECK validtime(timeref)
ERROR “Not a valid time string”);

EXEC SQL

ALTER TABLE customer
ALTER (timeref datetime)
DROP CONSTRAINT (timeref CHECK, timeref ERROR);

EXEC SQL

ALTER TABLE customer DROP (timeref);

// Add an ONUPDATE table constraint
EXEC SQL

ALTER TABLE customer
MODIFY ONUPDATE “do check_update”;

// Add and then remove CHECK table constraint
EXEC SQL

ALTER TABLE customer SET CHECK checkit() error “Invalid operation”;

set sql off
use customer
display dictionary
edit && Save and Exit will call validation
use

EXEC SQL

ALTER TABLE customer DROP CHECK;

// Rename column
EXEC SQL

ALTER TABLE customer RENAME(first_name,forename);

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

88

BACKUP DATABASE

Class
Databases

Purpose
Exports bridge, table, and associated files from the current or specified database in ASCII format to allow
them to be transferred to a binary incompatible platform

Syntax
BACKUP DATABASE [<database name> | ?]

See Also
ADD TABLE, ADD TABLE, ALTER INDEX, ALTER TABLE, BUILD, CLOSE TABLES, COMPILE
DATABASE, CREATE DATABASE, CREATE TABLE, CREATE INDEX, CREATE VIEW, DISPLAY
DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP INDEX, DROP
TABLE, INSTALL, LIST DATABASE, LIST INDEXES, LIST TABLES, OPEN DATABASE, PACK
DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE DATABASE, USE, SET
EXCLUSIVE, ADATABASES(), DATABASE(), DBUSED(), GETENV()

Description
The BACKUP DATABASE command issues a BUILD on the bridge files, tables and associated memo,
dictionary and multiple index files from the currently open database or specified database. This exports
these files into ASCII format to allow them to be transferred to a binary incompatible platform.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

If the <database name> is omitted, the BACKUP DATABASE command will operate on the active
database. If no database is currently open, an error will be returned. If the question mark, ‘?’, is included
instead of the <database name>, the ‘SELECT A FILE’ dialog will be displayed, allowing the user to select
a database. The dialog defaults to the DB_DATADIR directory. This is only applicable for Recital
Terminal Developer: for Recital Database and Mirage Servers, the <database name> must be specified if
the required database is not already open.

The ASCII files are created in a sub-directory of the Recital backup directory. The environment variable /
symbol DB_BACKUPDIR points to the current Recital backup directory and can be queried using the
GETENV() function. The sub-directory is created automatically and has the same name as the database. If
the sub-directory already exists, any files it previously contained are deleted. Once the BACKUP
DATABASE has completed successfully, the sub-directory and its contents can be copied to the
DB_BACKUPDIR directory on another platform and the database recreated using the RESTORE
DATABASE command.

COMMANDS

89

Example
// On Source machine:
Recital/SQL> backup database southwind;

// Transfer southwind sub-directory from DB_BACKUPDIR on source machine
// to DB_BACKUPDIR on target machine

// On Target Machine
Recital/SQL> restore database southwind;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

90

BEGIN TRANSACTION

Class
SQL Applications

Purpose
Flag the beginning of a transaction

Syntax
BEGIN TRANSACTION [<transaction>]
<statements>
END TRANSACTION [<transaction>]

See Also
ROLLBACK, SAVE TRANSACTION, SAVEPOINT, SET TRANSACTION, TXNISOLATION(),
TXNLEVEL()

Description
The BEGIN TRANSACTION statement is used to flag the beginning of a transaction. The END
TRANSACTION statement is used to commit changes made during the transaction and close the
transaction. The COMMIT statement and the ROLLBACK statement can also be used to close a
transaction. The COMMIT statement will save the changes made and the ROLLBACK statement will
discard the changes made.

Transactions can be nested by issuing a second or subsequent BEGIN TRANSACTION before an existing
transaction has been closed. The TXNLEVEL() function returns the current transaction nesting level.
When a transaction is closed, transactions nested within it are also closed.

Savepoints can be set during a transaction. These identify stages within the transaction which can
subsequently be used as ROLLBACK points.

The optional <transaction> is a name for the transaction. This name can be used by the COMMIT and
ROLLBACK statements.

Example
// config.db
set sql to recital
set sql on
// end of config.db

// Transactions
BEGIN TRANSACTION trans1;
INSERT INTO customer

(TITLE, LAST_NAME, FIRST_NAME, INITIAL, STREET,
CITY, STATE, ZIP,LIMIT, START_DATE)
VALUES
(‘Ms’, ‘Jones’, ‘Susan’, ‘B’, ‘177 High Street’,‘Beverly’, ‘MA’, ‘01915’, 2000, date());

INSERT INTO accounts (ORD_VALUE) VALUES (30);
BEGIN TRANSACTION trans2;
INSERT INTO accounts (ORD_VALUE) VALUES (60);
// Rollback the trans1 transaction and any transactions
// nested in trans1
ROLLBACK TRANSACTION trans1;

COMMANDS

91

END TRANSACTION;
// End of program

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

92

CLOSE

Class
SQL Applications

Purpose
Closes a cursor

Syntax
CLOSE <cursor>

See Also
DECLARE CURSOR, DROP CURSOR, OPEN, SELECT

Description
The CLOSE command closes the specified cursor, releasing all resources and locks allocated when the
cursor was opened. A cursor is a pointer to a logical table. A logical table is a temporary collection of data
that satisfy conditions specified in a SELECT statement. After a cursor has been CLOSED, it may be
accessed again by issuing another OPEN statement. The cursor is not released until a DROP CURSOR
statement is issued. This command can only be used in Embedded SQL. The cursor must already be open.

Keywords Description
cursor The name of the cursor to be closed.

Example
// Close the cursor
EXEC SQL

CLOSE accounts;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

93

CLOSE DATABASES

Class
Databases

Purpose
Closes the currently open database

Syntax
CLOSE DATABASES [ALL]

See Also
ADD TABLE, ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE
TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE TABLE, CREATE INDEX,
CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
DATABASE, DROP INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES,
OPEN DATABASE, PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE
DATABASE, USE, SET EXCLUSIVE, ADATABASES(), DATABASE(), DBUSED(), GETENV(),
DATABASE EVENTS

Description
The CLOSE DATABASES command closes the currently open database and its tables. If no database is
currently open, all tables and their associated files are closed.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

The CLOSE DATABASES command triggers the DBC_CLOSEDATA database event. If a
dbc_closedata.prg program file exists in the database’s directory, this will be run. If the dbc_closedata.prg
program returns .F. (False), the CLOSE DATABASES operation will be abandoned.

Databases can have an associated procedure library that is activated automatically when the database is
opened. If a program file with the name dbc_<database>_library.prg, exists in the database’s directory,
e.g. dbc_southwind_library.prg for the southwind demo database, a SET PROCEDURE…ADDITIVE is
issued for this procedure library when the database is opened. When the database is closed, the procedure
library is also closed.

CLOSE DATABASES does not close gateway sessions. The SET GATEWAY TO or CLOSE ALL
commands can be used for this purpose.

Example
Recital/SQL> set sql to vfp
VFP/SQL> OPEN DATABASE hr EXCLUSIVE
VFP/SQL> SELECT staff_no, lastname from staff
VFP/SQL> CLOSE DATABASES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

94

CLOSE TABLES

Class
Databases

Purpose
Closes the currently open tables and their associated files in the active database

Syntax
CLOSE TABLES [ALL]

See Also
ADD TABLE, ADD TABLE, ALTER INDEX, ALTER TABLE, CLOSE DATABASES, COMPILE
DATABASE, CREATE DATABASE, CREATE TABLE, CREATE INDEX, CREATE VIEW, DISPLAY
DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP INDEX, DROP
TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES, OPEN DATABASE, USE, SET
EXCLUSIVE, ADATABASES(), DATABASE(), DBUSED(), GETENV()

Description
The CLOSE TABLES command closes the currently open tables and their associated files in the active
database. The database itself remains open. If no database is currently open, all tables and their associated
files are closed.

If the ALL keyword is included, all tables and their associated files will be closed.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

Example
Recital/SQL> set sql to vfp
VFP/SQL> OPEN DATABASE hr EXCLUSIVE
VFP/SQL> use staff
VFP/SQL> CLOSE TABLES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

95

COMMIT

Class
SQL Applications

Purpose
Ends the current transaction, saving changes

Syntax
COMMIT [TRANSACTION <transaction>] [WORK]

See Also
BEGIN…END TRANSACTION, ROLLBACK, SAVE TRANSACTION, SAVEPOINT, SET
TRANSACTION, TXNISOLATION(), TXNLEVEL()

Description
The COMMIT statement ends the current or specified transaction and any transactions that are nested
within it and makes permanent all changes performed in the transaction or transactions.

TRANSACTION <transaction>
The optional TRANSACTION <transaction> is used to specify the name of the transaction to be
committed.

WORK
The optional WORK keyword is included for SQL ANSI 92 compatibility. COMMIT WORK and
COMMIT operate in the same way.

A transaction is a sequence of SQL statements that Recital treats as a single unit. A transaction begins with
the first executable SQL statement after a BEGIN TRANSACTION. A transaction ends with a COMMIT,
ROLLBACK or END TRANSACTION.

Example
// config.db
set sql to recital
set sql on
// end of config.db

// Transactions
BEGIN TRANSACTION trans1;
INSERT INTO customer

(TITLE, LAST_NAME, FIRST_NAME, INITIAL, STREET,
CITY, STATE, ZIP,LIMIT, START_DATE)
VALUES
(‘Ms’, ‘Jones’, ‘Susan’, ‘B’, ‘177 High Street’,‘Beverly’, ‘MA’, ‘01915’, 2000, date());

INSERT INTO accounts (ORD_VALUE) VALUES (30);
// Commit the trans1 transaction
COMMIT TRANSACTION trans1;
END TRANSACTION;
// End of program

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

96

COMPILE DATABASE

Class
Databases

Purpose
Compile stored procedure files in the specified database or databases

Syntax
COMPILE DATABASE <database name> | <skeleton>

See Also
ADD TABLE, ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE
DATABASES, CLOSE TABLES, CREATE DATABASE, CREATE TABLE, CREATE INDEX,
CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
DATABASE, DROP INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES,
OPEN DATABASE, PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE
DATABASE, USE, SET EXCLUSIVE, ADATABASES(), DATABASE(), DBUSED(), GETENV()

Description
The COMPILE DATABASE command compiles all the stored procedure files or program source files in
the specified database or databases. The name of the target database is specified in <database name>.
Multiple databases can be specified using the skeleton and wild card characters. The database or databases
need not be open when the COMPILE DATABASE command is issued.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

Example
> compile database southwind

Recital/SQL> set sql to vfp
VFP/SQL> COMPILE DATABASE hr

Recital/SQL> COMPILE DATABASE Mirage_*;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

97

CREATE BRIDGE

Class
SQL Applications

Purpose
Creates a Recital bridge file for connection to RMS or C-ISAM data files

Syntax
CREATE BRIDGE <bridge>
TYPE <bridgetype> EXTERNAL <externalname> METADATA <metadataname> ALIAS <aliasname>
[INDEX <index> [, <index>]]
| AS <cKeyPairString>

See Also
ALTER TABLE, CREATE TABLE, DROP BRIDGE, DROP TABLE

Description
The CREATE BRIDGE command is used to create a bridge file to an external C-ISAM or RMS file.
Recital clients can access Informix compatible C-ISAM files and the following fixed length RMS File
types: RMS Indexed Sequential, RMS Relative and RMS Sequential. Data access is achieved through a
bridge. This requires the creation of a bridge file and an empty Recital table that has a structure matching
that of the external file. The empty Recital table can be created using the SQL CREATE command or the
Recital Terminal Developer CREATE Development Tool. By convention, the empty structure file is given
the file extension ‘.str’ rather than the default ‘.dbf’, which is often given to the bridge file instead.

Keywords Description Maximum Width (Characters)
bridge The name of the bridge file. The file extension

defaults to ‘.brg’.
10 + file extension

bridgetype External data file type: CISAM, RMSIDX,
RMSREL or RMSSEQ.

10

externalname Name of the external data file. 80
metadataname Name of the Recital structure table. 80
aliasname The name to use to access the file. 10
index RMS only. For RMS Indexed Sequential files

specify the existing RMS index keys. For RMS
Relative and Sequential file structures you can
build Recital single indexes and associate them
with the bridge file. In these cases, specify the full
index filenames.

50

COMMANDS

98

The AS <cKeyPairString> is defined using the following key pairs:

Key Pair Description
TYPE=<bridgetype> External data file type: CISAM, RMSIDX, RMSREL or RMSSEQ.
EXTERNAL=<externalname> Name of the external data file.
METADATA=<metadataname> Name of the Recital structure table.
ALIAS=<aliasname> The name to use to access the file.
INDEXKEY1=<index>
INDEXKEY2=<index>
INDEXKEY3=<index>
INDEXKEY4=<index>
INDEXKEY5=<index>
INDEXKEY6=<index>
INDEXKEY7=<index>

RMS only. For RMS Indexed Sequential files specify the existing
RMS index keys. For RMS Relative and Sequential file structures
you can build Recital single indexes and associate them with the
bridge file. In these cases, specify the full index filenames.

Each key pair is separated by a semi-colon, ‘;’.

Example
exec sql
CREATE BRIDGE cisamdemo.dbf
TYPE “CISAM”
EXTERNAL “cisamdemo.dat”
METADATA “cisamdemo.str”
ALIAS “cisamdemo”;

//or

exec sql
CREATE BRIDGE cisamdemo.dbf
AS “TYPE=CISAM;EXTERNAL=cisamdemo.dat;METADATA=cisamdemo.str;ALIAS=cisamdemo”;

exec sql
CREATE BRIDGE rmsidxdemo.dbf
TYPE “RMSIDX”
EXTERNAL “rmsidx.dat”
METADATA “rmsidxdemo.str”
ALIAS “rmsidxdemo”
INDEX “acc_prefix+acc_no,acc_prefix+str(ord_total)”;

//or

exec sql
CREATE BRIDGE rmsidxdemo.dbf
AS “type=RMSIDX;external=rmsidx.dat;metadata=rmsidxdemo.str;alias=rmsidxdemo;;
indexkey1=acc_prefix+acc_no;indexkey2=acc_prefix+str(ord_total)”;

COMMANDS

99

exec sql
CREATE BRIDGE rmsreldemo.dbf
TYPE “RMSRELX”
EXTERNAL “rmsrel.dat”
METADATA “rmsreldemo.str”
ALIAS “rmsreldemo”
INDEX “ind1.ndx,ind2.ndx,ind3.ndx”;

//or

exec sql
CREATE BRIDGE rmsreldemo.dbf
AS “type=RMSREL;external=rmsrel.dat;metadata=rmsreldemo.str;alias=rmsreldemo;;
indexkey1=ind1.ndx;indexkey2=ind2.ndx,indexkey3=ind3.ndx”;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

100

CREATE CONNECTION

Class
Data Connectivity

Purpose
Create a gateway connection file

Syntax
CREATE CONNECTION <filename> | (<expC1>) | ?
[DATASOURCE <cNode> [USERID <cUser>] [PASSWORD <cPass>] [DATABASE <cDatabase>]]
| [CONNSTRING <cConnstring>]
| [AS <cKeyPairString>]

See Also
DROP CONNECTION, REMOTE DATA CONNECTIVITY FUNCTIONS

Description
The CREATE CONNECTION command is used to create a gateway connection file to an external SQL
database. The connection file can be used by the SQLCONNECT() and SQLSTRINGCONNECT() remote
data connectivity functions to establish a connection for SQL access to the database.

Keywords Description
filename The name of the gateway connection. If no file extension is specified, then

.gtw is used.
(<expC>) A character expression, enclosed in round brackets, that returns a valid

filename for the gateway connection.
? Displays a Select a File dialog allowing an existing connection file to be

selected and modified. This is only applicable for Recital Terminal
Developer.

If the optional clauses are not specified, the CREATE GATEWAY worksurface provides a full screen
facility for gateway connection file creation in Recital Terminal Developer. The following elements can be
defined for the gateway connection:

Server Element Description
Name The remote database server name, e.g. RECITAL
Network Node Name The node name or IP address of the server
Protocol Type The connection protocol, TCP/IP
Login Username The login for the database server
Login Password The login password for the database server
Database Name The full name (including path if applicable) of the database

Information relating to individual tables is not required and is relevant only when gateway files are being
used within the Recital forms system rather than with the remote data connectivity functions via cursor
access.

Server Element Description
Table Name The table name from the database
Table Primary Key The primary index key for the table
Table Restriction An optional SQL SELECT…WHERE clause

COMMANDS

101

Client Element Description
Structure Name The name of the matching Recital structure table
Alias Name The alias name for the client table
Default Form Name The default screen form to be used

The connection details can be supplied using the DATASOURCE or CONNSTRING clauses:

Keyword Description
DATASOURCE <cNode> Specify the node name or IP address of the server
USERID <cUser> Specify the login for the database server
PASSWORD <cPass> Specify the login password for the database server
DATABASE <cDatabase> Specify the name of the database
CONNSTRING <cConnstring> Specify an ODBC connection string

The remote database server name defaults to RECITAL.

The AS <cKeyPairString> is defined using the following key pairs:

Key Pair Description
TYPE=<cType> Specify the connection type: ODBC, JDBC, OLEDB, ORACLE,

INGRES, MYSQL, POSTRGRESQL, RECITAL
NODE=<cNode> Specify the node name or IP address of the server
USERID=<cUser> Specify the login for the database server
PASSWORD=<cPass> Specify the login password for the database server
DATABASE=<cDatabase> Specify the name of the database
CONNECTION=<cConnstring> Specify an ODBC, JDBC or OLEDB connection string
TABLE=<cTable> Specify the database table name
PRIMARYKEY=<cKey> Specify the primary key for the database table
SQLSELECT=<cSelect> Specify an optional SQL SELECT…WHERE clause

Each key pair is separated by a semi-colon, ‘;’.

Example
// config.db
set sql to vfp
set sql on
// end of config.db

CREATE CONNECTION conn1 DATASOURCE “server1” USERID “user1”;

PASSWORD “pass1” DATABASE “/usr/recital/data/demo”
nStatHand = SQLCONNECT(“conn1.gtw”)
if nStatHand < 1

dialog box [Could not connect]
else

nTabEnd = SQLTABLES(nStatHand)
if nTabEnd = 1

select sqlresult
browse

endif
SQLDISCONNECT(nStatHand)

endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

102

COMMANDS

103

CREATE CURSOR

Class
SQL Applications

Purpose
Creates a database with the specified name

Syntax
CREATE CURSOR <cursor>
[(<column> <datatype> [(<precision> [,<scale>])]
[NULL | NOT NULL]
[CHECK <expression> [ERROR <text>]]
[AUTOINC [NEXTVALUE <NextValue> [STEP <StepValue>]]]
[DEFAULT <expression>]
[UNIQUE [COLLATE <cCollateSequence>]]
[NOCPTRANS]
[, …]]
| [FROM ARRAY <array>]

See Also
ALTER INDEX, ALTER TABLE, CREATE TABLE, CREATE INDEX, CREATE VIEW, DROP
DATABASE, DROP INDEX, DROP TABLE, USE

Description
The CREATE CURSOR command creates a temporary table with the specified name. Columns to be
included in the table can be specified individually or details loaded from an existing array.

Keywords Description
cursor The name of the temporary table to be created.
column The name of the column to be created.
datatype The column’s data type.
precision The width of the column where not fixed.
scale The column’s decimal places where required.
NULL | NOT NULL Specifies whether this column can have NULL values. NULL

allows NULL values, NOT NULL prohibits NULL values.
CHECK <expression> Validation rule for the column. The <expression> must evaluate to

true (.T.), valid value or false (.F.), invalid value.
ERROR <text> An optional error message, <text>, to be displayed when the

CHECK <expression> validation fails.
AUTOINC Enables auto incrementing for the column
NEXTVALUE <NextValue> The specified <NextValue> is the numeric start value for the auto

incrementing.
STEP <StepValue> The specified <StepValue> determines the increment value. By

default values are incremented by 1.
DEFAULT <expression> The specified <expression> is used as the default value for the

column.
UNIQUE Creates a unique index on this column.
COLLATE <cCollateSequence> The specified <cCollateSequence> is used as the index collating

sequence.
NOCPTRANS Disables code page translation for character and memo columns.
FROM ARRAY <array> The table structure is taken from an existing array, whose name is

COMMANDS

104

specified in <array>. The array contents must be the column name,
type, precision and scale for each column in the temporary table.

Example
CREATE CURSOR tempstaff

(staff_no CHAR(6) NOT NULL UNIQUE,
lastname CHAR(15) NOT NULL,
firstname CHAR(10),
hiredate DATE,
location CHAR(15),
supervisor CHAR(6),
salary DECIMAL(6,0),
picture VARBINARY,
history LONG VARCHAR,
commission DECIMAL(4,1));

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

105

CREATE DATABASE

Class
Databases

Purpose
Creates a database with the specified name

Syntax
CREATE DATABASE [IF NOT EXISTS] <database name>

See Also
ADD TABLE, ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE
DATABASES, CLOSE TABLES, COMPILE DATABASE, CREATE TABLE, CREATE INDEX,
CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
DATABASE, DROP INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES,
OPEN DATABASE, PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE
DATABASE, USE, SET EXCLUSIVE, ADATABASES(), DATABASE(), DBUSED(), GETENV()

Description
The CREATE DATABASE command creates a new database with the specified name. An error occurs if
the database already exists unless the IF NOT EXISTS clause is specified.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. Since there are no tables in a database when it is initially created, the CREATE
DATABASE statement creates an empty directory. The directory is created as a sub-directory of the
Recital data directory. The environment variable / symbol DB_DATADIR points to the current Recital
data directory and can be queried using the GETENV() function. Files from other directories can be added
to the database using the ADD TABLE command or via the database catalog and SET AUTOCATALOG
functionality.

Example
// cre_dat.sql
CREATE DATABASE hr;
USE hr;
CREATE TABLE staff

(staff_no CHAR(6) NOT NULL UNIQUE,
lastname CHAR(15) NOT NULL,
firstname CHAR(10),
hiredate DATE,
location CHAR(15),
supervisor CHAR(6),
salary DECIMAL(6,0),
picture VARBINARY,
history LONG VARCHAR,
commission DECIMAL(4,1));

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

106

CREATE INDEX

Class
SQL Applications

Purpose
Creates an index for the specified table

Syntax
CREATE [UNIQUE] INDEX <index> ON <table> (<column> [ASC | DESC] [,...])
CREATE [UNIQUE] INDEX <index> ON <table> (<expression> [ASC | DESC])

See Also
ALTER INDEX, ALTER TABLE, CREATE TABLE, DROP INDEX, SET TCACHE

Description
The CREATE INDEX command creates an index file for the specified table. An index is a file which
contains an entry for each value in the specified <column-name> of the CREATE INDEX statement.
These values are known as key fields. Recital uses indexes to locate specific rows without reading the
whole table. When changes are made to the table, such as column additions, deletions, or changes in key
field values, the index will be updated as the table is updated. The table must be able to be locked for
exclusive use during the operation.

Keywords Description
UNIQUE Specifies that the index being created cannot contain any duplicate keys.
index This is the name of the index being created.
table This is the name of the table for which the index will be created.
column This is the name of the column that will be indexed. Multiple columns can be added

from the same table separated with commas.
expression The expression on which to index.
ASC Ascending order is the default index creation.
DESC This will create the index in descending order.

Example
// Create an index on staff number
CREATE INDEX staff_no

ON staff (staff_no);

// Create an index on descending hire date and ascending staff number
CREATE INDEX hiredate

ON staff (hiredate DESC, staff_no ASC);

// Create an index on last name converted to lower case
CREATE INDEX lname

ON staff (lower(lastname));

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

107

CREATE PROCEDURE

Class
Databases

Purpose
Creates a stored procedure in a database

Syntax
CREATE PROCEDURE [<database>!]<procname> AS
<procedure source code>
ENDCREATE

See Also
ADD TABLE, ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE
DATABASES, CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE TABLE,
CREATE INDEX, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES,
DROP DATABASE, DROP INDEX, DROP PROCEDURE, DROP TABLE, LIST DATABASE, LIST
INDEXES, LIST TABLES, OPEN DATABASE, PACK DATABASE, REBUILD DATABASE,
REINDEX DATABASE, RESTORE DATABASE, USE, SET EXCLUSIVE, SET SQL,
ADATABASES(), DATABASE(), DBUSED(), GETENV()

Description
The CREATE PROCEDURE command creates a new stored procedure in a database. If the database
name, <database>!, is specified, the stored procedure will be created in that database, otherwise the stored
procedure will be created in the currently open database. If no database is open and no <database>! is
specified, an error occurs. A prefix of ‘sp_’ is added to the specified <procname> stored procedure name
when the file is created. No file extension should be included in <procname>: the file will be given a ‘.prg’
file extension. The SQL dialect must be set to VFP before issuing the CREATE PROCEDURE command.
The SQL dialect can be set using the SET SQL TO <dialect> command.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

Example
// config.db
set sql to vfp
set sql on
// end of config.db

COMMANDS

108

// creaproc.prg
OPEN DATABASE southwind
CREATE PROCEDURE creaxml AS

SELECT orders.orderid, orders.customerid, employees.employeeid, employees.lastname,
 employees.firstname, orders.orderdate, orders.freight, orders.requireddate, orders.shippeddate,
 orders.shipvia, orders.shipname, orders.shipaddress, orders.shipcity, orders.shipregion,
 orders.shippostalcode, orders.shipcountry, customers.companyname, customers.address,
 customers.city, customers.region, customers.postalcode, customers.country
 FROM orders INNER JOIN customers ON customers.customerid = orders.customerid,
 orders INNER JOIN employees ON orders.employeeid = employees.employeeid
 SAVE AS XML orderinfo

ENDCREATE
// end of creaproc.prg

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

109

CREATE TABLE

Class
SQL Applications

Purpose
Creates a table

Syntax
CREATE [TEMPORARY] TABLE | DBF [IF NOT EXISTS] [<database>!]<table>
[NAME <LongTableName>]
[FREE]
(<column> <datatype> [<column constraint> [...]][,...] [<table constraint> […]])
[TYPE=CLIPPER | CLIPPER5 | RECITAL | DBASE3 | DBASE4 | FOXPLUS | FOXPRO | VFP]
| [FROM] XML <.xml file> [LOAD]
| FROM ARRAY <array>

See Also
ADD TABLE, ADD TABLE, ALTER INDEX, ALTER TABLE, DROP TABLE, INSERT, SELECT,
CONSTRAINTS, DATA TYPES, SET XMLFORMAT, GETENV()

Description
The CREATE TABLE and CREATE DBF commands are synonymous. Each creates a new table in the
current database. The INSERT command can be used to populate the table with data. The ALTER
TABLE command is used to change the table definition once it is created. CREATE INDEX can also be
used to add new indexes and DROP INDEX to remove existing ones.

Keywords Description
TEMPORARY The table is created as a temporary table for this process and

will be deleted when the process terminates.
IF NOT EXISTS The table is only created if it does not already exist. An error

occurs if the table already exists and the IF NOT EXISTS
clause is not specified.

database The name of the database in which the table should be created.
Databases in Recital are implemented as directories containing
files that correspond to the tables and associated files in the
database. Operating System file protection can be applied
individually to the files for added security. The directory is a
sub-directory of the Recital data directory. The environment
variable / symbol DB_DATADIR points to the current Recital
data directory and can be queried using the GETENV()
function. Files from other directories can be added to the
database using the ADD TABLE command or via the database
catalog and SET AUTOCATALOG functionality. The ‘!’
character must be included between the database name and the
table name.

table The name of the table to be created.
NAME<LongTableName> Specify an alternative name for the table.
FREE Specify that the table is not to be added to the currently active

database.
column This is the name of the column to be created.

COMMANDS

110

datatype The data type to be stored in that column, and applicable length

and precision. See the data types section for additional
information.

column constraint A column constraint.
table constraint A table constraint.
TYPE=CLIPPER | CLIPPER5 |
RECITAL | DBASE3 | DBASE4 |
FOXPLUS | FOXPRO | VFP

The table’s file format. The default is RECITAL or the current
SET FILETYPE format if set.

[FROM] XML <.xml file> [LOAD] The table structure is taken from the specified XML file. If the
LOAD option is specified any data in the xml file is loaded into
the newly created table. The XML file must be in ADO
(Microsoft® ActiveX® Data Objects) format.

FROM ARRAY <array> The table structure is taken from an existing array, whose name
is specified in <array>. The array contents must be the column
name, type, precision and scale for each column in the new
table structure.

Example
// Create customer table with column and table constraints
EXEC SQL

CREATE TABLE customer
(ACCOUNT_NO char(5) DESCRIPTION “Account Code”

DEFAULT strzero(seqno(),5),
TITLE char(3) DESCRIPTION “Personal Title”,
LAST_NAME char(16) DESCRIPTION “Customer’s Last Name”,
FIRST_NAME char(10) DESCRIPTION “Customer’s Given Name”,
INITIAL char(2) DESCRIPTION “Customer’s Middle Initial”,
STREET char(25) DESCRIPTION “Street Number and Name”,
CITY char(12) DESCRIPTION “City”,
STATE char(2) DESCRIPTION “State Abbreviation”

CHECK rlookup(customer.state,state)
ERROR “Invalid State”,

ZIP char(10) DESCRIPTION “Zip Code”,
LIMIT decimal(11,2) DESCRIPTION “Credit Limit”

RECALCULATE,
BALANCE decimal(11,2) DESCRIPTION “Credit Balance”

RECALCULATE,
AVAILABLE decimal(11,2) DESCRIPTION “Credit Available”

CALCULATED limit-balance,
NOTES LONG VARCHAR DESCRIPTION “Customer Notes",
START_DATE date DESCRIPTION “Customer Start Date”

DEFAULT date(),
ONOPEN “customer”);

// Specify table format as Visual FoxPro
EXEC SQL

CREATE TABLE newtable
(NEWID int AUTOINC,
NEWNAME char(20))
TYPE={VFP};

COMMANDS

111

// Create table from XML file
EXEC SQL

SELECT * FROM customer
SAVE AS XML cust.xml;

EXEC SQL

CREATE TABLE customer2
FROM XML cust.xml;

// Create table from array
set compatible to vfp
use vfptable
afields(array1)

EXEC SQL

CREATE TABLE newtable FROM ARRAY array1;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

112

CREATE TRIGGER

Class
SQL Applications

Purpose
Creates a trigger for a table

Syntax
CREATE TRIGGER ON [<database>!]<table>
FOR UPDATE | INSERT | DELETE
AS <expression>

See Also
ADD TABLE, ALTER INDEX, ALTER TABLE, DROP TABLE, INSERT, SELECT, CONSTRAINTS,
DATA TYPES, SET TCACHE, SET XMLFORMAT, GETENV()

Description
The CREATE TRIGGER command is used to create a trigger for the specified table. Triggers cause the
logical <expression> to be evaluated when certain operations are attempted.

Trigger Operation
UPDATE Attempt to modify an existing record
INSERT Attempt to add a new record
DELETE Attempt to delete an existing record

If the <expression> evaluates to False (.F.) the operation does not complete. If the <expression> evaluates
to True (.T.) the operations does complete.

Keywords Description
database The name of the database to which the table belongs. Databases

in Recital are implemented as directories containing files that
correspond to the tables and associated files in the database.
Operating System file protection can be applied individually to
the files for added security. The directory is a sub-directory of
the Recital data directory. The environment variable / symbol
DB_DATADIR points to the current Recital data directory and
can be queried using the GETENV() function. Files from other
directories can be added to the database using the ADD TABLE
command or via the database catalog and SET
AUTOCATALOG functionality. The ‘!’ character must be
included between the database name and the table name.

table The name of the table
FOR UPDATE | INSERT | DELETE Specifies the type of trigger to be created.
expression A logical expression to be evaluated

COMMANDS

113

Example
USE accounts
CREATE TRIGGER ON customer FOR UPDATE AS .not. empty(CustName)

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

114

CREATE VIEW

Class
SQL Applications

Purpose
Creates a logical view based on one or more tables

Syntax
CREATE [SQL] VIEW <view> [(<alias> [,...])] AS <sub-query>

See Also
DROP VIEW, SELECT

Description
The CREATE VIEW or CREATE SQL VIEW commands create a logical view based on one or more
tables. A view is a logical table that allows you to access data from other tables. A view itself contains no
data.

Keywords Description
view The name of the view to be created.
alias This is an optional identifier that names a column in the view. The number of

columns that you name must match the number of columns in the sub-query
AS sub-query This identifies columns and rows of the tables from which the view is created. The

sub-query is a SELECT statement.

When the view is created, the view definition is written into the sysodbc.ini file in the current directory. If
no sysodbc.ini file currently exists, it will be created. The DROP VIEW command removes the view
definition from this file. The view will be available until the DROP VIEW command is issued or the
sysodbc.ini file is manually modified. The data extracted from the view is the data current at the time of
the SELECT statement, not at the time of the view creation.

Example
// Create a view based on price being over $10
CREATE VIEW OverTen AS

SELECT * FROM orders WHERE price > 10;

// Create a view based on price being over $20
CREATE SQL VIEW OverTwenty AS

SELECT * FROM orders WHERE price > 20;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

115

DECLARE CURSOR

Class
SQL Applications

Purpose
Declares a pointer to a logical table

Syntax
DECLARE <cursor> [READ ONLY | INSERT ONLY]

[TABLE] CURSOR FOR SELECT <statement>

See Also
CLOSE, DROP CURSOR, FETCH, OPEN, SELECT

Description
The DECLARE CURSOR command declares a cursor to represent the active set of rows specified by a
SELECT or INSERT statement. It declares a cursor (a pointer to a logical table) to be processed in an
application program. A logical table is a temporary collection of data that satisfy conditions specified in a
SELECT statement. Declared cursors are opened with the OPEN statement and closed with the CLOSE
statement. After a cursor has been CLOSED, it may be accessed again by issuing another OPEN
statement. A cursor is not released until a DROP CURSOR statement is issued.

This command can only be used in Embedded SQL. The cursor cannot already be open.

Keywords Description
cursor The name of the cursor to be opened.
READ ONLY The cursor is opened read only.
INSERT ONLY The cursor is opened for inserts only.
TABLE This is for compatibility only.
SELECT statement This is a SELECT statement to be associated with the cursor. The select

statement cannot contain an INTO clause.

Example
// Declare the cursor to select records from the accounts table
EXEC SQL

DECLARE accounts CURSOR FOR
SELECT name,address,ord_value,balance
FROM accounts
ORDER BY name;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

116

DELETE

Class
SQL Applications

Purpose
Deletes one or more rows from a table

Syntax
DELETE FROM [<database>!]<table>
[WHERE CURRENT OF <cursor> | [CURRENT OF] <condition>]

See Also
EXECUTE IMMEDIATE, INSERT, GETENV(), SET TCACHE

Description
The DELETE command executes an immediate physical deletion of the specified records i.e., records are
permanently removed from the table, and cannot be recalled.

To perform a DELETE operation you must have the DELETE privilege or be the owner of the table.

Keywords Description
database The name of the database to which the table belongs. Databases in Recital

are implemented as directories containing files that correspond to the tables
and associated files in the database. Operating System file protection can be
applied individually to the files for added security. The directory is a sub-
directory of the Recital data directory. The environment variable / symbol
DB_DATADIR points to the current Recital data directory and can be
queried using the GETENV() function. Files from other directories can be
added to the database using the ADD TABLE command or via the database
catalog and SET AUTOCATALOG functionality. The ‘!’ character must be
included between the database name and the table name.

table The name of the table from which to delete the rows.
WHERE Specifies which rows are to be deleted.
CURRENT OF cursor Deletes only the row most recently fetched by the cursor.
condition Deletes only the rows that satisfy the condition.

Example
DELETE FROM staff

WHERE ord_date < date();

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

117

DELETE TRIGGER

Class
SQL Applications

Purpose
Deletes a trigger from a table

Syntax
DELETE TRIGGER ON [<database>!]<table>
FOR UPDATE | INSERT | DELETE

See Also
ADD TABLE, ADD TABLE, ALTER INDEX, ALTER TABLE, DROP TABLE, INSERT, SELECT,
CONSTRAINTS, DATA TYPES, SET XMLFORMAT, GETENV()

Description
The DELETE TRIGGER command deletes a trigger from the specified table. Triggers are used to evaluate
a logical expression when certain operations are attempted.

Keywords Description
database The name of the database to which the table belongs. Databases

in Recital are implemented as directories containing files that
correspond to the tables and associated files in the database.
Operating System file protection can be applied individually to
the files for added security. The directory is a sub-directory of
the Recital data directory. The environment variable / symbol
DB_DATADIR points to the current Recital data directory and
can be queried using the GETENV() function. Files from other
directories can be added to the database using the ADD TABLE
command or via the database catalog and SET
AUTOCATALOG functionality. The ‘!’ character must be
included between the database name and the table name.

table The name of the table
FOR UPDATE | INSERT | DELETE Specifies the type of trigger to be deleted.

Example
USE accounts
CREATE TRIGGER ON customer FOR UPDATE AS .not. empty(CustName)
DELETE TRIGGER ON customer FOR UPDATE

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

118

DISPLAY DATABASE

Class
Databases

Purpose
Display information about the active database

Syntax
DISPLAY DATABASE
[TO FILE <.txt filename> | (<expC>)]
[TO PRINT[ER]]

See Also
ADD TABLE, ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE
DATABASES, CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE INDEX,
CREATE TABLE, CREATE VIEW, DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE,
DROP INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES, OPEN
DATABASE, PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE
DATABASE, USE, SET EXCLUSIVE, SET SQL, ADATABASES(), DATABASE(), DBUSED(),
GETENV()

Description
The DISPLAY DATABASE command is used to display information about the currently active database.
Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the SQL OPEN DATABASE command.

The DISPLAY DATABASE command displays the following information:

• Database Name, e.g. southwind
• Database Path, e.g. /usr/recital/data/southwind

and for each table in the database the equivalent of DISPLAY STRUCTURE INDEX followed by
DISPLAY DICTIONARY:

• Table file name
• Number of records
• Date of creation
• Date of last update
• Encryption status
• Field names, types, sizes and description
• Total record length
• Production DBX file name
• Index tag names, keys, types and lengths
• Dictionary information

COMMANDS

119

DISPLAY commands differ from LIST commands in that they pause every 17 lines until a key is pressed.
You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent
to a file or printer, the pause is disabled.

Keyword Description
TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO \\SPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example
set sql to vfp
open database southwind
display database to file sw_info

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

120

DISPLAY TABLES

Class
Databases

Purpose
Display table information about the active database

Syntax
DISPLAY TABLES
[TO FILE <.txt filename> | (<expC>)]
[TO PRINT[ER]]

See Also
ADD TABLE, ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE
DATABASES, CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE INDEX,
CREATE TABLE, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DROP
DATABASE, DROP INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES,
OPEN DATABASE, PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE
DATABASE, USE, SET EXCLUSIVE, SET SQL, ADATABASES(), DATABASE(), DBUSED(),
GETENV()

Description
The DISPLAY TABLES command displays the base name and file name including the full path for each
table in the currently active database.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the SQL OPEN DATABASE command.

DISPLAY commands differ from LIST commands in that they pause every 17 lines until a key is pressed.
You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent
to a file or printer, the pause is disabled.

Keyword Description
TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO \\SPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

COMMANDS

121

Example
VFP/SQL > OPEN DATABASE southwind
VFP/SQL > DISPLAY TABLES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

122

DROP BRIDGE

Class
SQL Applications

Purpose
Deletes a Recital bridge file

Syntax
DROP BRIDGE <bridge>

See Also
ADD TABLE, ADD TABLE, ALTER INDEX, ALTER TABLE, CREATE BRIDGE, CREATE TABLE,
DROP TABLE

Description
The DROP BRIDGE command is used to delete a bridge file. Recital bridge files are used in connections
to external C-ISAM or RMS files.

Keywords Description
bridge This is the name of the bridge file being deleted. If no file extension is specified,

‘.brg’ will be used.

Example
exec sql
DROP BRIDGE cisamdemo.dbf;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

123

DROP CONNECTION

Class
Data Connectivity

Purpose
Delete a gateway connection file

Syntax
DROP CONNECTION <filename>

See Also
CREATE CONNECTION, REMOTE DATA CONNECTIVITY FUNCTIONS

Description
The DROP CONNECTION command is used to delete a gateway connection file to an external SQL
database. Connection files are created by the CREATE CONNECTION command and can be used by the
SQLCONNECT() and SQLSTRINGCONNECT() remote data connectivity functions to establish a
connection for SQL access to a database.

Keywords Description
filename The name of the gateway connection. If no file extension is specified, then

.gtw is used.

Example
// config.db
set sql to vfp
set sql on
// end of config.db

CREATE CONNECTION conn1 DATASOURCE “server1” USERID “user1”;

PASSWORD “pass1” DATABASE “/usr/recital/data/demo”
nStatHand = SQLCONNECT(“conn1.gtw”)
if nStatHand < 1

dialog box [Could not connect]
else

nTabEnd = SQLTABLES(nStatHand)
if nTabEnd = 1

select sqlresult
browse

endif
SQLDISCONNECT(nStatHand)

endif
DROP CONNECTION conn1

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

124

DROP CURSOR

Class
SQL Applications

Purpose
Frees up all system resources allocated to a cursor

Syntax
DROP CURSOR <cursor>

See Also
CLOSE, DECLARE CURSOR, OPEN, SELECT

Description
The DROP CURSOR command frees up all system resources allocated to the specified cursor. Cursors
may be closed with the CLOSE statement, and then re-opened with the OPEN statement. The DROP
CURSOR statement should only be used if the cursor is no longer needed.

This command can only be used in Embedded SQL. The cursor must already be declared.

Keywords Description
cursor The name of a declared cursor to be dropped.

Example
EXEC SQL

DROP CURSOR accounts;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

125

DROP DATABASE

Class
Databases

Purpose
Removes the specified database and all its tables

Syntax
DROP DATABASE [IF EXISTS] <database name>

See Also
ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE DATABASES,
CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE TABLE, CREATE
INDEX, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES, OPEN DATABASE,
PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE DATABASE, USE,
SET EXCLUSIVE, ADATABASES(), DATABASE(), DBUSED(), GETENV()

Description
The DROP DATABASE command removes the specified database and all its tables. The number of files
deleted from the database is returned. An error occurs if the database does not exist unless the IF EXISTS
clause is specified.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

Example
DROP DATABASE temp;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

126

DROP INDEX

Class
SQL Applications

Purpose
Removes an index from a table

Syntax
DROP INDEX <index> ON <table>

See Also
ADD TABLE, ALTER INDEX, CREATE INDEX, SET TCACHE

Description
The DROP INDEX command removes an index from a table. When the index is dropped it frees the disk
space which it occupied.

The table must be able to be locked for EXCLUSIVE use during the operation.

Keywords Description
index The name of the index to be dropped.
table The name of the table from which to drop the index.

Example
DROP INDEX staff_no ON staff;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

127

DROP PROCEDURE

Class
Databases

Purpose
Removes a stored procedure from a database

Syntax
DROP PROCEDURE [<database>!]<procname>

See Also
ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE DATABASES,
CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE PROCEDURE, CREATE
TABLE, CREATE INDEX, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY
TABLES, DROP DATABASE, DROP INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES,
LIST TABLES, OPEN DATABASE, PACK DATABASE, REBUILD DATABASE, REINDEX
DATABASE, RESTORE DATABASE, USE, SET EXCLUSIVE, SET SQL, ADATABASES(),
DATABASE(), DBUSED(), GETENV()

Description
The DROP PROCEDURE command removes a stored procedure from a database and physically deletes
the file. If the database name, <database>!, is specified, the stored procedure will be removed from that
database, otherwise the stored procedure will be removed from the currently open database. If no database
is open and no <database>! is specified, an error occurs. The <procname> can include the ‘sp_’ prefix and
‘.prg’ file extension, but if these are not specified they will be assumed.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

Example
OPEN DATABASE southwind;
DROP PROCEDURE creaxml;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

128

DROP TABLE

Class
SQL Applications

Purpose
Removes a table and all its data from the database

Syntax
DROP TABLE [<database>!]<table>

See Also
CREATE TABLE, DROP INDEX, DROP VIEW, GETENV()

Description
The DROP TABLE command removes a table and all its data from the database. When you drop the table,
it removes the specified table and its associated index files and frees the disk space that the files occupied.

You must have ALTER privilege on the table to issue the DROP TABLE command.

Keywords Description
database The name of the database to which the table belongs. Databases in Recital are

implemented as directories containing files that correspond to the tables and associated
files in the database. Operating System file protection can be applied individually to the
files for added security. The directory is a sub-directory of the Recital data directory.
The environment variable / symbol DB_DATADIR points to the current Recital data
directory and can be queried using the GETENV() function. Files from other directories
can be added to the database using the ADD TABLE command or via the database
catalog and SET AUTOCATALOG functionality. The ‘!’ character must be included
between the database name and the table name.

table The name of the table to be dropped.

Example
DROP TABLE hr!staff

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

129

DROP VIEW

Class
SQL Applications

Purpose
Frees up all system resources allocated to a view

Syntax
DROP VIEW <view>

See Also
CREATE VIEW, SELECT

Description
The DROP VIEW command frees up all system resources allocated to the specified view and removes the
view definition from the sysodbc.ini file in the current directory.

Keywords Description
view The name of the view to be dropped.

Example
DROP VIEW OverTen

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

130

END TRANSACTION

Class
SQL Applications

Purpose
Commit changes made during a transaction and close the transaction

Syntax
BEGIN TRANSACTION [<transaction>]
<statements>
END TRANSACTION [<transaction>]

See Also
ROLLBACK, SAVE TRANSACTION, SAVEPOINT, SET TRANSACTION, TXNISOLATION(),
TXNLEVEL()

Description
The BEGIN TRANSACTION statement is used to flag the beginning of a transaction. The END
TRANSACTION statement is used to commit changes made during the transaction and close the
transaction. The COMMIT statement and the ROLLBACK statement can also be used to close a
transaction. The COMMIT statement will save the changes made and the ROLLBACK statement will
discard the changes made.

Transactions can be nested by issuing a second or subsequent BEGIN TRANSACTION before an existing
transaction has been closed. The TXNLEVEL() function returns the current transaction nesting level.
When a transaction is closed, transactions nested within it are also closed.

Savepoints can be set during a transaction. These identify stages within the transaction which can
subsequently be used as ROLLBACK points.

The optional <transaction> is a name for the transaction. This name can be used by the COMMIT and
ROLLBACK statements.

Example
// config.db
set sql to recital
set sql on
// end of config.db

// Transactions
BEGIN TRANSACTION trans1;
INSERT INTO customer

(TITLE, LAST_NAME, FIRST_NAME, INITIAL, STREET,
CITY, STATE, ZIP,LIMIT, START_DATE)
VALUES
(‘Ms’, ‘Jones’, ‘Susan’, ‘B’, ‘177 High Street’,‘Beverly’, ‘MA’, ‘01915’, 2000, date());

INSERT INTO accounts (ORD_VALUE) VALUES (30);
BEGIN TRANSACTION trans2;
INSERT INTO accounts (ORD_VALUE) VALUES (60);
// Rollback the trans1 transaction and any transactions
// nested in trans1
ROLLBACK TRANSACTION trans1;

COMMANDS

131

END TRANSACTION;
// End of program

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

132

EXEC SQL

Class
SQL Applications

Purpose
Indicates that the statement that follows is an SQL statement

Syntax
EXEC SQL
<statement>;

See Also
EXECUTE, EXECUTE IMMEDIATE, SET SQL

Description
If SQL is set to Recital, the EXEC SQL indicates that the statement that follows it is an SQL statement.

Example
set sql to recital
EXEC SQL
select account_no from customer;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

133

EXECUTE

Class
SQL Applications

Purpose
Executes an SQL statement previously set up using the PREPARE command

Syntax
EXECUTE <statement> USING :<variable>[,<variable2>[,…]]

See Also
EXECUTE IMMEDIATE, PREPARE

Description
The EXECUTE command is used to execute an SQL statement previously set up using the PREPARE
command. Variables used as parameters in the SQL statement must be declared before execution.

Keywords Description
statement An identifier for the SQL statement previously set up using PREPARE
variable The name of a variable to be used as the first parameter to the SQL statement
variable2… The names of variables to be used as the subsequent parameters to the SQL statement

Example
stmtbuf = ‘SELECT * FROM customers WHERE contactnam = ?’
exec sql

prepare mystmt from :stmtbuf;

gcAuthor = ‘Ann Devon’
exec sql

execute mystmt using :gcAuthor;

gcAuthor = ‘Yang Wang’
exec sql

execute mystmt using :gcAuthor;

stmtbuf = ‘INSERT INTO customers (customerid, companynam, contactnam) VALUES (?,?,?)’
exec sql

prepare mystmt from :stmtbuf;

buf1 = ‘00101’
buf2 = ‘Recital’
buf3 = ‘US’
exec sql

execute mystmt using :buf1, :buf2, :buf3;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

134

EXECUTE IMMEDIATE

Class
SQL Applications

Purpose
Prepares and executes immediately a DELETE, INSERT, or UPDATE SQL statement or any Recital/4GL
command

Syntax
EXECUTE IMMEDIATE <statement>

See Also
DELETE, INSERT, UPDATE

Description
The EXECUTE IMMEDIATE command is used to prepare and execute immediately a DELETE, INSERT,
or UPDATE SQL statement or any Recital/4GL command.

Keywords Description
statement The SQL DELETE, INSERT or UPDATE statement, or 4GL command to execute

immediately.

Example
EXECUTE IMMEDIATE set deleted off;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

135

FETCH

Class
SQL Applications

Purpose
Fetches rows returned by the SELECT statement defined in a CURSOR

Syntax
FETCH

[NEXT | PREVIOUS | FIRST | LAST | ABSOLUTE <row position> |
CURRENT | RELATIVE <row position>]

<cursor> INTO [<data variable> [, ...] | XML <xml filename>]

See Also
DECLARE CURSOR, DROP CURSOR, OPEN, SELECT

Description
The FETCH command fetches rows returned by the SELECT statement defined in a CURSOR. It reads
the values in the specified row from the open cursor and places them in the bound data variables. If the
variables do not exist, they are created. If they do exist, they are updated. The cursor must have already
been opened with the OPEN statement.

Keywords Description
NEXT Retrieves the next row from the open cursor. This is the default if no

direction is specified.
PREVIOUS Retrieves the previous row from the open cursor.
FIRST Retrieves the first row from the open cursor.
LAST Retrieves the last row from the open cursor.
ABSOLUTE row position Retrieves the absolute row position. Row positions start at 1 in the open

cursor.
CURRENT Retrieves the current row from the open cursor.
RELATIVE row position Retrieves the row position relative to the current cursor position. The row

position can be negative to move to previous rows, positive to move to
next rows and zero to retrieve the current row.

cursor The cursor that has been declared with the DECLARE CURSOR
statement.

INTO data variable Specifies a list of data variables to receive the extracted row values. The
list may contain fewer variables than there are table columns, but may not
contain more variables than there are table columns.

INTO XML
<xml filename>

Specify the name of an XML file that will be created and populated with
all the rows from the open cursor.

COMMANDS

136

Example
// Declare the cursor to retrieve records from the accounts table
EXEC SQL

DECLARE accounts CURSOR FOR
SELECT name, address, ord_value, balance
FROM accounts
ORDER BY name;

// Open the cursor and establish a temporary set of records
EXEC SQL

OPEN accounts;

// Retrieve each row from open cursor
DO WHILE sqlcode = 0

EXEC SQL
FETCH NEXT accounts
INTO m_name, m_address, m_ord_value, m_balance;

ENDDO

// Close the cursor
EXEC SQL

CLOSE accounts;

// Free up any resources used for the cursor
EXEC SQL

DROP CURSOR accounts;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

137

GRANT

Class
SQL Applications

Purpose
Grants access privileges for users to tables

Syntax
GRANT

ALL | [SELECT [(<column> [,...])]] [UPDATE [(<column> [,...])]]
[INSERT] [DELETE] [ALTER] [READ ONLY [(<column> [,...])]]

ON [<database>!] <table> TO ‘<user>,<group>’ [,...] | PUBLIC

See Also
REVOKE, GETENV(), SET TCACHE

Description
The GRANT command is used to grant access privileges for users to tables. It can extend user privileges
but cannot limit existing privileges. Later GRANT statements do affect privileges already granted to a
user. Privileges can only be removed with the REVOKE statement. To grant privileges you must be the
owner of the table or have already been granted ALTER privileges.

Keywords Description
ALL All privileges are granted.
SELECT The ability to name any column in a SELECT statement. The privilege can be

restricted to one or more columns by listing them.
UPDATE The ability to name any column in an UPDATE statement. The privilege can be

restricted to one or more columns by listing them.
INSERT The ability to INSERT rows into the table.
DELETE The ability to DELETE rows from the table.
ALTER The data type to be stored in that column, and the applicable length or precision.
READ ONLY The ability to read from any column in a SELECT statement. The privilege can be

restricted to one or more columns by listing them.
database The name of the database to which the table belongs. Databases in Recital are

implemented as directories containing files that correspond to the tables and associated
files in the database. Operating System file protection can be applied individually to
the files for added security. The directory is a sub-directory of the Recital data
directory. The environment variable / symbol DB_DATADIR points to the current
Recital data directory and can be queried using the GETENV() function. Files from
other directories can be added to the database using the ADD TABLE command or via
the database catalog and SET AUTOCATALOG functionality. The ‘!’ character must
be included between the database name and the table name.

table The name of the table to which the privileges are granted.
user The user access control string that will be granted the privilege. User access control

strings are defined by the operating system.
group The group access control string that will be granted the privilege. Group access

control strings are defined by the operating system
PUBLIC All users and groups will be granted the privilege.

COMMANDS

138

Example
// Grant update privilege for columns lastname and firstname and insert for the table
EXEC SQL

GRANT UPDATE (lastname, firstname) INSERT
ON customer
TO ‘[20,100]’;

// Grant all privileges to all users
EXEC SQL

GRANT ALL ON test TO PUBLIC;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

139

INSERT

Class
SQL Applications

Purpose
Inserts one or more rows into a table

Syntax
INSERT INTO [<database>!]<table> [(<column> [,...])]

VALUES(<expr> [,] | NULL [,] | <empty> [,] [,...])
| <sub-query>
| [FROM] XML <.xml file>

INSERT INTO [<database>!]<table>
FROM ARRAY <array>
| FROM MEMVAR
| FROM NAME <ObjectName>

See Also
EXECUTE IMMEDIATE, SELECT, PSEUDO COLUMNS, UPDATE, SET TCACHE, SET
XMLFORMAT, GETENV()

Description
The INSERT command inserts one or more rows into a table. An INSERT statement with a VALUES
clause adds a single row to the table. An INSERT statement with a sub-query adds the rows returned by
the query. To insert data you must be the owner of the table or have already been granted INSERT
privileges.

Keywords Description
database The name of the database to which the table belongs. Databases in Recital

are implemented as directories containing files that correspond to the
tables and associated files in the database. Operating System file
protection can be applied individually to the files for added security. The
directory is a sub-directory of the Recital data directory. The environment
variable / symbol DB_DATADIR points to the current Recital data
directory and can be queried using the GETENV() function. Files from
other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG
functionality. The ‘!’ character must be included between the database
name and the table name.

table The name of the table into which to insert the rows. When data is being
inserted into encrypted tables, the <table> can include the three-part
encryption key, enclosed in angled brackets, appended to the table name.
The SET ENCRYPTION command allows a default encryption key to be
defined. If the key is not included in the <table>, this default key will be
used. If the default key is not the correct key for the table, an error will be
given. If no default key is active, a dialog box will be displayed in Recital
Terminal Developer to allow the user to enter the key.

column The column name from the table. In the inserted row each column in this
list is assigned a value from the VALUES clause or the sub-query. If you
omit the column list altogether, then you must supply values for each
column in the table.

COMMANDS

140

VALUES Specifies the row of values to be inserted into the table. Each <expr>

must be the same data type as the column it will update. If a column has a
default value defined in the Applications Data Dictionary (.dbd), the value
can be omitted and the default value will be inserted. Date constants can
be specified as valid dates in the current format (SET DATE, SET
CENTURY, SET MARK) or as a character string in the format “DD-
MMM-YYYY”, e.g. “01-Sep-2002”.

sub-query The sub-query is a SELECT statement that returns rows that are to be
inserted into the table.

[FROM] XML <.xml file> The values to be inserted into the table are taken from the specified XML
file. The XML file must be in ADO (Microsoft® ActiveX® Data Objects)
format.

FROM ARRAY <array> The values to be inserted into the table are taken from an existing array,
whose name is specified in <array>.

FROM MEMVAR The values to be inserted into the table are taken from existing memory
variables with the same names as the columns. If the corresponding
memory variable does not exist, the column is left blank.

FROM NAME
<ObjectName>

The values to be inserted into the table are taken from an object whose
properties have the same names as the columns. If the corresponding
property does not exist, the column is left blank.

Example
// Add a new row and update the column values.
EXEC SQL

INSERT INTO accounts!balances
(acc_prefix, acc_no, balance)
VALUES (‘hmt’, ‘a12345’, m_value*1.75);

// Encrypted table example.
EXEC SQL

INSERT INTO encbal<key_1,key_2,key_3>
(acc_prefix, acc_no, balance)
VALUES (‘hmt’, ‘a12345’, m_value*1.75);

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

141

LIST DATABASE

Class
Databases

Purpose
List information about the active database

Syntax
LIST DATABASE
[TO FILE <.txt filename> | (<expC>)]
[TO PRINT[ER]]

See Also
ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE DATABASES,
CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE INDEX, CREATE
TABLE, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
DATABASE, DROP INDEX, DROP TABLE, LIST INDEXES, LIST TABLES, OPEN DATABASE,
PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE DATABASE, USE,
SET EXCLUSIVE, SET SQL, ADATABASES(), DATABASE(), DBUSED(), GETENV()

Description
The LIST DATABASE command is used to display information about the currently active database.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the SQL OPEN DATABASE command.

The LIST DATABASE command displays the following information:

• Database Name, e.g. southwind
• Database Path, e.g. /usr/recital/data/southwind

and for each table in the database the equivalent of LIST STRUCTURE INDEX followed by LIST
DICTIONARY:

• Table file name
• Number of records
• Date of creation
• Date of last update
• Encryption status
• Field names, types, sizes and description
• Total record length
• Production DBX file name
• Index tag names, keys, types and lengths
• Dictionary information

COMMANDS

142

Keyword Description
TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO \\SPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example
VFP/SQL > OPEN DATABASE southwind
VFP/SQL > LIST DATABASE

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

143

LIST TABLES

Class
Databases

Purpose
List table information about the active database

Syntax
LIST TABLES
[TO FILE <.txt filename> | (<expC>)]
[TO PRINT[ER]]

See Also
ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE DATABASES, CLOSE TABLES,
COMPILE DATABASE, CREATE DATABASE, CREATE INDEX, CREATE TABLE, CREATE VIEW,
DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP
INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES, OPEN DATABASE, PACK DATABASE,
REBUILD DATABASE, REINDEX DATABASE, RESTORE DATABASE, USE, SET EXCLUSIVE,
SET SQL, ADATABASES(), DATABASE(), DBUSED(), GETENV()

Description
The LIST TABLES command displays the base name and file name including the full path for each table in
the currently active database.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the SQL OPEN DATABASE command.

Keyword Description
TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO \\SPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

COMMANDS

144

Example
VFP/SQL > OPEN DATABASE southwind
VFP/SQL > LIST TABLES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

145

LOCK TABLE

Class
SQL Applications

Purpose
Locks a table to control access by other processes

Syntax
LOCK TABLE [<database>!]<table> IN SHARE | EXCLUSIVE MODE [NOWAIT]

See Also
UPDATE

Description
To lock tables to control access by other processes. The LOCK TABLE statement locks an entire table to
restrict access by other users or transactions. There are no prerequisites required to perform this operation.

Keywords Description
database The name of the database to which the table belongs. Databases in Recital are

implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied
individually to the files for added security. The directory is a sub-directory of the
Recital data directory. The environment variable / symbol DB_DATADIR points to
the current Recital data directory and can be queried using the GETENV() function.
Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. The
‘!’ character must be included between the database name and the table name.

table The name of the table to set the lock mode on.
SHARE Share locks allow queries on locked tables, but prevent updates.
EXCLUSIVE This lock denies access by any other process to the table
NOWAIT This specifies that if a lock cannot be granted immediately during an update, then an

error should be returned.

Example
LOCK TABLE staff

IN SHARE MODE;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

146

OPEN

Class
SQL Applications

Purpose
Opens a pointer to a logical table

Syntax
OPEN <cursor>

See Also
CLOSE, DECLARE CURSOR, DROP CURSOR, FETCH

Description
The OPEN statement opens a cursor (a pointer to a logical table) that has been declared with the
DECLARE CURSOR statement. The DECLARE CURSOR statement declares a cursor which may be
processed in an application program. A logical table is a temporary collection of data that satisfies
conditions specified in a SELECT statement. Once a declared cursor has been opened, the FETCH
statement may be used to obtain values from the rows of its logical table. The CLOSE statement is used to
close an open cursor. Cursors may be opened and closed repeatedly until the cursor is released with the
DROP CURSOR statement. Cursors are also released when RECITAL is exited. The OPEN statement
opens the cursor on the first row of its logical table, regardless of which row it was on when last closed.

This command can only be used in Embedded SQL. The cursor must already be declared.

Keywords Description
cursor The name of the cursor to be opened.

Example
OPEN accounts;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

147

OPEN DATABASE

Class
Databases

Purpose
Sets the specified database as the default database for subsequent operations or SQL queries

Syntax
OPEN DATABASE [<database name> | ? [EXCLUSIVE | SHARED] [NOUPDATE] [VALIDATE]]

See Also
ALTER TABLE, ADD TABLE, ALTER INDEX, BACKUP DATABASE, CLOSE DATABASES,
CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE TABLE, CREATE
INDEX, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
DATABASE, DROP INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES,
PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE DATABASE, USE,
SET AUTOCATALOG, SET EXCLUSIVE, ADATABASES(), DATABASE(), DBUSED(), GETENV(),
DB_MAXWKA, DATABASE EVENTS

Description
The OPEN DATABASE command sets the specified database, <database name> as the default database
for subsequent operations or SQL queries. The database remains current until the end of the session or
until the CLOSE DATABASES or another OPEN DATABASE command is issued. Tables from other
databases can still be accessed, but must be indicated by including the database name in the table reference,
database!table.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

If the <database name> is omitted, a prompt will be displayed to enter the name of the database to be
opened. If the question mark, ‘?’, is included instead of the <database name>, the ‘SELECT A FILE’
dialog will be displayed, allowing the user to select the database to be opened. The dialog defaults to the
DB_DATADIR directory. This is only applicable for Recital Terminal Developer: for Recital Database
and Mirage Servers, the <database name> must be specified.

EXCLUSIVE | SHARED
Determines whether the database is opened EXCLUSIVE, which prevents other users from opening the
database, or SHARED, which allows other shared users of the database. If neither keyword is included,
the access is determined by the active SET EXCLUSIVE setting.

NOUPDATE
If the NOUPDATE keyword is included, the database is opened in read only mode.

VALIDATE
The VALIDATE keyword is included for language compatibility.

COMMANDS

148

The OPEN DATABASE command does not cause the current working directory to be changed. When a
database is opened, its catalog file is also opened. If no catalog file exists, it is automatically created. The
catalog is a Recital table with an associated index tag, which stores information about the files in the
database. The catalog is named <database>.cat, its index <database>.cam and it is opened with the alias
name _<database>, e.g. the southwind database has the catalog southwind.cat, the index southwind.cam
and the alias _southwind. It is opened in the last available workarea as determined by the DB_MAXWKA
environment variable/symbol. If a database is open, this highest workarea is unavailable for use by other
tables and an error will be returned if an attempt is made to open a table in this workarea.

The catalog has the following structure.

Field Name Type Width Description Index
PATH Character 255 File directory N
FILENAME Character 32 File name N
ALIAS Character 32 Alias Y
TYPE Character 3 File type N
TITLE Character 80 File title N
CODE Numeric 3 File group N
CATEGORY Character 10 File category N
ORDER Character 1 File sort tag N
DETAILS Memo 8 File details N

Each program or table has a record in the catalog, each index has multiple records. For a single index,
there is one record for the file itself and one record for each component of the index key. For a production
tagged index there is one record for each component of the index key.

Field Name Description
PATH The full directory path name for the file. This may or may not be the database’s

directory. Files added to the database catalog via AUTOCATALOG functionality may
be located in other directories. This makes them accessible as part of the database
without specifying the full path or using SET PATH.

FILENAME The name of the file (tables, programs and single index files) e.g. example.dbf,
exind.ndx. Or, a reference to a component of an index key. The reference is formatted
as follows: <table-alias>-<tagname | single-index-filename><number>. e.g. for a tag
called ‘address’ on the example.dbf table with a key of city+state, there would be two
records with the filenames example-address01 and example-address02.

ALIAS For program files, this is the program basename, e.g. ‘test’ for ‘test.prg’ and for all other
files this is the associated table alias name.

TYPE dbf - Recital, FoxPro, dBase or Clipper tables or Recital Bridge Files with ‘.dbf’
extensions, e.g. cisamdemo.dbf.
dbx - Recital, FoxPro, dBase or Clipper tagged index files with ‘.dbx’, ‘cdx’ or ‘.mdx’
file extensions.
ndx - Single index files with ‘.ndx’ and ‘.idx’ file extensions.
prg - Program source files with ‘.prg’ file extension.

TITLE The file description if available, ‘Database Catalog’ if not.
CODE Code for internal use.
CATEGORY Data - Recital, FoxPro, dBase and Clipper tables and Recital Bridge Files with ‘.dbf’

extensions, e.g. cisamdemo.dbf.
Index - Recital, FoxPro, dBase and Clipper tagged index files with ‘.dbx’, ‘cdx’ or
‘.mdx’ file extensions and single index files with ‘.ndx’ and ‘.idx’ file extensions.
Program - Program source files with ‘.prg’ file extension.

ORDER Order for internal use, tables (1), programs (6), indexes (7).
DETAILS File details: database, index keys, table names etc.

COMMANDS

149

All files in the catalog become accessible when the database is opened, whether they are in the database
directory itself or in alternative paths. Single index files included in the catalog will be opened when their
associated table is opened. If a single index appears in the database catalog, but its file no longer exists, it
will be removed from the catalog when its associated table is next opened. New tables, tagged indexes and
single indexes created while the database is open, are added automatically to the database catalog.

The database catalog can be rebuilt using the REBUILD DATABASE command. The PACK
DATABASE command issues the PACK command for all tables in the database catalog. The REINDEX
DATABASE command rebuilds all indexes in the database catalog.

The OPEN DATABASE command triggers the DBC_OPENDATA database event. If a dbc_opendata.prg
program file exists in the database’s directory, this will be run. If the dbc_opendata.prg program returns .F.
(False), the OPEN DATABASE operation will be abandoned.

Databases can have an associated procedure library that is activated automatically when the database is
opened. If a program file with the name dbc_<database>_library.prg, exists in the database’s directory,
e.g. dbc_southwind_library.prg for the southwind demo database, a SET PROCEDURE…ADDITIVE is
issued for this procedure library when the database is opened. When the database is closed, the procedure
library is also closed.

Example
VFP/SQL> OPEN DATABASE hr EXCLUSIVE
VFP/SQL> SELECT staff_no, lastname from staff
VFP/SQL> CLOSE DATABASES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

150

PACK DATABASE

Class
Databases

Purpose
Packs each table in the active database or packs the catalog and rebuilds the catalog index tags for a
specified database

Syntax
PACK DATABASE [<database name> | ?]

See Also
ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE DATABASES,
CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE TABLE, CREATE
INDEX, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
DATABASE, DROP INDEX, DROP TABLE, INDEX, LIST DATABASE, LIST INDEXES, LIST
TABLES, OPEN DATABASE, PACK, REBUILD DATABASE, REINDEX DATABASE, RESTORE
DATABASE, USE, SET AUTOCATALOG, SET EXCLUSIVE, ADATABASES(), DATABASE(),
DBUSED(), GETENV(), DB_MAXWKA

Description
The PACK DATABASE command packs all the tables in the active database. Packing a table removes all
records previously marked for deletion from the table.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the SQL OPEN DATABASE command.

If the <database name> is specified, the PACK DATABASE command will operate on the specified
database’s catalog file: the catalog file will be packed and its index tags rebuilt using INDEX ON. If the
question mark, ‘?’, is included instead of the <database name>, the ‘SELECT A FILE’ dialog will be
displayed, allowing the user to select the database. The dialog defaults to the DB_DATADIR directory.
This is only applicable for Recital Terminal Developer: for Recital Database and Mirage Servers, the
<database name> must be specified.

Example
VFP/SQL>open database southwind
VFP/SQL>pack database
VFP/SQL>close databases
VFP/SQL>pack database southwind

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

151

PREPARE

Class
SQL Applications

Purpose
Set up an SQL statement for subsequent execution

Syntax
PREPARE <statement> FROM :<variable>

See Also
EXECUTE, EXECUTE IMMEDIATE

Description
The PREPARE command is used to set up an SQL statement for subsequent execution. The EXECUTE
command is used to execute the statement. Variables used as parameters in the SQL statement must be
declared before execution.

Keywords Description
statement An identifier for the SQL statement.
variable The name of a variable containing the SQL statement as a string

Example
stmtbuf = ‘SELECT * FROM customers WHERE contactnam = ?’
exec sql

prepare mystmt from :stmtbuf;

gcAuthor = ‘Ann Devon’
exec sql

execute mystmt using :gcAuthor;

gcAuthor = ‘Yang Wang’
exec sql

execute mystmt using :gcAuthor;

stmtbuf = ‘INSERT INTO customers (customerid, companynam, contactnam) VALUES (?,?,?)’
exec sql

prepare mystmt from :stmtbuf;

buf1 = ‘00101’
buf2 = ‘Recital’
buf3 = ‘US’
exec sql

execute mystmt using :buf1, :buf2, :buf3;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

152

REBUILD DATABASE

Class
Databases

Purpose
Rebuilds a database catalog

Syntax
REBUILD DATABASE [<database name> | ?]

See Also
ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE DATABASES,
CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE TABLE, CREATE
INDEX, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
DATABASE, DROP INDEX, DROP TABLE, INDEX, LIST DATABASE, LIST INDEXES, LIST
TABLES, OPEN DATABASE, PACK, PACK DATABASE, REINDEX DATABASE, RESTORE
DATABASE, USE, SET AUTOCATALOG, SET EXCLUSIVE, ADATABASES(), DATABASE(),
DBUSED(), GETENV(), DB_MAXWKA

Description
The REBUILD DATABASE command rebuilds the catalog for the active or specified database. This
packs the catalog file and rebuilds its index tags. All valid programs, tables and known associated indexes
from the database’s directory are added into the catalog.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the SQL OPEN DATABASE command.

If the question mark, ‘?’, is included instead of the <database name>, the ‘SELECT A FILE’ dialog will be
displayed, allowing the user to select the database. The dialog defaults to the DB_DATADIR directory.
This is only applicable for Recital Terminal Developer: for Recital Database and Mirage Servers, the
<database name> must be specified.

Example
VFP/SQL>open database southwind
VFP/SQL> rebuild database
VFP/SQL>close databases
VFP/SQL> rebuild database southwind
VFP/SQL> rebuild database ?

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

153

REINDEX DATABASE

Class
Databases

Purpose
Rebuilds the indexes for each table in the active database or rebuilds the catalog index tags for a specified
database

Syntax
REINDEX DATABASE [<database name> | ?]

See Also
ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE DATABASES,
CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE TABLE, CREATE
INDEX, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
DATABASE, DROP INDEX, DROP TABLE, INDEX, LIST DATABASE, LIST INDEXES, LIST
TABLES, OPEN DATABASE, PACK DATABASE, REBUILD DATABASE, RESTORE DATABASE,
USE, SET AUTOCATALOG, SET EXCLUSIVE, ADATABASES(), DATABASE(), DBUSED(),
GETENV(), DB_MAXWKA

Description
The REINDEX DATABASE command rebuilds the indexes for each table in the active database.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the SQL OPEN DATABASE command.

If the <database name> is specified, the REINDEX DATABASE command will operate on the specified
database’s catalog file: the catalog’s index tags will be rebuilt. If the question mark, ‘?’, is included instead
of the <database name>, the ‘SELECT A FILE’ dialog will be displayed, allowing the user to select the
database. The dialog defaults to the DB_DATADIR directory. This is only applicable for Recital
Terminal Developer: for Recital Database and Mirage Servers, the <database name> must be specified.

Example
VFP/SQL>open database southwind
VFP/SQL> reindex database
VFP/SQL>close databases
VFP/SQL> reindex database southwind

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

154

RESTORE DATABASE

Class
Databases

Purpose
Imports bridge, table, and associated files into the current or specified database from ASCII format files
created by the BACKUP DATABASE command

Syntax
RESTORE DATABASE [<database name> | ?]

See Also
ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, BUILD, CLOSE TABLES,
COMPILE DATABASE, CREATE DATABASE, CREATE TABLE, CREATE INDEX, CREATE VIEW,
DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP
INDEX, DROP TABLE, INSTALL, LIST DATABASE, LIST INDEXES, LIST TABLES, OPEN
DATABASE, PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, USE, SET
EXCLUSIVE, ADATABASES(), DATABASE(), DBUSED(), GETENV()

Description
The RESTORE DATABASE command issues an INSTALL to import bridge files, tables and associated
memo, dictionary and multiple index files into the currently open or specified database. The files must be
in ASCII format previously created by the BACKUP DATABASE command and can be transferred from a
binary incompatible platform.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

If the <database name> is omitted, the RESTORE DATABASE command will operate on the active
database. If no database is currently open, an error will be returned. If the question mark, ‘?’, is included
instead of the <database name>, the ‘SELECT A FILE’ dialog will be displayed, allowing the user to select
a database. The dialog defaults to the DB_DATADIR directory. This is only applicable for Recital
Terminal Developer: for Recital Database and Mirage Servers, the <database name> must be specified if
the required database is not already open.

The ASCII files must be in a sub-directory of the Recital backup directory. The environment variable /
symbol DB_BACKUPDIR points to the current Recital backup directory and can be queried using the
GETENV() function. The sub-directory must have the same name as the database.

COMMANDS

155

Example
// On Source machine:
Recital/SQL> backup database southwind;

// Transfer southwind sub-directory from DB_BACKUPDIR on source machine
// to DB_BACKUPDIR on target machine

// On Target Machine
Recital/SQL> restore database southwind;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

156

REVOKE

Class
SQL Applications

Purpose
Revoke access privileges for users to tables.

Syntax
REVOKE

ALL | [SELECT [(<column> [,...])]] [UPDATE [(<column> [,...])]]
[INSERT] [DELETE] [ALTER] [READ ONLY [(<column> [,...])]

ON [<database>!]<table> FROM ‘<user>,<group>’ [,...] | PUBLIC

See Also
GRANT, GETENV(), SET TCACHE

Description
To revoke access privileges for users to tables. The REVOKE statement can only remove existing user
privileges given with the GRANT statement. To revoke privileges you must be the owner of the table or
have already been granted ALTER privileges.

Keywords Description
ALL All privileges are revoked.
SELECT The ability to name any column in a SELECT statement. The privilege can be

restricted to one or more columns by listing them.
UPDATE The ability to name any column in an UPDATE statement. The privilege can be

restricted to one or more columns by listing them.
INSERT The ability to INSERT rows into the table.
DELETE The ability to DELETE rows from the table.
ALTER The data type to be stored in that column, and the applicable length or precision.
READ ONLY The ability to read from any column in a SELECT statement. The privilege can be

restricted to one or more columns by listing them.
database The name of the database to which the table belongs. Databases in Recital are

implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied
individually to the files for added security. The directory is a sub-directory of the
Recital data directory. The environment variable / symbol DB_DATADIR points to
the current Recital data directory and can be queried using the GETENV() function.
Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. The
‘!’ character must be included between the database name and the table name.

table The name of the table from which to revoke the privileges.
user The user access control string that will be revoked from the privilege. User access

control strings are defined by the operating system.
group The group access control string that will be revoked the privilege. Group access

control strings are defined by the operating system.
PUBLIC All users and groups will be revoked privileges

COMMANDS

157

Example
// Revoke update privilege for columns lastname and firstname and insert on the table
EXEC SQL

REVOKE UPDATE (lastname, firstname) INSERT
ON customer
FROM ‘[20,100]’;

// Grant all privileges to all users
EXEC SQL

REVOKE ALL
ON test
FROM PUBLIC;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

158

ROLLBACK

Class
SQL Applications

Purpose
Ends the current transaction, undoing all changes

Syntax
ROLLBACK [TRANSACTION <transaction> | <savepoint>] [WORK] [TO SAVEPOINT <savepoint>]

See Also
BEGIN…END TRANSACTION, COMMIT, SAVE TRANSACTION, SAVEPOINT, SET
TRANSACTION, TXNISOLATION(), TXNLEVEL()

Description
The ROLLBACK statement ends the current or specified transaction and any transactions that are nested
within it and discards all changes performed in the transaction or transactions.

TRANSACTION <transaction> | <savepoint>
The optional TRANSACTION <transaction> | <savepoint> is used to specify the name of the transaction to
be rolled back. The <transaction> is the name of the transactions defined in the BEGIN TRANSACTION
<transaction> statement. The <savepoint> is the name defined in the SAVE TRANSACTION <savepoint>
statement.

WORK
The optional WORK keyword is included for SQL ANSI 92 compatibility. ROLLBACK WORK and
ROLLBACK operate in the same way.

TO SAVEPOINT <savepoint>
The optional TO SAVEPOINT <savepoint> clause causes a partial rollback of the transaction to be carried
out. Changes made since the specified <savepoint> was declared are discarded and the transaction
continues from the <savepoint>.

A transaction is a sequence of SQL statements that Recital treats as a single unit. A transaction begins with
the first executable SQL statement after a BEGIN TRANSACTION. A transaction ends with a COMMIT,
ROLLBACK or END TRANSACTION.

Example
// config.db
set sql to recital
set sql on
// end of config.db

// Transactions
BEGIN TRANSACTION trans1;
INSERT INTO customer

(TITLE, LAST_NAME, FIRST_NAME, INITIAL, STREET,
CITY, STATE, ZIP,LIMIT, START_DATE)
VALUES
(‘Ms’, ‘Jones’, ‘Susan’, ‘B’, ‘177 High Street’,‘Beverly’, ‘MA’, ‘01915’, 2000, date());

INSERT INTO accounts (ORD_VALUE) VALUES (30);
// Rollback the trans1 transaction

COMMANDS

159

ROLLBACK TRANSACTION trans1;
END TRANSACTION;
// End of program

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

160

SAVE TRANSACTION

Class
SQL Applications

Purpose
Identifies a stage within a transaction which can subsequently be used as ROLLBACK point.

Syntax
SAVE TRANSACTION <savepoint>

See Also
BEGIN…END TRANSACTION, COMMIT, ROLLBACK, SAVEPOINT, SET TRANSACTION,
TXNISOLATION(), TXNLEVEL()

Description
The SAVE TRANSACTION statement identifies a stage within a transaction which can subsequently be
used as ROLLBACK point. The name of the savepoint is specified in <savepoint>.

Issuing the SAVE TRANSACTION <savepoint> statement causes the TXNLEVEL() to increase by 1. If
the transaction is rolled back to the <savepoint> using the ROLLBACK command, the TXNLEVEL will
decrease by 1 and a partial rollback of the transaction will be carried out. Changes made since the
specified <savepoint> was declared are discarded and the transaction continues from the <savepoint>.

A transaction is a sequence of SQL statements that Recital treats as a single unit. A transaction begins with
the first executable SQL statement after a BEGIN TRANSACTION. A transaction ends with a COMMIT,
ROLLBACK or END TRANSACTION.

Example
// config.db
set sql to recital
set sql on
// end of config.db

// SAVE TRANSACTION <savepoint>
BEGIN TRANSACTION parent_and_child;
INSERT INTO customer

(TITLE, LAST_NAME, FIRST_NAME, INITIAL, STREET,
CITY, STATE, ZIP,LIMIT, START_DATE)
VALUES
(‘Ms’, ‘Jones’, ‘Susan’, ‘B’, ‘177 High Street’, ‘Beverly’, ‘MA’, ‘01915’, 2000, date());

SAVE TRANSACTION parent_added;
INSERT INTO accounts (ORD_VALUE) VALUES (30);
ROLLBACK TRANSACTION parent_added;
END TRANSACTION;
// End of program

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

161

SAVEPOINT

Class
SQL Applications

Purpose
Identifies a stage within a transaction which can subsequently be used as ROLLBACK point.

Syntax
SAVEPOINT <savepoint>

See Also
BEGIN…END TRANSACTION, COMMIT, ROLLBACK, SAVE TRANSACTION, SET
TRANSACTION, TXNISOLATION(), TXNLEVEL()

Description
The SAVEPOINT statement identifies a stage within a transaction which can subsequently be used as
ROLLBACK point. The name of the savepoint is specified in <savepoint>.

Issuing the SAVEPOINT <savepoint> statement causes the TXNLEVEL() to increase by 1. If the
transaction is rolled back to the <savepoint> using the ROLLBACK command, the TXNLEVEL will
decrease by 1 and a partial rollback of the transaction will be carried out. Changes made since the
specified <savepoint> was declared are discarded and the transaction continues from the <savepoint>.

A transaction is a sequence of SQL statements that Recital treats as a single unit. A transaction begins with
the first executable SQL statement after a BEGIN TRANSACTION. A transaction ends with a COMMIT,
ROLLBACK or END TRANSACTION.

Example
// config.db
set sql to recital
set sql on
// end of config.db

// SAVEPOINT <savepoint>
BEGIN TRANSACTION parent_and_child;
INSERT INTO customer

(TITLE, LAST_NAME, FIRST_NAME, INITIAL, STREET,
CITY, STATE, ZIP,LIMIT, START_DATE)
VALUES
(‘Ms’, ‘Jones’, ‘Susan’, ‘B’, ‘177 High Street’, ‘Beverly’, ‘MA’, ‘01915’, 2000, date());

SAVEPOINT parent_added;
INSERT INTO accounts (ORD_VALUE) VALUES (30);
ROLLBACK TRANSACTION parent_added;
END TRANSACTION;
// End of program

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

162

SELECT

Class
SQL Applications

Purpose
Retrieves data from one or more tables or views

Syntax
SELECT [ALL | DISTINCT | DISTINCTROW | TOP <expN> [PERCENT]]
* |
[<t_alias>|<“t_alias”>.]<column>|<“column”> | <constant> | <function> | <aggregate>

[[AS] <c_alias>] [,...] [, *]
FROM {OJ <“t_alias”> <table> [LEFT | RIGHT | FULL] OUTER JOIN

<“t_alias”> <table2> ON <exp> = <exp>}
| [FORCE] [<database>!]<table> | <view> [AS <t_alias> [, ...]]
[INNER JOIN | OUTER JOIN | LEFT [OUTER] JOIN | RIGHT [OUTER] JOIN

(<nested select>) | [<database>!]<table2>
ON [<database>!]<table>.<column> = [<database>!]<table2>.<column>

| CROSS JOIN | FULL [OUTER] JOIN
[<database>!]<table2>]

[WHERE <condition>]
[GROUP BY <expr> | <column> | <number> [ASC | DESC] [,...]]
[HAVING <condition>]
[ORDER BY <expr> |<column> | <number> [ASC | DESC] [,...]]
[FOR UPDATE]
[INTO <data variable> [,...] | ARRAY <array-name>

| CURSOR <cursor-name> [NOFILTER | READWRITE]
| DBF | TABLE <table-name> [DATABASE <database> [NAME <long table-name>]]

| SAVE AS [<database>!]<table-name>
| XML <xml filename> [FORMAT <RECITAL | ADO>]]

| TO FILE <text filename> [DELIMITED]
| PRINTER [PROMPT]
| SCREEN

[PREFERENCE <preference>] [NOCONSOLE] [PLAIN] [NOWAIT]
[UNION [ALL] <nested select>]

See Also
CREATE TABLE, FETCH, INSERT, UPDATE, SET TCACHE, SET XMLFORMAT, AGGREGATES,
SYSTEM TABLES, OPERATORS, PREDICATES, PSEUDO COLUMNS

Description
The SELECT statement is used to retrieve data from one or more tables or views. It creates a logical table
from other tables. A logical table is a temporary collection of data that satisfy conditions specified in a
SELECT statement. To select data you must be the owner of the table or have already been granted
SELECT privileges.

If no destination is specified for the results (INTO, SAVE AS or TO), then they are saved to a cursor, a
temporary table with the alias name ‘cursor’. This table is automatically opened in the next empty
workarea and a BROWSE is issued.

COMMANDS

163

Keywords Description
ALL Returns all the selected rows including duplicates. This is the default.
DISTINCT Only returns one copy of each set of duplicate rows selected. Duplicate

rows are those with matching values of each expression in the select list.
DISTINCTROW Only returns one copy of each set of duplicate rows selected. Duplicate

rows are those with matching values of the entire row, not just the columns
in the select list.

TOP <expN>
[PERCENT]

The <expN> defines the TOP number of rows to be returned from the
specified select statement. The optional PERCENT keyword causes the
<expN> to be used as the percentage of rows to be returned.

* Selects all columns from all tables listed in the FROM clause.
t_alias Provides a different name for the table. Other references to table name

throughout the query must refer to this alias name. The t_alias can be
enclosed in double-quotes if required.

column The name of the column you are selecting. The column can be enclosed in
double-quotes if required.

AS Used to specify an alternative name for a table or a column
c_alias Provides a different name for the column and column heading.
constant This specifies a constant expression. See expressions for more information.
function A 4GL function that may or may not include column names. See the

function references for more information.
aggregate An aggregate expression uses an aggregate function to summarize selected

data from a table.
FORCE The FORCE keyword specifies that the tables are joined in the order in

which they are listed in the SELECT statement.
database The name of the database to which the table belongs. Databases in Recital

are implemented as directories containing files that correspond to the tables
and associated files in the database. Operating System file protection can be
applied individually to the files for added security. The directory is a sub-
directory of the Recital data directory. The environment variable / symbol
DB_DATADIR points to the current Recital data directory and can be
queried using the GETENV() function. Files from other directories can be
added to the database using the ADD TABLE command or via the database
catalog and SET AUTOCATALOG functionality. The ‘!’ character must be
included between the database name and the table name.

table The table name from which to select data. When data is being selected from
encrypted tables, the table reference can include the three-part encryption
key, enclosed in angled brackets, appended to the table name. The SET
ENCRYPTION command allows a default encryption key to be defined. If
the key is not included in the <table>, this default key will be used. If the
default key is not the correct key for the table, an error will be given. If no
default key is active, a dialog box will be displayed in Recital Terminal
Developer to allow the user to enter the key.

view The name of a view defined with the CREATE VIEW statement
{OJ … OUTER JOIN
…}

Specifies the join type as left outer. This will return all the rows from the
left table and matching rows from the right or a null row if no match is
found.

{OJ … LEFT OUTER
JOIN …}

Specifies the join type as left outer. This will return all the rows from the
left table and matching rows from the right or a null row if no match is
found.

{OJ … RIGHT OUTER
JOIN …}

Specifies the join type as right outer. This will return all the rows from the
right table and the matching rows from the left or a null row if no match is
found.

COMMANDS

164

{OJ … FULL OUTER
JOIN …}

Specifies the join type as full outer. This will return all the rows from both
tables.

Keywords Description
table2 The name of the joined table in the query. When data is being selected from

encrypted tables, the table2 reference can include the three-part encryption
key, enclosed in angled brackets, appended to the table name. The SET
ENCRYPTION command allows a default encryption key to be defined. If
the key is not included in the <table2>, this default key will be used. If the
default key is not the correct key for the table, an error will be given. If no
default key is active, a dialog box will be displayed in Recital Terminal
Developer to allow the user to enter the key.

ON <exp> = <exp> The expression used to JOIN the two tables together.
INNER JOIN Specifies the join type as inner. An inner join names the linking criterion

used to find matches between the two tables. Only rows for which a match
is found in both tables are returned.

OUTER JOIN Specifies the join type as outer. An outer join takes two tables and displays
all the rows from one table and the matching rows from the other or a null
row if no matches are found.

LEFT [OUTER] JOIN Specifies the join type as left outer. This will return all the rows from the
left table and matching rows from the right or a null row if no match is
found.

RIGHT [OUTER] JOIN Specifies the join type as right outer. This will return all the rows from the
right table and the matching rows from the left or a null row if no match is
found.

CROSS JOIN Specifies the join type as cross join. This will return a Cartesian product: all
combination of rows.

FULL [OUTER] JOIN Specifies the join type as full outer. This will return all the rows from both
tables.

<nested select> An additional SELECT statement.
ON <table>.column =
<table2>.column

The expression used to JOIN the two tables together.

WHERE This restricts the rows selected to those for which the condition is TRUE. If
this clause is omitted than all rows are returned. The condition can be a
SELECT sub-query.

GROUP BY Groups the selected rows based on the value of an expression, the column
name or number for each row and returns a single row of summary
information for each group. The default, ASC, returns the data in ascending
order, specifying DESC returns the data in descending order.

HAVING Restricts the groups of rows returned to those groups for which the specified
condition is TRUE. If you omit this clause then all rows are returned.

ORDER BY Orders rows based on the value returned by an expression, a column name
or number. The default, ASC, returns the data in ascending order,
specifying DESC returns the data in descending order.

FOR UPDATE Locks the selected rows.
INTO <data variable>
[,…]

Specify data variables to receive the data retrieved by the select statement.
The select statement can only be a singleton select. The data variables will
be created if they do not exist and overwritten if they do.

INTO ARRAY
<array-name>

Specify an array to receive the data retrieved by the select statement. The
array is automatically created, so need not be pre-defined.

COMMANDS

165

Keywords Description
INTO CURSOR
<cursor-name>

Specify a cursor to receive the data retrieved by the select statement. This
saves the data into a temporary table in a workarea. The Recital/4GL
SELECT command can be used to select the workarea for processing with
Recital/4GL commands. The NOFILTER keyword is used for creating a
cursor that can be used in subsequent queries. The READWRITE keyword
is used to create a temporary modifiable cursor.

INTO DBF | TABLE
<table-name>

Specify a table to receive the data retrieved by the select statement. The
table’s database and a long name can optionally be specified using the
DATABASE and NAME clauses respectively.

SAVE AS <table-name> Specify a table name to be created and populated with the result of the select
statement.

SAVE AS XML <xml
filename> [FORMAT
<RECITAL | ADO>]]]

Specify an XML filename to be created and populated with the result of the
select statement. A Document Type Definition (DTD) file, used to validate
the XML file, will also be created if the XML format is set to RECITAL.
The default format for XML if not specified is Microsoft® ActiveX® Data
Objects (ADO). This default can also be set with the command SET
XMLFORMAT TO <RECITAL | ADO>.

TO FILE [DELIMITED] Saves the results to the specified text file. If the DELIMITED keyword is
included, the results are written out in delimited format.

TO PRINTER Sends the results to the currently defined printer. The optional PROMPT
keyword is used to display a print dialog before printing.

TO SCREEN Sends the results to the main screen or active window.
PREFERENCE The PREFERENCE clause is used to save BROWSE window preferences.
NOCONSOLE The NOCONSOLE keyword is used to prevent results sent to a file or

printer (TO FILE | PRINTER) also being displayed on the screen.
PLAIN The PLAIN keyword is used to disable the display of column headings.
NOWAIT The NOWAIT keyword is used to continue program execution immediately

after BROWSE window display instead of when the BROWSE window is
closed.

UNION [ALL] Combines the end result of the main SELECT statement with a secondary
<nested select> SELECT statement. The ALL keyword specifies that
duplicates should be retained.

Example
// Select all rows, including duplicates, from an encrypted table
EXEC SQL

SELECT ALL *
FROM enctab<key_1,key2,key_3>;

// Select “last_name” column from rows with a unique “last_name”
EXEC SQL

SELECT DISTINCT last_name
FROM customer;

// Select “last_name” column from unique rows
EXEC SQL

SELECT DISTINCTROW last_name
FROM customer;

COMMANDS

166

// Select first 10 rows
EXEC SQL

SELECT TOP 10 *
FROM accounts;

// Select first 50% of the rows
EXEC SQL

SELECT TOP 50 PERCENT *
FROM accounts;

// Crystal Reports / ODBC style JOINS: LEFT OUTER, RIGHT OUTER, FULL OUTER
EXEC SQL
SELECT customer.account_no, customer.last_name, accounts.ord_value

FROM
{OJ “customer” customer LEFT OUTER JOIN “accounts” accounts
ON customer.account_no = accounts.account_no};

EXEC SQL
SELECT customer.account_no, customer.last_name, accounts.ord_value

FROM
{OJ “customer” customer RIGHT OUTER JOIN “accounts” accounts
ON customer.account_no = accounts.account_no};

EXEC SQL
SELECT customer.account_no, customer.last_name, accounts.ord_value

FROM
{OJ “customer” customer FULL OUTER JOIN “accounts” accounts
ON customer.account_no = accounts.account_no};

// JOINS: INNER, LEFT OUTER, RIGHT OUTER, CROSS, FULL
EXEC SQL

SELECT customer.account_no, customer.last_name, accounts.ord_value
FROM customer
INNER JOIN accounts
ON customer.account_no = accounts.account_no;

EXEC SQL
SELECT customer.account_no, customer.last_name, accounts.ord_value

FROM customer
LEFT OUTER JOIN accounts
ON customer.account_no = accounts.account_no;

EXEC SQL
SELECT customer.account_no, customer.last_name, accounts.ord_value

FROM customer
RIGHT OUTER JOIN accounts
ON customer.account_no = accounts.account_no;

EXEC SQL
SELECT customer.account_no, customer.last_name, accounts.ord_value

FROM customer
CROSS JOIN accounts;

COMMANDS

167

EXEC SQL
SELECT customer.account_no, customer.last_name, accounts.ord_value

FROM customer
FULL OUTER JOIN accounts;

// JOIN with nested select
EXEC SQL

SELECT last_name, SUM(ord_value)
FROM customer INNER JOIN
(SELECT account_no, SUM(ord_value) AS ord_value
FROM accounts
GROUP BY account_no)
ON customer.account_no = accounts.account_no
GROUP BY last_name;

// Multiple JOINs
EXEC SQL

SELECT customer.account_no, customer.state,
state.descript, accounts.ord_value
FROM
customer RIGHT OUTER JOIN accounts
ON customer.account_no = accounts.account_no,
customer INNER JOIN state
ON customer.state = state.state
ORDER BY account_no;

// Select account number and order value details for Massachusetts customers
EXEC SQL

SELECT account_no, ord_value
FROM accounts
WHERE account_no in (SELECT account_no FROM customer WHERE state = ‘MA’)
ORDER BY account_no;

// Select all overdue accounts with 15% commission in sorted “last_name” order.
EXEC SQL

SELECT last_name, zip, balance, balance*1.15
FROM customer
WHERE balance > 0
ORDER BY last_name;

// Select total and average balance for all overdue accounts, grouped by “limit”
EXEC SQL

SELECT SUM(balance), AVG(balance)
FROM customer
WHERE balance > 0
GROUP BY limit;

// Select total and average balance for all overdue accounts, grouped by “limit” with column aliases
EXEC SQL

SELECT SUM(balance) AS Total, AVG(balance) AS Average
FROM customer
WHERE balance > 0
GROUP BY limit;

// Select total and average balance for all overdue accounts, grouped by “limit” with column aliases

COMMANDS

168

// For Massachusetts customers only
EXEC SQL

SELECT SUM(balance) AS Total, AVG(balance) AS Average
FROM customer
WHERE balance > 0
GROUP BY limit
HAVING state = “MA”;

// Save into an array
EXEC SQL

SELECT SUM(balance) AS Total, AVG(balance) AS Average
FROM customer
WHERE balance > 0
INTO ARRAY temp;

// Create a cursor
EXEC SQL

SELECT SUM(balance) AS Total, AVG(balance) AS Average
FROM customer
WHERE balance > 0
INTO CURSOR temp;

// Save as a table
EXEC SQL

SELECT SUM(balance) AS Total, AVG(balance) AS Average
FROM customer
WHERE balance > 0
INTO TABLE temp DATABASE mydbc;

//or

EXEC SQL

SELECT SUM(balance) AS Total, AVG(balance) AS Average
FROM customer
WHERE balance > 0
SAVE AS temp;

// Save in Microsoft® ActiveX® Data Objects XML format
// Any XML files created in the ADO format can be loaded
// with the Open method of the ADO Recordset object.
EXEC SQL

SELECT SUM(balance) AS Total, AVG(balance) AS Average
FROM customer
WHERE balance > 0
SAVE AS XML temp.xml FORMAT ADO;

// In Visual Basic the file can then be loaded:
// Set adoPrimaryRS = New Recordset
// adoPrimaryRS.Open "temp.xml"

COMMANDS

169

// Save in text file format
EXEC SQL

SELECT SUM(balance) AS Total, AVG(balance) AS Average
FROM customer
WHERE balance > 0
TO FILE temp.txt;

// Select all customer accounts that have an outstanding balance or are based in Massachusetts
EXEC SQL

SELECT account_no
FROM customer
WHERE state = ‘MA’
UNION SELECT account_no
FROM accounts
WHERE balance > 0
ORDER BY account_no;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

170

UPDATE

Class
SQL Applications

Purpose
Updates specified columns

Syntax
UPDATE [<database>!]<table>

[FROM XML <xml filename> | SET <column> = <expr> [,...]
[WHERE <condition> | CURRENT OF <cursor>]]

See Also
ALTER TABLE, CREATE TABLE, EXECUTE IMMEDIATE, PSEUDO COLUMNS, SELECT,
INSERT, SET TCACHE, SET XMLFORMAT, GETENV()

Description
The UPDATE statement updates columns in the specified <table>. To update data you must be the owner
of the table or have already been granted UPDATE privileges.

Keywords Description
database The name of the database to which the table belongs. Databases in

Recital are implemented as directories containing files that correspond
to the and associated files in the database. Operating System file
protection can be applied individually to the files for added security.
The directory is a sub-directory of the Recital data directory. The
environment variable / symbol DB_DATADIR points to the current
Recital data directory and can be queried using the GETENV()
function. Files from other directories can be added to the database
using the ADD TABLE command or via the database catalog and SET
AUTOCATALOG functionality. The ‘!’ character must be included
between the database name and the table name.

table The name of the table on which to perform the update. When data is
being updated in encrypted tables, the table reference can include the
three-part encryption key, enclosed in angled brackets, appended to the
table name. The SET ENCRYPTION command allows a default
encryption key to be defined. If the key is not included in the <table>,
this default key will be used. If the default key is not the correct key
for the table, an error will be given. If no default key is active, a dialog
box will be displayed in Recital Terminal Developer to allow the user
to enter the key.

FROM XML <xml filename> Specify an XML file to use as input for the UPDATE.
column The name of a column of the table or view that is to be updated. If you

omit a column from the table then the data will be unchanged.
expr The new value to be assigned to the corresponding column. Date

constants can be specified as valid dates in the current format (SET
DATE, SET CENTURY, SET MARK) or as a character string in the
format “DD-MMM-YYYY”, e.g. “01-Sep-2002”.

condition Restricts the rows updated to those for which the specified condition is
TRUE.

CURRENT OF Updates only the row most recently fetched by the cursor.

COMMANDS

171

Example
// Update all accounts that are now overdue by adding a 15% commission charge
EXEC SQL

UPDATE accounts
SET ord_value=ord_value*1.15, due_date = date()+30
WHERE paid_date < date();

// Declare the cursor to select records from the accounts table
EXEC SQL

DECLARE accounts CURSOR FOR
SELECT name, address, ord_value, balance
FROM accounts
WHERE ord_date < date();

// Open the cursor
EXEC SQL

OPEN accounts;

// Fetch records one at a time from the cursor and update them
EXEC SQL

FETCH accounts
INTO m_name, m_address, m_ord_value, m_balance;

DO WHILE sqlcode = 0
IF .not. empty(m_name) .and. m_balance <> 0

EXEC SQL
UPDATE accounts

SET ord_value = ord_value*1.15, due_date = date()+30
WHERE CURRENT OF accounts;

ENDIF
EXEC SQL

FETCH accounts INTO m_name, m_address, m_ord_value, m_balance;
ENDDO

// Close the cursor and free up any resources used for the cursor
EXEC SQL

CLOSE accounts;
EXEC SQL

DROP CURSOR accounts;

// Update an encrypted table
EXEC SQL

UPDATE encacc<key_1,key_2,key_3>
SET ord_value=ord_value*1.15, due_date = date()+30
WHERE paid_date < date();

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

COMMANDS

172

USE

Class
SQL Applications

Purpose
Sets the specified database as the default database for subsequent queries

Syntax
USE <database name>

See Also
ADD TABLE, ALTER INDEX, ALTER TABLE, CREATE TABLE, CREATE INDEX, CREATE VIEW,
DROP DATABASE, DROP INDEX, DROP TABLE, SET SQL, GETENV()

Description
The USE command sets the specified database as the default database for subsequent queries. The
database remains current until the end of the session or until another USE statement is issued. Tables from
other databases can still be accessed, but must be indicated by including the database name in the table
reference, database!table.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

SQL must be set to MySQL before using the USE command in this way.

Example
Recital/SQL> set sql to mysql
Recital/SQL> USE hr;
Recital/SQL> SELECT staff_no, lastname from staff;
Recital/SQL> USE accounts;
Recital/SQL> SELECT salesid from customer;
Recital/SQL> USE hr;
Recital/SQL> SELECT staff_no, lastname, customerno from staff, accounts!customer

where staff.staff_no = accounts!customer.salesid;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

DATABASE EVENTS

173

DATABASE EVENTS

Class
Databases

Purpose
Database events are triggered by certain database operations

See Also
ALTER TABLE, ADD TABLE, ALTER INDEX, BACKUP DATABASE, CLOSE DATABASES,
CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE TABLE, CREATE
INDEX, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
DATABASE, DROP INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES,
OPEN DATABASE, PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE
DATABASE, USE, SET AUTOCATALOG, SET EXCLUSIVE, ADATABASES(), DATABASE(),
DBUSED(), GETENV(), DB_MAXWKA

Description
Database events are triggered by certain database operations. They can have code associated with them
that is run automatically when the event occurs.

Event Description
DBC_CLOSE Occurs when a database closes
DBC_OPEN Occurs when a database is opened

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

Programs associated with database events should reside in the DB_DATADIR sub-directory for the
relevant database.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

DATABASE EVENTS

174

DBC_CLOSEDATA

Class
Databases

Purpose
Database event triggered by the closure of a database

Syntax
PROCEDURE dbc_CloseData(<expC>,<expL1>)
// Commands
ENDPROC | RETURN [<expL2>]

or

PROCEDURE dbc_CloseData
LPARAMETERS [<expC>,<expL1>]
// Commands
ENDPROC | RETURN [<expL2>]

See Also
ALTER TABLE, ADD TABLE, ALTER INDEX, BACKUP DATABASE, CLOSE DATABASES,
CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE TABLE, CREATE
INDEX, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
DATABASE, DROP INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES,
OPEN DATABASE, PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE
DATABASE, USE, SET AUTOCATALOG, SET EXCLUSIVE, ADATABASES(), DATABASE(),
DBUSED(), GETENV(), DB_MAXWKA, DATABASE EVENTS

Description
The DBC_CLOSEDATA database event is triggered by the closure of a database. The associated code is
run before the database is actually closed. Databases are closed using the CLOSE DATABASES
command.

Event Description
<expC> The database name
<expL1> Specifies whether the ALL keyword was included on the CLOSE

DATABASES, .T. or not, .F.
<expL2> If the dbc_closedata procedure returns .F., the database is not closed, if

.T., the close operation continues

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

Programs associated with database events should reside in the DB_DATADIR sub-directory for the
relevant database.

DATABASE EVENTS

175

Example
procedure dbc_closedata
lparameters cName, lAll
close procedures
return

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

DATABASE EVENTS

176

DBC_OPENDATA

Class
Databases

Purpose
Database events are triggered by certain database operations

Syntax
PROCEDURE dbc_OpenData(<expC>,<expL1>,<expL2>,<expL3>)
// Commands
ENDPROC | RETURN [<expL4>]

or

PROCEDURE dbc_OpenData
LPARAMETERS [<expC>,<expL>,<expL2>,<expL3>]
// Commands
ENDPROC | RETURN [<expL4>]

See Also
ALTER TABLE, ADD TABLE, ALTER INDEX, BACKUP DATABASE, CLOSE DATABASES,
CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE TABLE, CREATE
INDEX, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
DATABASE, DROP INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES,
OPEN DATABASE, PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE
DATABASE, USE, SET AUTOCATALOG, SET EXCLUSIVE, ADATABASES(), DATABASE(),
DBUSED(), GETENV(), DB_MAXWKA

Description
The DBC_OPENDATA database event is triggered when a database is opened. The associated code is run
before the database is actually opened. Databases are opened using the OPEN DATABASE <database-
name> command.

Event Description
<expC> The database name
<expL1> Specifies whether the database is being opened exclusively, .T. or shared,

.F.
<expL2> Specifies whether the NOPUDATE keyword was included on the OPEN

DATABASE command, .T. or not, .F.
<expL3> Specifies whether the VALIDATE keyword was included on the OPEN

DATABASE command, .T. or not, .F.
<expL4> If the dbc_opendata procedure returns .F., the database is not opened, if

.T., the open operation continues

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

DATABASE EVENTS

177

Programs associated with database events should reside in the DB_DATADIR sub-directory for the
relevant database.

Example
procedure dbc_opendata
lparameters cName, lExcl, lRo, lValidate
set procedure to proclib1, proclib2 additive
return

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

AGGREGATE FUNCTIONS

178

AGGREGATE FUNCTIONS

Class
SQL Applications

Purpose
Aggregate Functions

See Also
SELECT, AVG(), COUNT(), MAX(), MIN(), SUM()

Description
Aggregate Functions, also known as Group Functions, operate on a group of rows rather than individual
rows. They return a single result row.

Aggregate Function Description
AVG() The AVG() Aggregate Function returns the average value for the specified

numeric column or expression.
COUNT() The COUNT() Aggregate Function returns a row count.
MAX() The MAX() Aggregate Function returns the maximum value for the

specified numeric or date column or expression.
MIN() The MIN() Aggregate Function returns the minimum value for the

specified numeric or date column or expression.
SUM() The SUM() Aggregate Function returns the sum of the specified numeric

column or expression.

AGGREGATE FUNCTIONS

179

AVG()

Class
SQL Applications

Purpose
Returns an average value in a SELECT statement

Syntax
AVG(<expN>)

See Also
SELECT, COUNT(), MAX(), MIN(), SUM(), AGGREGATES

Description
Returns the average value of <expN>.

Example
SELECT AVG(sal) Average FROM accounts;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

AGGREGATE FUNCTIONS

180

COUNT()

Class
SQL Applications

Purpose
Returns the number of rows in a SELECT statement query

Syntax
COUNT(* | [DISTINCT] <expr>)

See Also
SELECT, AVG(), MAX(), MIN(), SUM(), AGGREGATES

Description
Returns the number of rows in the query. If you specify DISTINCT, then only the rows which are unique
in <expr> are counted. Specifying <expr> on its own returns the number of rows from the query for which
<expr> is not NULL. If you specify the asterisk (*), then all rows are counted.

Example
// Get a count of all rows in the accounts table.
SELECT COUNT(*) Total FROM accounts;

// Get a count of jobs
SELECT COUNT(jobs) Jobs FROM employee;

// Get a count of distinct rows for jobs
SELECT COUNT(DISTINCT jobs) Jobs FROM employee;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

AGGREGATE FUNCTIONS

181

MAX()

Class
SQL Applications

Purpose
Returns a maximum value in a SELECT statement

Syntax
MAX(<expr>)

See Also
SELECT, AVG(), COUNT(), MIN(), SUM(), AGGREGATES

Description
Returns the maximum value of <expr>. The <expr> can be a numeric or date expression.

Example
SELECT MAX(sal) Maximum FROM accounts;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

AGGREGATE FUNCTIONS

182

MIN()

Class
SQL Applications

Purpose
Returns a minimum value in a SELECT statement

Syntax
MIN(<expr>)

See Also
SELECT, AVG(), COUNT(), MAX(), SUM(), AGGREGATES

Description
Returns the minimum value of <expr>. The <expr> can be a numeric or date expression.

Example
SELECT MIN(sal) Minimum FROM accounts;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

AGGREGATE FUNCTIONS

183

SUM()

Class
SQL Applications

Purpose
Returns a summed value in a SELECT statement

Syntax
SUM(<expN>)

See Also
SELECT, AVG(), COUNT(), MAX(), MIN(), SUM(), AGGREGATES

Description
Returns the sum of values of <expN>.

Example
SELECT SUM(sal) Total FROM accounts;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

184

REMOTE DATA CONNECTIVITY FUNCTIONS

Class
SQL Applications

Purpose
Remote data connectivity functions

See Also
CREATE CONNECTION, INSERT, SELECT, UPDATE

Description
The Visual FoxPro compatible remote data connectivity functions are used to handle gateway connections
to third party data sources. The following functions are available:

Function Description
SQLCANCEL() Request that an executing SQL statement be cancelled
SQLCOLUMNS() Store column information to a cursor
SQLCOMMIT() Commit a transaction
SQLCONNECT() Connect to a data source
SQLDISCONNECT() Disconnect from a data source
SQLEXEC() Send an SQL statement to a data source
SQLGETPROP() Query property settings for a connection or the environment
SQLMORERESULTS() Check if more results sets are available and if so, copy next results set to a

cursor
SQLPREPARE() Prepare an SQL statement that will be executed by the SQLEXEC()

function
SQLROLLBACK() Rollback a transaction
SQLSETPROP() Set property settings for a connection
SQLSTRINGCONNECT() Connect to a data source using a gateway connection string
SQLTABLES() Store data source table names to a table

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

185

SQLCANCEL()

Class
SQL Applications

Purpose
Request that an executing SQL statement be cancelled

Syntax
SQLCANCEL(<nStatementHandle>)

See Also
CREATE CONNECTION, SQLCOLUMNS(), SQLCOMMIT(), SQLCONNECT(),
SQLDISCONNECT(), SQLEXEC(), SQLGETPROP(), SQLMORERESULTS(), SQLPREPARE(),
SQLROLLBACK(), SQLSETPROP(), SQLSTRINGCONNECT(), SQLTABLES()

Description
The SQLCANCEL() function is used to request that an executing SQL statement be cancelled. It can be
used to cancel any of the following functions when they are running in asynchronous mode:

• SQLCOLUMNS()
• SQLEXEC()
• SQLMORERESULTS()
• SQLTABLES()

The SQLCANCEL() function operates on the data source specified by <nStatementHandle>.

Keywords Description
nStatementHandle The workarea in which the gateway data source is open

Return values:

Return Value Description
1 SQL statement was cancelled successfully
-1 Connection error
-2 Environment error

The SQLCANCEL() function is included for compatibility only. Recital gateway functions do not operate
in asynchronous mode.

Example
nStatHand=SQLSTRINGCONNECT(“rec@rec1:user1/pass1/usr/recital/uas/data/southwind.tcpip”,.T.)
if nStatHand < 1
 dialog box [Could not connect]
else
 SQLSETPROP(nStatHand, “Asynchronous”, .T.)
 SQLEXEC(nStatHand, “SELECT * from example”)
 SQLCANCEL(nStathand)
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

186

REMOTE DATA CONNECTIVITY FUNCTIONS

187

SQLCOLUMNS()

Class
SQL Applications

Purpose
Store column information to a cursor

Syntax
SQLCOLUMNS(<nStatementHandle>, <cTableName> [, “FOXPRO” | “NATIVE”] [, <cCursorName>])

See Also
CREATE CONNECTION, SQLCANCEL(), SQLCOMMIT(), SQLCONNECT(), SQLDISCONNECT(),
SQLEXEC(), SQLGETPROP(), SQLMORERESULTS(), SQLPREPARE(), SQLROLLBACK(),
SQLSETPROP(), SQLSTRINGCONNECT(), SQLTABLES()

Description
The SQLCOLUMNS() function is used to store column information for a specified data source table to a
cursor.

The SQLCOLUMNS() function operates on the data source specified by <nStatementHandle>.

Keywords Description
nStatementHandle The workarea in which the gateway data source is open
cTableName The table from which the column information should be returned
“FOXPRO” | “NATIVE” Used to specify the format for the column information. “FOXPRO” is the

default. “NATIVE” uses the data source format. The cursor column
information is shown in the table below. “NATIVE” many include additional
columns.

cCursorName The name of the cursor to use. If cCursorName is not specified, the default
name SQLRESULT is used.

“FOXPRO” Cursor Columns:

Column Description
Field_name Column name
Field_type Column data type
Field_len Column length
Field_dec Number of decimal places

“NATIVE” Cursor Columns:

Column Description
Table_qualifier Table qualifier id
Table_owner Table owner id
Table_name Table name
Table_type Table type
Column_name Column identifier
Data_type Column data type
Type_name Column data type name
Precision Column precision
Length Data transfer size

REMOTE DATA CONNECTIVITY FUNCTIONS

188

Scale Column scale
Radix Base for Numeric type
Nullable Null value support
Remarks Table description

Return values:

Return Value Description
.T. Format is “NATIVE” and cTableName does not exist
.F. Format is “FOXPRO” and cTableName does not exist
1 The table was created successfully
0 SQLCOLUMNS() still executing
-1 Connection error
-2 Environment error

Example
nStatHand=SQLSTRINGCONNECT(“mysql@linux1:user1/pass1-database1.tcpip”,.T.)
if nStatHand < 1
 dialog box [Could not connect]
else
 nColEnd = SQLCOLUMNS(nStatHand, “accounts”, “NATIVE”, “tabinfo”)
 if nColEnd = 1
 select tabinfo
 browse
 else
 dialog box [Table of Table Information could not be created]
 endif
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

189

SQLCOMMIT()

Class
SQL Applications

Purpose
Commit a transaction

Syntax
SQLCOMMIT(<nStatementHandle>)

See Also
CREATE CONNECTION, SQLCANCEL(), SQLCOLUMNS(), SQLCONNECT(), SQLDISCONNECT(),
SQLEXEC(), SQLGETPROP(), SQLMORERESULTS(), SQLPREPARE(), SQLROLLBACK(),
SQLSETPROP(), SQLSTRINGCONNECT(), SQLTABLES()

Description
The SQLCOMMIT() function is used to commit a transaction. The SQLCOMMIT() function is only
required when Manual Transactions are in effect. The Transactions setting, set using SQLSETPROP(), can
be either Automatic (1) or Manual (2). Manual Transactions can be can be rolled back using the
SQLROLLBACK() function.

The SQLCOMMIT() function operates on the data source specified by <nStatementHandle>.

Keywords Description
nStatementHandle The workarea in which the gateway data source is open

Return values:

Return Value Description
1 SQL statement was committed successfully
-1 Error occurred

REMOTE DATA CONNECTIVITY FUNCTIONS

190

Example
nStatHand=SQLSTRINGCONNECT(“rec@rec1:user1/pass1/usr/recital/uas/data/southwind.tcpip”,.T.)
if nStatHand < 1

messagebox(“Cannot make connection”, 16, “SQL Connect Error”)
else

messagebox(“Connection made”, 48, “SQL Connect Message”)
nSetEnd = SQLSETPROP(nStatHand,“Transactions”,2)
if nSetEnd = 1

dialog box [Manual Transactions enabled]
else

dialog message [Unable to enable Manual Transactions. Continue?]
if lastkey() <> 89

SQLDISCONNECT(nStatHand)
return

endif
endif
nRET=SQLEXEC(nStatHand,“INSERT INTO example (ACCOUNT_NO, TITLE, LAST_NAME,

FIRST_NAME, INITIAL, STREET, CITY, STATE, ZIP, LIMIT, START_DATE) VALUES
(‘00200’,‘Mr’,‘Doe’,‘John’,‘L’,‘1 High Street’,‘Beverly’,‘MA’,‘01916’, 12000, {05/12/2003})”)

if SQLGETPROP(nStatHand, “Transactions”) = 2
dialog message [Commit Insert?]
if lastkey() = 89

dialog box “SQLCOMMIT() returned ” + etos(SQLCOMMIT(nStatHand))
else

dialog box “SQLROLLBACK() returned ” + etos(SQLROLLBACK(nStatHand))
endif

endif
nSetEnd = SQLSETPROP(nStatHand, “Transactions”,1)
if nSetEnd = 1

dialog box [Automatic Transactions enabled]
else

dialog message [Unable to enable Automatic Transactions.]
endif

endif
SQLDISCONNECT(nStatHand)

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

191

SQLCONNECT()

Class
SQL Applications

Purpose
Connect to a data source

Syntax
SQLCONNECT([<nStatementHandle>])
SQLCONNECT([<cConnectionName> | <cDataSourceName> [, <cUserID> [, <cPassword>]]

[, <lShared]])
SQLCONNECT([<cServerDataSource>])

See Also
CREATE CONNECTION, SQLCANCEL(), SQLCOLUMNS(), SQLCOMMIT(), SQLDISCONNECT(),
SQLEXEC(), SQLGETPROP(), SQLMORERESULTS(), SQLPREPARE(), SQLROLLBACK(),
SQLSETPROP(), SQLSTRINGCONNECT(), SQLTABLES()

Description
The SQLCONNECT() function is used to connect to a data source and return a statement handle for use by
other SQL functions.

If SQLCONNECT() is called without specifying any data source information, the Select a Gateway dialog
is displayed allowing an existing gateway definition file (.gtw) to be selected. Gateway files can be created
in Recital Terminal Developer using the CREATE GATEWAY | MODIFY GATEWAY tool.

Keywords Description
nStatementHandle The workarea in which a gateway data source is open and to which a new

connection should be made.

Or

Keywords Description
cConnectionName Existing gateway (.gtw) file
cDataSourceName ODBC data source name (ODBC supported platforms only)
cUserID Data source login user id
cPassword Data source login password
lShared False (.F.) Connection created is not shared (default)

True (.T.) Connection created is shared

Or

Keywords Description
cServerDataSource ODBC, OLEDB or JDBC server side data source in the format:

odbc:odbc_data_source_name_on_server
oledb:oledb_connection_string_on_server
jdbc:dbc_driver_path_on_server;jdbc:Recital:args

REMOTE DATA CONNECTIVITY FUNCTIONS

192

Return values:

Return Value Description
> 0 Statement handle to connection
-2 Connection creation error

Example
// SQLCONNECT() using the ‘Select a Gateway’ dialog
nStatHand=SQLCONNECT()

// SQLCONNECT(<nStatementHandle>) to an active gateway opened with SQLSTRINGCONNECT()
nStatHand=SQLSTRINGCONNECT(“mysql@linux1:user1/pass1-database1.tcpip”,.T.)
if nStatHand < 1
 messagebox([Could not connect])
else
 messagebox([Connected in workarea]+str(nStatHand,3))
 nStatHand2=SQLCONNECT(nStatHand)
 if nStatHand2 < 1
 messagebox([Could not connect])
 else
 messagebox([Connected in workarea]+str(nStatHand2,3))
 endif
endif

// SQLCONNECT() to an existing Gateway definition file
nStatHand = SQLCONNECT(“gateway1.gtw”,.T.)

// SQLCONNECT() to an ODBC data source
nStatHand = SQLCONNECT(“SouthWind”, “recital”, “recital”, .T.)

//SQLCONNECT() alternative syntax to an ODBC data source
nStatHand = SQLCONNECT(“odbc:southwind”)

//SQLCONNECT() to an OLEDB data source
nStatHand = SQLCONNECT (“oledb:Provider=vfpoledb.1;” + ;
“Data Source=C:\Data;Collating Sequence=general”)

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

193

SQLDISCONNECT()

Class
SQL Applications

Purpose
Disconnect from a data source

Syntax
SQLDISCONNECT(<nStatementHandle>)

See Also
CREATE CONNECTION, SQLCANCEL(), SQLCOLUMNS(), SQLCOMMIT(), SQLCONNECT(),
SQLEXEC(), SQLGETPROP(), SQLMORERESULTS(), SQLPREPARE(), SQLROLLBACK(),
SQLSETPROP(), SQLSTRINGCONNECT(), SQLTABLES()

Description
The SQLDISCONNECT() function is used to disconnect from a data source.

The SQLDISCONNECT() function operates on the data source specified by <nStatementHandle>.

Keywords Description
nStatementHandle The workarea in which the gateway data source is open. Specifying 0

causes all active connections to be disconnected.

Return values:

Return Value Description
1 Disconnection completed successfully
-1 Connection error
-2 Environment error

Example
nStatHand=SQLSTRINGCONNECT(“mysql@linux1:user1/pass1-database1.tcpip”,.T.)
if nStatHand < 1
 dialog box [Could not connect]
else
 dialog box [Connected]
 SQLDISCONNECT(nStatHand)
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

194

SQLEXEC()

Class
SQL Applications

Purpose
Send an SQL statement to a data source

Syntax
SQLEXEC(<nStatementHandle>, [<cSQLCommand>, [<cCursorName>]])

See Also
CREATE CONNECTION, SQLCANCEL(), SQLCOLUMNS(), SQLCOMMIT(), SQLCONNECT(),
SQLDISCONNECT(), SQLGETPROP(), SQLMORERESULTS(), SQLPREPARE(), SQLROLLBACK(),
SQLSETPROP(), SQLSTRINGCONNECT(), SQLTABLES()

Description
The SQLEXEC() function is used to send an SQL statement to the specified data source.

The SQLEXEC() function operates on the data source specified by <nStatementHandle>.

Keywords Description
nStatementHandle The workarea in which the gateway data source is open.
cSQLCommand The SQL statement to be passed to the data source. The

cSQLCommand can be omitted if the SQL statement has already been
set up using SQLPREPARE().

cCursorName The name of the temporary table to use. If cCursorName is not
specified, the default name SQLRESULT is used. If the SQLEXEC()
is running a pre-prepared statement, the cCursorName is taken from
the SQLPREPARE() setting.

Return values:

Return Value Description
<n> Number of results sets if more than 1
0 SQLEXEC() is still executing
1 SQLEXEC() finished executing
-1 Connection error

REMOTE DATA CONNECTIVITY FUNCTIONS

195

Example
nStatHand=SQLSTRINGCONNECT(“rec@rec1:user1/pass1/usr/recital/uas/data/southwind.tcpip”,.T.)
if nStatHand < 1
 messagebox(‘Cannot make connection’, 16, ‘SQL Connect Error’)
else
 messagebox(‘Connection made’, 48, ‘SQL Connect Message’)
 store “00010” to myVar
 SQLEXEC(nStatHand, “SELECT * FROM example WHERE account_no = ?myVar”, “restab”)
 browse
 SQLDISCONNECT(nStatHand)
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

196

SQLGETPROP()

Class
SQL Applications

Purpose
Query property settings for a connection or the environment

Syntax
SQLGETPROP(<nStatementHandle>, <cSetting>)

See Also
CREATE CONNECTION, SQLCANCEL(), SQLCOLUMNS(), SQLCOMMIT(), SQLCONNECT(),
SQLDISCONNECT(), SQLEXEC(), SQLMORERESULTS(), SQLPREPARE(), SQLROLLBACK(),
SQLSETPROP(), SQLSTRINGCONNECT(), SQLTABLES()

Description
The SQLGETPROP() function is used to query the property settings for a specified connection or for the
current environment.

The SQLGETPROP() function operates on the data source specified by <nStatementHandle>.

Keywords Description
nStatementHandle The workarea in which the gateway data source is open. Specifying 0

causes the SQLGETPROP() function to return the property setting for
the environment.

cSetting The property setting to query. For available property settings, please
see SQLSETPROP().

Return values:

Return Value Description
<expression> The queried property setting
-1 Connection error
-2 Environment error

Example
nStatHand = SQLSTRINGCONNECT(“mysql@linux1:user1/pass1-database1.tcpip”,.T.)
if nStatHand < 1
 dialog box [Could not connect]
else
 eGetProp = SQLGETPROP(nStatHand,“ConnectString”)
 if type(“eGetProp”) = “N” and eGetProp < 0
 dialog box [Error Occurred]
 else
 dialog box etos(eGetProp)
 endif
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

197

SQLMORERESULTS()

Class
SQL Applications

Purpose
Check if more results sets are available and if so, copy next results set to a cursor

Syntax
SQLMORERESULTS(<nStatementHandle>)

See Also
CREATE CONNECTION, SQLCANCEL(), SQLCOLUMNS(), SQLCOMMIT(), SQLCONNECT(),
SQLDISCONNECT(), SQLEXEC(), SQLGETPROP(), SQLPREPARE(), SQLROLLBACK(),
SQLSETPROP(), SQLSTRINGCONNECT(), SQLTABLES()

Description
The SQLMORERESULTS() function is used in non-BatchMode to check whether more results sets are
available and if so, to copy the next results set to a cursor. BatchMode is set using the SQLSETPROP()
function. BatchMode is always True and cannot be used to return results sets individually. It is included
for compatibility reasons only.

The SQLMORERESULTS() function operates on the data source specified by <nStatementHandle>.

Keywords Description
nStatementHandle The workarea in which the gateway data source is open

Valid Return values:

Return Value Description
2 No more data found
1 SQL statement has finished executing
0 SQL statement is still executing
-1 Connection error
-2 Environment error

SQLMORERESULTS() always returns 2.

Example
nStatHand=SQLSTRINGCONNECT(“rec@rec1:user1/pass1/usr/recital/uas/data/southwind.tcpip”,.T.)
if nStatHand < 1
 messagebox(‘Cannot make connection’, 16, ‘SQL Connect Error’)
else
 messagebox(‘Connection made’, 48, ‘SQL Connect Message’)
 store “00010” to myVar
 SQLEXEC(nStatHand, “SELECT * FROM example WHERE account_no = ?myVar”, “restab”)
 SQLMORERESULTS(nStatHand)
 browse
 SQLDISCONNECT(nStatHand)
endif

REMOTE DATA CONNECTIVITY FUNCTIONS

198

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

199

SQLPREPARE()

Class
SQL Applications

Purpose
Prepare an SQL statement that will be executed by the SQLEXEC() function

Syntax
SQLPREPARE(<nStatementHandle>, <cSQLCommand>, [<cCursorName>])

See Also
CREATE CONNECTION, SQLCANCEL(), SQLCOLUMNS(), SQLCOMMIT(), SQLCONNECT(),
SQLDISCONNECT(), SQLEXEC(), SQLGETPROP(), SQLMORERESULTS(), SQLROLLBACK(),
SQLSETPROP(), SQLSTRINGCONNECT(), SQLTABLES()

Description
The SQLPREPARE() function is used to prepare an SQL statement which will subsequently be executed
by the SQLEXEC() function on the specified data source.

The SQLPREPARE() function operates on the data source specified by <nStatementHandle>.

Keywords Description
nStatementHandle The workarea in which the gateway data source is open.
cSQLCommand The SQL statement to be passed to the data source.
cCursorName The name of the cursor to use. If cCursorName is not specified, the

default name SQLRESULT is used.

Return values:

Return Value Description
1 SQLPREPARE() successful
-1 Connection error

Example
nStatHand=SQLSTRINGCONNECT(“rec@rec1:user1/pass1/usr/recital/uas/data/southwind.tcpip”,.T.)
if nStatHand < 1
 messagebox(‘Cannot make connection’, 16, ‘SQL Connect Error’)
else
 messagebox(‘Connection made’, 48, ‘SQL Connect Message’)
 store “00010” to myVar
 SQLPREPARE(nStatHand, “SELECT * FROM example WHERE account_no = ?myVar”, “restab”)
 SQLEXEC(nStatHand)
 browse
 SQLDISCONNECT(nStatHand)
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

200

SQLROLLBACK()

Class
SQL Applications

Purpose
Rollback a transaction

Syntax
SQLROLLBACK(<nStatementHandle>)

See Also
CREATE CONNECTION, SQLCANCEL(), SQLCOLUMNS(), SQLCOMMIT(), SQLCONNECT(),
SQLDISCONNECT(), SQLEXEC(), SQLGETPROP(), SQLMORERESULTS(), SQLPREPARE(),
SQLSETPROP(), SQLSTRINGCONNECT(), SQLTABLES()

Description
The SQLROLLBACK() function is used to roll back a transaction. The SQLROLLBACK() function is
only required when Manual Transactions are in effect. The Transactions setting, set using
SQLSETPROP(), can be either Automatic (1) or Manual (2). Manual Transactions can be can be
committed using the SQLCOMMIT() function.

The SQLROLLBACK() function operates on the data source specified by <nStatementHandle>.

Keywords Description
nStatementHandle The workarea in which the gateway data source is open

Return values:

Return Value Description
1 SQL statement was rolled back successfully
-1 Error occurred

REMOTE DATA CONNECTIVITY FUNCTIONS

201

Example
nStatHand=SQLSTRINGCONNECT(“rec@rec1:user1/pass1/usr/recital/uas/data/southwind.tcpip”,.T.)
if nStatHand < 1

messagebox(“Cannot make connection”, 16, “SQL Connect Error”)
else

messagebox(“Connection made”, 48, “SQL Connect Message”)
nSetEnd = SQLSETPROP(nStatHand,“Transactions”,2)
if nSetEnd = 1

dialog box [Manual Transactions enabled]
else

dialog message [Unable to enable Manual Transactions. Continue?]
if lastkey() <> 89

SQLDISCONNECT(nStatHand)
return

endif
endif
nRET=SQLEXEC(nStatHand,“INSERT INTO example (ACCOUNT_NO, TITLE, LAST_NAME,

FIRST_NAME, INITIAL, STREET, CITY, STATE, ZIP, LIMIT, START_DATE) VALUES
(‘00200’,‘Mr’,‘Doe’,‘John’,‘L’,‘1 High Street’,‘Beverly’,‘MA’,‘01916’, 12000, {05/12/2003})”)

if SQLGETPROP(nStatHand, “Transactions”) = 2
dialog message [Commit Insert?]
if lastkey() = 89

dialog box “SQLCOMMIT() returned ” + etos(SQLCOMMIT(nStatHand))
else

dialog box “SQLROLLBACK() returned ” + etos(SQLROLLBACK(nStatHand))
endif

endif
nSetEnd = SQLSETPROP(nStatHand, “Transactions”,1)
if nSetEnd = 1

dialog box [Automatic Transactions enabled]
else

dialog message [Unable to enable Automatic Transactions.]
endif

endif
SQLDISCONNECT(nStatHand)

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

202

SQLSETPROP()

Class
SQL Applications

Purpose
Set property settings for a connection

Syntax
SQLSETPROP(<nStatementHandle>, <cSetting> [, <eExpression>])

See Also
CREATE CONNECTION, SQLCANCEL(), SQLCOLUMNS(), SQLCOMMIT(), SQLCONNECT(),
SQLDISCONNECT(), SQLEXEC(), SQLGETPROP(), SQLMORERESULTS(), SQLPREPARE(),
SQLROLLBACK(), SQLSTRINGCONNECT(), SQLTABLES()

Description
The SQLSETPROP() function is used to set the property settings for a specified connection.

The SQLSETPROP() function operates on the gateway data source specified by <nStatementHandle>.

Keywords Description
nStatementHandle The workarea in which the gateway data source is open
cSetting The property setting to set. Please see table below for available property settings
eExpression The value to be set. If this optional parameter is not specified, the property is set to

its default value. Please see table below for available property settings values

Property Settings:

Setting Default Read-only Description
Asynchronous False (.F.) No Determines whether results sets are returned

synchronously (.F.) or asynchronously (.T.)
BatchMode True (.T.) No Determines whether results sets are returned all

at once (.T.) or one at a time using
SQLMORERESULTS() (.F.)

ConnectBusy Yes .T. = Shared connection is busy
.F. = Shared connection is not busy

ConnectString Yes Login connection string
ConnectTimeOut 15 No Determines the time to wait before generating a

connection time-out error. (0 – 600 seconds)
DataSource No Data source name as specified in ODBC.INI
DispLogin 1 No 1 = The Login dialog box is displayed if any

required information is missing
2 = The Login dialog box is always displayed
3 = The Login dialog box is never displayed
and an error is generated if any required
information is missing

DispWarnings False (.F.) No .T. = Error messages are displayed
.F. = Error messages are not displayed

IdleTimeout 0 (Wait indefinitely) No Determines the time to wait before terminating
an idle connection (seconds)

ODBChdbc Yes Internal ODBC connection handle

REMOTE DATA CONNECTIVITY FUNCTIONS

203

ODBChstmt Yes Internal ODBC connection handle
PacketSize 4K No Determines the network packet size used
Password Yes Login connection password
QueryTimeOut 0 (Wait indefinitely) No Determines the time to wait before generating a

time-out error. (0 – 600 seconds)
Shared Yes .T. = Connection is shared

.F. = Connection is not shared
Transactions 1 No 1 = Automatic transaction handling

2 = Manual transaction handling using
SQLCOMMIT() and SQLROLLBACK()

UserId Yes Login connection user id
WaitTime 100 milliseconds No Determines the time to wait before checking

that an SQL statement has completed

Return values:

Return Value Description
1 Property setting completed successfully
-1 Connection error
-2 Environment error

Example
nStatHand = SQLSTRINGCONNECT(“mysql@linux1:user1/pass1-database1.tcpip”,.T.)
if nStatHand < 1
 dialog box [Could not connect]
else
 nSetEnd = SQLSETPROP(nStatHand,“Transactions”,2)
 if nSetEnd = 1
 dialog box [Manual Transactions Enabled]
 else
 dialog box [Unable to enable Manual Transactions]
 endif
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

204

SQLSTRINGCONNECT()

Class
SQL Applications

Purpose
Connect to a data source using a gateway connection string

Syntax
SQLSTRINGCONNECT([<lShared>] | [<cConnectString> [, <lShared>]])

See Also
CREATE CONNECTION, SQLCANCEL(), SQLCOLUMNS(), SQLCOMMIT(), SQLCONNECT(),
SQLDISCONNECT(), SQLEXEC(), SQLGETPROP(), SQLMORERESULTS(), SQLPREPARE(),
SQLROLLBACK(), SQLSETPROP(), SQLTABLES()

Description
The SQLSTRINGCONNECT() function is used to connect to a data source using a gateway connection
string and return a statement handle for use by other SQL functions.

Keywords Description
lShared False (.F.) Connection created is not shared (default)

True (.T.) Connection created is shared
cConnectString The data source gateway connection string. The cConnectString gateway connection

string format is: server@machinename:username/password-database.protocol. The
shortened driver:datasource format can also be used for ODBC, OLEDB or JDBC
data sources on the server.
If cConnectString is not specified, the ‘Select a Gateway’ dialog is displayed
allowing an existing gateway definition file (.gtw) to be selected. Gateway files can
be created in Recital Terminal Developer using the CREATE GATEWAY |
MODIFY GATEWAY tool or via the CREATE CONNECTION command.

Gateway connection string format for cConnectString:

Parameter Description
Server Database server name or abbreviation, e.g. mys or mysql.
Nodename IP Address or hostname of the machine on which the database resides.
Username Username to log in to the external database.
Password Password for username above.
Database Database to connect to.
Protocol The network protocol. TCP/IP is assumed.
Driver:DataSource ODBC, OLEDB or JDBC server side data source in the format:

odbc:odbc_data_source_name_on_server
oledb:oledb_connection_string_on_server
jdbc:dbc_driver_path_on_server;jdbc:Recital:args

Return values:

Return Value Description
> 0 The workarea in which the gateway data source has been opened
-1 Connection creation error

REMOTE DATA CONNECTIVITY FUNCTIONS

205

Example
// When cConnectString is omitted, ‘Select a Gateway’ dialog is displayed
// Specify connection should be shared
nStatHand = SQLSTRINGCONNECT(.T.)

// Including cConnectString makes the connection
// Store the return value to use as the nStatementHandle for subsequent function calls
// Specify connection should be shared
nStatHand = SQLSTRINGCONNECT(“mysql@linux1:user1/pass1-database1.tcpip”,.T.)

// OLEDB DataSource
nStatHand = SQLSTRINGCONNECT (“oledb:Provider=vfpoledb.1;” +;
“Data Source=C:\Data\;Collating Sequence=general”,.T.)

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

REMOTE DATA CONNECTIVITY FUNCTIONS

206

SQLTABLES()

Class
SQL Applications

Purpose
Store data source table names to a table

Syntax
SQLTABLES(<nStatementHandle>[, <cTableTypes>] [, <cCursorName>])

See Also
CREATE CONNECTION, SQLCANCEL(), SQLCOLUMNS(), SQLCOMMIT(), SQLCONNECT(),
SQLDISCONNECT(), SQLEXEC(), SQLGETPROP(), SQLMORERESULTS(), SQLPREPARE(),
SQLROLLBACK(), SQLSETPROP(), SQLSTRINGCONNECT()

Description
The SQLTABLES() function is used to store table name information for a specified connection to a table.

The SQLTABLES() function operates on the data source specified by <nStatementHandle>.

Keywords Description
nStatementHandle The workarea in which the gateway data source is open
cTableType The table type or types to include. ‘TABLE’, ‘VIEW’ and ‘SYSTEM_TABLE’

are all valid table types. If cTableType is omitted or empty, all types of table are
included

cCursorName The name of the table to create. If cCursorName is not specified, the default
name SQLRESULT is used. The table column information is shown in the table
below

cCursorName Table Columns:

Column Description
TABLE_QUALIFIER Table qualifier id
TABLE_OWNER Table owner id
TABLE_NAME Table name
TABLE_TYPE Table type
REMARKS Table description

Return values:

Return Value Description
1 The cursor was created successfully
0 SQLTABLES() still executing
-1 Connection error
-2 Environment error

REMOTE DATA CONNECTIVITY FUNCTIONS

207

Example
nStatHand=SQLSTRINGCONNECT(“mysql@linux1:user1/pass1-database1.tcpip”,.T.)
if nStatHand < 1
 dialog box [Could not connect]
else
 // Store names for all table types to default results table
 nTabEnd = SQLTABLES(nStatHand)
 if nTabEnd = 1
 select sqlresult
 browse
 endif
endif

nStatHand= SQLSTRINGCONNECT(“mysql@linux1:user1/pass1-database1.tcpip”,.T.)
if nStatHand < 1
 dialog box [Could not connect]
else
 // Store names for specified table types to specified results table
 nTabEnd = SQLTABLES(nStatHand, “‘SYSTEM TABLE’,‘VIEW’”, “myresults”)
 if nTabEnd = 1
 select myresults
 browse
 endif
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

208

ADATABASES()

Class
SQL Applications

Purpose
Function to place the names of all open databases and their paths into a variable array.

Syntax
ADATABASES(<array>)

See Also
CLOSE DATABASES, DISPLAY STATUS, LIST STATUS, OPEN DATABASE, USE, ADIR(),
ALIAS(), DBF(), DBUSED(), GETENV(), USED(), SET SQL

Description
The ADATABASES() function is used to place the names of all open databases and their paths into a
variable array. The name if the array is specified in <array>. If the array does not exist, it is created. If the
array is smaller or larger than required, it is resized. The array is two-dimensional with two columns. The
first column contains the name of an open database, the second the path for that database.

The ADATABASES() function returns the number of database names added to the array. If no databases
are open or the array cannot be created, the ADATABASES() function returns 0.

NOTE: The ADATABASES() function operates on databases, not tables.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

Databases can be opened using the SQL USE command, with SQL set to MYSQL, or using the SQL
OPEN DATABASE command.

Example
VFP/SQL> OPEN DATABASE hr EXCLUSIVE
VFP /SQL> nDatabases = adatabases(aDBCNames)
VFP /SQL> CLOSE DATABASES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

209

BETWEEN()

Class
Expressions and Type Conversion

Purpose
Function to determine whether a specified expression is between two other specified expressions

Syntax
BETWEEN(<exp1>,<exp2>,<exp3>)

See Also
BETWEEN PREDICATE

Description
The BETWEEN() function returns true (.T.) if the value of a specified expression lies in the range
delimited by two other expressions all of the same data type. The BETWEEN() function operates on
Character, Date and Numeric expressions.

Parameters Description
<exp1> The expression to be checked.
<exp2> Expression representing the range minimum.
<exp3> Expression representing the range maximum.

The <exp1> must be equal to or more than <exp2> and equal to or less than <exp3> for BETWEEN() to
return true (.T). If <exp1> is not within this range, BETWEEN() returns false (.F.).

Example
? between(date(),date()-10,date()+10)
.T.
? between("A","A","Z")
.T.
? between(10,1,9)
.F.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

210

BITAND()

Class
Bitwise Operations

Purpose
Function to perform bitwise AND operation

Syntax
BITAND(<expN1>,<expN2>[,…<expN26>])

See Also
BITCLEAR(), BITLSHIFT(), BITNOT(), BITOR(), BITRSHIFT(), BITSET(), BITTEST(), BITXOR()

Description
The BITAND() function performs a bitwise AND operation on the specified numeric parameters. Up to 26
parameters can be specified. These parameters, if not integers, will be converted to integer values before
the operation takes place.

BITAND() compares each bit in turn of <expN1> and <expN2>. If both bits are 1, the corresponding bit
in the result is set to 1, otherwise the result bit is 0. If <expN3> is specified, the initial result is compared
bit by bit with <expN3> and a new result evaluated. This new result is then compared with <expN4>, if
specified, and so on.

<expN1> bit <expN2> bit Result bit
0 0 0
0 1 0
1 1 1
1 0 0

Example
x = 3 && 0011
y = 6 && 0110
z = 7 && 0111
? bitand(x,y)
 2 && 0010
? bitand(x,y,z)
 2 && 0010

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

211

BITCLEAR()

Class
Bitwise Operations

Purpose
Function to clear a specified bit in a numeric value

Syntax
BITCLEAR(<expN1>,<expN2>)

See Also
BITAND(), BITLSHIFT(), BITNOT(), BITOR(), BITRSHIFT(), BITSET(), BITTEST(), BITXOR()

Description
The BITCLEAR() function clears the specified bit <expN2> in a numeric value <expN1> and returns the
new value. If <expN1> and <expN2> are not integers, they will be converted to integer values before the
clear takes place. The bit position, <expN2>, can range from 0 (rightmost bit) to 31.

Example
x = 6 && 0110
y = 1
? bitclear(x,y)
 4 && 0100

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

212

BITLSHIFT()

Class
Bitwise Operations

Purpose
Function to shift the bits in a numeric value a specified number of places to the left

Syntax
BITLSHIFT(<expN1>,<expN2>)

See Also
BITAND(), BITCLEAR(), BITNOT(), BITOR(), BITRSHIFT(), BITSET(), BITTEST(), BITXOR()

Description
The BITLSHIFT() function shifts the bits in the numeric value <expN1> the specified number of places to
the left <expN2> and returns the new value. If <expN1> and <expN2> are not integers, they will be
converted to integer values before the shift takes place.

Example
x = 6 && 0110
y = 1
? bitlshift(x,y)
 12 && 1100

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

213

BITNOT()

Class
Bitwise Operations

Purpose
Function to perform bitwise NOT operation

Syntax
BITNOT(<expN>)

See Also
BITAND(), BITCLEAR(), BITLSHIFT(), BITOR(), BITRSHIFT(), BITSET(), BITTEST(), BITXOR()

Description
The BITNOT() function performs a bitwise NOT operation on the specified numeric parameter. If <expN>
is not an integer, it will be converted to an integer value before the operation takes place.

BITNOT() switches each bit in turn of <expN1>. Each 1 becomes a 0, and each 0 becomes a 1.

<expN> bit Result bit
0 1
1 0

Example
x = 3 && 0…0011
? bitnot(x)
 -4 && 1…1100

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

214

BITOR()

Class
Bitwise Operations

Purpose
Function to perform bitwise OR operation

Syntax
BITOR(<expN1>,<expN2>[,…<expN26>])

See Also
BITAND(), BITCLEAR(), BITLSHIFT(), BITNOT(), BITRSHIFT(), BITSET(), BITTEST(), BITXOR()

Description
The BITOR() function performs a bitwise OR operation on the specified numeric parameters. Up to 26
parameters can be specified. These parameters, if not integers, will be converted to integer values before
the operation takes place.

BITOR() compares each bit in turn of <expN1> and <expN2>. If either bit is 1, the corresponding bit in
the result is set to 1: if both bits are 0, the result bit is 0. If <expN3> is specified, the initial result is
compared bit by bit with <expN3> and a new result evaluated. This new result is then compared with
<expN4>, if specified, and so on.

<expN1> bit <expN2> bit Result bit
0 0 0
0 1 1
1 1 1
1 0 1

Example
x = 3 && 0011
y = 6 && 0110
z = 7 && 0111
? bitor(x,y)
 7 && 0111
? bitor(x,y,z)
 7 && 0111

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

215

BITRSHIFT()

Class
Bitwise Operations

Purpose
Function to shift the bits in a numeric value a specified number of places to the right

Syntax
BITRSHIFT(<expN1>,<expN2>)

See Also
BITAND(), BITCLEAR(), BITLSHIFT(), BITNOT(), BITOR(), BITSET(), BITTEST(), BITXOR()

Description
The BITRSHIFT() function shifts the bits in the numeric value <expN1> the specified number of places to
the right <expN2> and returns the new value. If <expN1> and <expN2> are not integers, they will be
converted to integer values before the shift takes place.

Example
x = 6 && 0110
y = 1
? bitrshift(x,y)
 3 && 0011

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

216

BITSET()

Class
Bitwise Operations

Purpose
Function to set a specified bit in a numeric value

Syntax
BITSET(<expN1>,<expN2>)

See Also
BITAND(), BITCLEAR(), BITLSHIFT(), BITNOT(), BITOR(), BITRSHIFT(), BITTEST(), BITXOR()

Description
The BITSET() function sets the specified bit <expN2> in a numeric value <expN1> to 1and returns the
new value. If <expN1> and <expN2> are not integers, they will be converted to integer values before the
clear takes place. The bit position, <expN2>, can range from 0 (rightmost bit) to 31.

Example
x = 6 && 0110
y = 3
? bitset (x,y)
 14 && 1110

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

217

BITTEST()

Class
Bitwise Operations

Purpose
Function to test the value of a specified bit in a numeric value

Syntax
BITTEST(<expN1>,<expN2>)

See Also
BITAND(), BITCLEAR(), BITLSHIFT(), BITNOT(), BITOR(), BITRSHIFT(), BITSET(), BITXOR()

Description
The BITTEST() function tests the value of the specified bit <expN2> in a numeric value <expN1>. If the
bit is 1, BITTEST() returns True (.T.), otherwise it returns False (.F.). If <expN1> and <expN2> are not
integers, they will be converted to integer values before the clear takes place. The bit position, <expN2>,
can range from 0 (rightmost bit) to 31.

Example
x = 6 && 0110
y = 3
z = 2
? bittest (x,y)
.F.
? bittest (x,z)
.T.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

218

BITXOR()

Class
Bitwise Operations

Purpose
Function to perform bitwise XOR (exclusive OR) operation

Syntax
BITXOR(<expN1>,<expN2>[,…<expN26>])

See Also
BITAND(), BITCLEAR(), BITLSHIFT(), BITNOT(), BITRSHIFT(), BITSET(), BITTEST(), BITXOR()

Description
The BITXOR() function performs a bitwise XOR (exclusive OR) operation on the specified numeric
parameters. Up to 26 parameters can be specified. These parameters, if not integers, will be converted to
integer values before the operation takes place.

BITXOR() compares each bit in turn of <expN1> and <expN2>. If only one of the bits is 1, the
corresponding bit in the result is set to 1, otherwise the result bit is 0. If <expN3> is specified, the initial
result is compared bit by bit with <expN3> and a new result evaluated. This new result is then compared
with <expN4>, if specified, and so on.

<expN1> bit <expN2> bit Result bit
0 0 0
0 1 1
1 1 0
1 0 1

Example
x = 3 && 0011
y = 6 && 0110
z = 7 && 0111
? bitxor(x,y)
 5 && 0101
? bitxor(x,y,z)
 2 && 0010

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

219

CAST()

Class
Expressions and Type Conversion

Purpose
Function to convert the data type of an expression

Syntax
CAST(<exp> AS <expC>[(<expN1>[, <expN2>])] [NULL | NOT NULL])

See Also
DTOC(), DTOS(), ETOS(), LTOS(), MTOS(), STR()

Description
The CAST() function converts the expression in <exp> to the data type specified in <expC> and returns the
result. The <expC> can be the full data type name, e.g. Character or supported abbreviation, e.g. C or
Char. For data types requiring width and precision information, these are specified in <expN1> and
<expN2> respectively.

Data Type Abbreviations:

Abbreviations Data Type Width Required Precision Required
B TINYINT/DOUBLE No No
C, Char CHARACTER Yes No
D DATE No No
F FLOAT Yes No, defaults to 0
G LONG VARBINARY/GENERAL No No
I, Int INTEGER Yes No, defaults to 0
L LOGICAL/BIT No No
M LONG VARCHAR/MEMO No No
N, Num NUMERIC Yes No, defaults to 0
P PACKED DECIMAL Yes No, defaults to 0
Q QUAD Yes No, defaults to 0
R REAL Yes No, defaults to 0
S SHORT Yes No, defaults to 0
T DATETIME No No
V VAXDATE No No
Y CURRENCY No No
Z ZONED Yes No, defaults to 0

If the specified width, <expN1> is less than that of <exp>, the result will be truncated. If greater, the result
will be padded. Precision may be lost if the precision specified in <expN2> is less than that of <exp>.

The optional NULL | NOT NULL determines whether null values are permitted or not.

FUNCTIONS

220

Example
> m_var = “date”
> ? cast(“12/12/2005” as (m_var))
12/12/2005

> open database southwind
> set sql on
Recital/SQL> select cast(limit-balance as numeric(10,2)) from example;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

221

CDOW()

Class
Date and Time Data

Purpose
Function to return the character day of week

Syntax
CDOW(<expD> | <expT>)

See Also
AMPM(), CMONTH(), CTOD(), CTOT(), DATE(), DATETIME(), DAY(), DAYS(), DMY(), DOW(),
DTOC(), DTOM(), DTOS(), DTOV(), ELAPTIME(), EPOCH(), GOMONTH(), HOUR(), HOURS(),
MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), QUARTER(), SEC(), SECONDS(), SECS(),
STOD(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(), VALIDTIME(), VTOD(), YEAR(),
SET CENTURY, SET DATE, SET EPOCH, SET HOURS, SET MARK, SET SECONDS, SET
VAXTIME

Description
CDOW() returns the name of the day of the week from the specified date expression <expD> or datetime
expression <expT> as a character string.

Example
store cdow(date()) to dayofweek
? dayofweek
Sunday
dayofweek = cdow(date())
? dayofweek
Sunday
dayofweek = cdow(datetime())
? dayofweek
Sunday

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

222

CLEARRESULTSET()

Class
Data Connectivity

Purpose
Function to clear the marker from an SQL cursor previously marked as a resultset

Syntax
CLEARRESULTSET()

See Also
GETRESULTSET(), SETRESULTSET(), SQL SELECT

Description
The CLEARRESULTSET() function clears the marker from an SQL cursor previously marked as a
resultset by the SETRESULTSET() function. The SETRESULTSET() function is particularly used in
returning a resultset from a stored procedure in SQL client/server applications.

CLEARRESULTSET() will return the workarea number of the SQL cursor from which the marker was
cleared, or 0 (zero) if no SQL cursor was marked as a resultset.

Example
function GetExampleCursor
lparameters lcAccountNo
select * from example where account_no = lcAccountNo into cursor curExample
return setresultset(“curExample”)

open database southwind
GetExampleCursor(“00050”)
select * from curexample
? “Cleared resultset marker in work area #” + ltrim(str(clearresultset()))
? iif(getresultset() > 0,“Resultset available in work area #” + ltrim(str(getresultset())),;
 “No resultsets available”)
?
close databases

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

223

CMONTH()

Class
Date and Time Data

Purpose
Function to return the character month from a specified date or datetime

Syntax
CMONTH(<expD> | <expT>)

See Also
AMPM(), CDOW(), CTOD(), CTOT(), DATE(), DATETIME(), DAY(), DAYS(), DMY(), DOW(),
DTOC(), DTOM(), DTOS(), DTOV(), ELAPTIME(), EPOCH(), GOMONTH(), HOUR(), HOURS(),
MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), QUARTER(), SEC(), SECONDS(), SECS(),
STOD(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(), VALIDTIME(), VTOD(), YEAR(),
SET CENTURY, SET DATE, SET EPOCH, SET HOURS, SET MARK, SET SECONDS, SET
VAXTIME

Description
CMONTH() is the character month function. It returns the name of the month from the specified date
<expD> or the specified datetime <expT> as a character string.

Example
? cmonth(datetime())
October
? cmonth(date())
October
store cmonth(date()) to month
? month
October
? type(“month”)
C

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

224

CONNECTED()

Class
Data Connectivity

Purpose
Determine whether there is a gateway connection active in a workarea

Syntax
CONNECTED([<workarea | alias>])

See Also
GATEWAY(), SET GATEWAY

Description
The CONNECTED() function returns .T. if the workarea specified by <workarea | alias> is connected to a
Recital Database Gateway. If there is no gateway connection in the specified workarea then .F. is returned.
If no <workarea | alias> is specified then the CONNECTED() function defaults to the current workarea.

Example
set gateway to “ora@sales:scott/tiger.tcpip”
? connected()
.T.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

225

CTOT()

Class
Expressions and Type Conversion

Purpose
Function to convert character to datetime

Syntax
CTOT(<expC>)

See Also
AMPM(), CDOW(), CMONTH(), CTOD(), DATE(), DATETIME(), DAY(), DAYS(), DMY(), DOW(),
DTOC(), DTOM(), DTOS(), DTOV(), ELAPTIME(), EMPTY(), EPOCH(), GOMONTH(), HOUR(),
HOURS(), LTOS(), MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), MTOS(), QUARTER(),
SEC(), SECONDS(), SECS(), STOD(), STR(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(),
TYPE(), VAL(), VALIDTIME(), VTOD(), YEAR(), SET CENTURY, SET DATE, SET EPOCH, SET
HOURS, SET MARK, SET SECONDS, SET VAXTIME

Description
The CTOT() function is the character to datetime conversion function. It converts the character expression
specified to a datetime variable. The character expression must be correctly formatted based on the current
SET DATE, SET MARK, SET SECONDS and SET CENTURY settings. For example, the default
settings, SET DATE AMERICAN, SET SECONDS ON and SET CENTURY ON, require a datetime in
the format “MM/DD/YYYY HH:MM:SS AM/PM”. If <expC> is an invalid datetime format the CTOT()
function will return an empty datetime.

Example
mdate = ctot(“01/21/2004 01:44:44 PM”)
? mdate
01/21/2004 01:44:44 PM
? type(“mdate”)
T

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

226

CURSORNAME()

Class
Data Connectivity

Purpose
Returns the name of the cursor open in a workarea where that workarea has an active gateway

Syntax
CURSORNAME([<workarea | alias>])

See Also
CLOSE, DECLARE CURSOR, FINDCURSOR(), DROP CURSOR, FETCH, OPEN, GATEWAY()

Description
The CURSORNAME() function returns the cursor name corresponding to the workarea specified by
<workarea | alias>. If there is no cursor open, or no gateway active in the specified workarea then an
empty string is returned. If no <workarea | alias> is specified then the CURSORNAME() function defaults
to the current workarea.

Example
set gateway to "ora@sales:scott/tiger"
EXEC SQL

DECLARE employees CURSOR FOR
SELECT empno, ename, job

FROM emp
ORDER BY deptno;

EXEC SQL

OPEN employees;

? cursorname()
EMPLOYEES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

227

DATABASE()

Class
Databases

Purpose
Function to return the name of the currently open database

Syntax
DATABASE()

See Also
CLOSE DATABASES, DISPLAY STATUS, LIST STATUS, OPEN DATABASE, USE,
ADATABASES(), ALIAS(), DBF(), DBUSED(), USED(), SET FILECASE, SET SQL

Description
The DATABASE() function returns the name of the currently open database or a null string if none is
open.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

Databases can be opened using the SQL USE command, with SQL set to MYSQL, or using the SQL
OPEN DATABASE command.

Example
VFP/SQL> OPEN DATABASE hr
VFP/SQL> ? database()
hr
VFP/SQL> CLOSE DATABASES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

228

DATE()

Class
Date And Time Data

Purpose
Function to return current system date or a date from specified year, month and day values

Syntax
DATE([<expN1>, <expN2>, <expN3>])

See Also
AMPM(), CDOW(), CMONTH(), CTOD(), CTOT(), DATETIME(), DAY(), DAYS(), DMY(), DOW(),
DTOC(), DTOM(), DTOS(), DTOV(), ELAPTIME(), EMPTY(), EPOCH(), GOMONTH(), HOUR(),
HOURS(), LTOS(), MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), MTOS(), QUARTER(),
SEC(), SECONDS(), SECS(), STOD(), STR(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(),
TYPE(), VAL(), VALIDTIME(), VTOD(), YEAR(), SET CENTURY, SET DATE, SET EPOCH, SET
HOURS, SET MARK, SET SECONDS, SET VAXTIME

Description
The DATE() function returns the current system date as a date type. The display format of dates is affected
by the SET CENTURY, SET DATE, SET EPOCH and SET MARK set commands.

The optional <expN1>,<expN2>,<expN3> can be used to specify numeric years, months and days and
return a valid corresponding date. If any parameter is invalid, an empty date is returned.

<expN1> A valid number of years, -100 (1900) to 900 (2900)
<expN2> A valid number of months, 1 to 12
<expN3> A valid number of days, 1 to 31

Example
? date()
02/02/2000
mdate = date()
? mdate
02/02/2000
? type(“mdate”)
D
? date(4,4,4)
04/04/2004

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

229

DATETIME()

Class
Date And Time Data

Purpose
Function to return current system date and time or a datetime from specified date and time values

Syntax
DATETIME([<expN1>, <expN2>, <expN3> [, <expN4> [, <expN5> [, <expN6>]]]])

See Also
AMPM(), CDOW(), CMONTH(), CTOD(), CTOT(), DATE(), DAY(), DAYS(), DMY(), DOW(),
DTOC(), DTOM(), DTOS(), DTOV(), ELAPTIME(), EMPTY(), EPOCH(), GOMONTH(), HOUR(),
HOURS(), LTOS(), MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), MTOS(), QUARTER(),
SEC(), SECONDS(), SECS(), STOD(), STR(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(),
TYPE(), VAL(), VALIDTIME(), VTOD(), YEAR(), SET CENTURY, SET DATE, SET EPOCH, SET
HOURS, SET MARK, SET SECONDS, SET VAXTIME

Description
The DATETIME() function returns the current system date and time as a datetime type. The display
format of the date part of datetimes is affected by the SET CENTURY, SET DATE, SET EPOCH and SET
MARK set commands. The SET SECONDS set command determines whether seconds are displayed in
the time part of datetimes. The SET HOURS set command determines whether hours are shown in 24 hour
format or in 12 hour format with AM | PM postfix.

The optional parameters can be used to specify numeric years, months, days, hours, minutes and seconds
and return a valid corresponding datetime. If any date parameter is invalid, an empty datetime is returned.
If any time parameter is invalid, an out of range error is generated.

<expN1> A valid number of years, -100 (1900) to 900 (2900)
<expN2> A valid number of months, 1 to 12
<expN3> A valid number of days, 1 to 31
<expN4> A valid number of hours, 0 to 23
<expN5> A valid number of minutes, 0 to 59
<expN6> A valid number of seconds, 0 to 59

Example
? datetime()
04/04/2004 11:54:45 AM
mdatetime = datetime()
? mdatetime
04/04/2004 11:54:45 AM
? type(“mdatetime”)
T
? datetime(4,4,4,4,4,4)
04/04/2004 04:04:04 AM
? datetime(4,4,4,14)
04/04/2004 02:00:00 PM

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

230

DAY()

Class
Date and Time Data

Purpose
Function to return the day of the month from a specified date or datetime

Syntax
DAY(<expD> | <expT>)

See Also
AMPM(), CDOW(), CMONTH(), CTOD(), CTOT(), DATE(), DATETIME(), DAYS(), DMY(), DOW(),
DTOC(), DTOM(), DTOS(), DTOV(), ELAPTIME(), EPOCH(), GOMONTH(), HOUR(), HOURS(),
MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), QUARTER(), SEC(), SECONDS(), SECS(),
STOD(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(), VALIDTIME(), VTOD(), YEAR(),
SET CENTURY, SET DATE, SET EPOCH, SET HOURS, SET MARK, SET SECONDS, SET
VAXTIME

Description
The DAY() function returns the day of the month from the specified date expression <expD> or datetime
expression <expT> as a numeric value.

Example
? day({01/01/2004})
 1
store day({01/01/2004}) to m_Day
? m_Day
 1
m_Day = day(date())
? type(“m_Day”)
N

? day({10/10/2004 10:15:43 AM})
 10

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

231

DBUSED()

Class
SQL Applications

Purpose
Function to check whether a database is open.

Syntax
DBUSED(<expC>)

See Also
CLOSE DATABASES, DISPLAY STATUS, LIST STATUS, OPEN DATABASE, USE,
ADATABASES(), ADIR(), ALIAS(), DBF(), GETENV(), USED(), SET SQL

Description
The DBUSED() function is used to check whether the database whose name is specified in <expC> is
open. If the database is open, DBUSED() returns True (.T.), if not it returns False (.F.).

NOTE: The DBUSED() function operates on databases, not tables.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

Databases can be opened using the SQL USE command, with SQL set to MYSQL, or using the SQL
OPEN DATABASE command.

Example
Recital/SQL> set sql to vfp
Recital/SQL> OPEN DATABASE hr EXCLUSIVE
Recital/SQL> ? dbused(“hr”)
.T.
Recital/SQL> CLOSE DATABASES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

232

DMY()

Class
Date and Time Data

Purpose
Function to return a date or datetime as a character string

Syntax
DMY(<expD> | <expT>)

See Also
AMPM(), CDOW(), CMONTH(), CTOD(), CTOT(), DATE(), DATETIME(), DAY(), DAYS(), DOW(),
DTOC(), DTOM(), DTOS(), DTOV(), ELAPTIME(), EMPTY(), EPOCH(), GOMONTH(), HOUR(),
HOURS(), LTOS(), MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), MTOS(), QUARTER(),
SEC(), SECONDS(), SECS(), STOD(), STR(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(),
TYPE(), VAL(), VALIDTIME(), VTOD(), YEAR(), SET CENTURY, SET DATE, SET EPOCH, SET
HOURS, SET MARK, SET SECONDS, SET VAXTIME

Description
The DMY() function returns the specified date expression <expD> or date part of the datetime expression
<expT> as a character string in the format: day, month name and year. If CENTURY is OFF, then a 2-
digit year is returned.

Example
? dmy({04/04/2005})
4 April 2005

? dmy({04/04/2005 06:12:45 PM})
4 April 2005

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

233

DOW()

Class
Date and Time Data

Purpose
Function to return numeric day of the week from a specified date

Syntax
DOW(<expD> | <expT> [,<expN>])

See Also
AMPM(), CDOW(), CMONTH(), CTOD(), CTOT(), DATE(), DATETIME(), DAY(), DAYS(), DMY(),
DTOC(), DTOM(), DTOS(), DTOV(), ELAPTIME(), EPOCH(), GOMONTH(), HOUR(), HOURS(),
MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), QUARTER(), SEC(), SECONDS(), SECS(),
STOD(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(), VALIDTIME(), VTOD(), YEAR(),
SET CENTURY, SET DATE, SET EPOCH, SET HOURS, SET MARK, SET SECONDS, SET
VAXTIME

Description
The DOW() function returns a number representing the day of the week from the given date expression
<expD> or datetime expression <expT>.

Return Value Day of Week
1 Sunday
2 Monday
3 Tuesday
4 Wednesday
5 Thursday
6 Friday
7 Saturday

The optional <expN> is used to specify an alternative first day of the week.

Example
set date american
? dow({02/29/2004})
 1
? dow({02/29/2004},2)
 7
store dow({02/29/2004}) to dayofweek
? dayofweek
 1
dayofweek = dow({02/29/2004 11:35:27 A.M.})
? dayofweek
 1

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

234

DTOC()

Class
Expressions and Type Conversion

Purpose
Function to perform date to character conversion

Syntax
DTOC(<expD> | <expT> [,1])

See Also
AMPM(), CDOW(), CMONTH(), CTOD(), CTOT(), DATE(), DATETIME(), DAY(), DAYS(), DMY(),
DOW(), DTOM(), DTOS(), DTOV(), ELAPTIME(), EMPTY(), EPOCH(), GOMONTH(), HOUR(),
HOURS(), LTOS(), MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), MTOS(), QUARTER(),
SEC(), SECONDS(), SECS(), STOD(), STR(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(),
TYPE(), VAL(), VALIDTIME(), VTOD(), YEAR(), SET CENTURY, SET DATE, SET EPOCH, SET
HOURS, SET MARK, SET SECONDS, SET VAXTIME

Description
The DTOC() function converts the date expression <expD> or date part of the datetime expression <expT>
to a character string in the format of the current SET DATE, SET MARK and SET CENTURY settings.
For example, the default settings, SET DATE AMERICAN, and SET CENTURY ON, will return a date in
the format “MM/DD/YYYY”.

If the optional 1 is specified, the date will be returned in DTOS() format, suitable for index key purposes.

Example
? dtoc({02/29/2004})
02/29/2004
? dtoc({02/29/2004 10:34:21 A.M.})
02/29/2004
? dtoc({02/29/2004},1)
20040229
store dtoc({02/29/2004}) to m_date
? m_date
02/29/2004
? type(“m_date”)
C

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

235

DTOS()

Class
Expressions and Type Conversion

Purpose
Function to perform date to string conversion

Syntax
DTOS(<expD> | <expT>)

See Also
AMPM(), CDOW(), CMONTH(), CTOD(), CTOT(), DATE(), DATETIME(), DAY(), DAYS(), DMY(),
DOW(), DTOC(), DTOM(), DTOV(), ELAPTIME(), EMPTY(), EPOCH(), GOMONTH(), HOUR(),
HOURS(), LTOS(), MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), MTOS(), QUARTER(),
SEC(), SECONDS(), SECS(), STOD(), STR(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(),
TYPE(), VAL(), VALIDTIME(), VTOD(), YEAR(), SET CENTURY, SET DATE, SET EPOCH, SET
HOURS, SET MARK, SET SECONDS, SET VAXTIME

Description
The DTOS() function converts the date expression <expD> or date part of the datetime expression <expT>
to a character string in the format “YYYYMMDD”. This function is particularly useful when creating
indexes with mixed data types. The SET DATE, SET MARK and SET CENTURY settings have no effect
on this function.

Example
? dtos({02/29/2004})
20040229
? dtos({02/29/2004 11:18:54 PM})
20040229
store dtos({02/29/2004})to m_date
? m_date
20040229
? type(“m_date”)
C

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

236

EMPTY()

Class
Expressions and Type Conversion

Purpose
Function to check for empty value

Syntax
EMPTY(<expC> | <expD> | <expT> | <expL> | <memofield> | <expN>)

See Also
CTOD(), CTOT(), IIF(), SPACE(), TYPE(), SET CENTURY, SET DATE, SET MARK, SET SECONDS

Description
The EMPTY() function returns .T. if the specified expression is 'empty'.

Data Type Empty
Character Space(0), “”, [], ’’, no text entered
Date CTOD(“”),{}, {00/00/0000}, { / / } and other SET CENTURY, SET MARK and

SET DATE variations
Datetime CTOT(“”) , { / / : : AM} and other SET CENTURY, SET MARK, SET

SECONDS and SET DATE variations
Logical .F.
Memo No data entered
Numeric 0

Example
if empty(name + address)

dialog box “Name and address not specified.”
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

237

FINDCURSOR()

Class
Data Connectivity

Purpose
Returns the workarea number corresponding to the specified gateway cursor

Syntax
FINDCURSOR(<expC>)

See Also
CLOSE, DECLARE CURSOR, CURSORNAME(), DROP CURSOR, FETCH, OPEN, GATEWAY()

Description
The FINDCURSOR() function returns a workarea number corresponding to the open gateway cursor
specified by <expC>. If the cursor name specified is not open, or no gateway is active, then a value of -1 is
returned.

Example
select 3
set gateway to "ora@sales:scott/tiger"
EXEC SQL

DECLARE employees CURSOR FOR
SELECT empno, ename, job
FROM emp
ORDER BY deptno;

EXEC SQL
OPEN employees;

? findcursor(cursorname())
 3

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

238

GATEWAY()

Class
Data Connectivity

Purpose
Returns information about a gateway connection

Syntax
GATEWAY([<expN>])

See Also
CONNECTED(), SET GATEWAY

Description
The GATEWAY() function returns specified information about the connection to the Recital Database
Gateway in the current workarea. The following table lists the optional information that may be requested.

Value Description
 Returns the server type, Recital, Oracle, ODBC, Informix, DB2, etc
0 Returns the server type, Recital, Oracle, ODBC, Informix, DB2, etc
1 Returns the node name that the gateway is connected to.
2 Returns the user name that was used to connect to the gateway.
3 Returns the password associated with the user name.
4 Returns the database connected to on the server.

Example
set gateway to ora@sales:scott/tiger.tcpip
? gateway()
ORA
? gateway(1)
sales
? gateway(2)
scott
? gateway(3)
tiger
? gateway(4)

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

239

GETRESULTSET()

Class
Data Connectivity

Purpose
Function to return the workarea number of an SQL cursor previously marked as a resultset

Syntax
GETRESULTSET()

See Also
CLEARRESULTSET(), SETRESULTSET(), SQL SELECT

Description
The GETRESULTSET() function returns the workarea number of an SQL cursor previously marked as a
resultset by the SETRESULTSET() function. The SETRESULTSET() function is particularly used in
returning a resultset from a stored procedure in SQL client/server applications.

GETRESULTSET() will return 0 (zero) if no SQL cursor is currently marked as a resultset. The marker
can be cleared from an SQL cursor using the CLEARRESULTSET() function.

Example
function GetExampleCursor
lparameters lcAccountNo
select * from example where account_no = lcAccountNo into cursor curExample
return setresultset(“curExample”)

open database southwind
GetExampleCursor(“00050”)
? “Returned resultset is in work area #” + ltrim(str(getresultset()))
set sql off
select getresultset()
display all
? “Cleared resultset marker in work area #” + ltrim(str(clearresultset()))
? iif(getresultset() > 0,“Resultset available in work area #” + ltrim(str(getresultset())),;
 “No resultsets available”)
?
close databases

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

240

GOMONTH()

Class
Date and Time Data

Purpose
Function to return a date that is a specified number of months before or after a particular date or datetime

Syntax
GOMONTH(<expD> | <expT>,<expN>)

See Also
CDOW(), CMONTH(), CTOD(), DATE(), DATETIME(), DAY(), DAYS(), DMY(), DOW(), DTOC(),
DTOM(), DTOS(), DTOV(), EPOCH(), MDY(), MONTH(), MTOD(), QUARTER(), STOD(), VTOD(),
YEAR(), SET CENTURY, SET DATE, SET EPOCH, SET HOURS, SET MARK

Description
The GOMONTH() function returns a date which is <expN> months before or after the date expression
<expD> or datetime expression <expT>. If <expN> is a negative number, the GOMONTH() function
returns a date that is before <expD> or <expT>. If <expN> is a positive number, the GOMONTH()
function returns a date that is after <expD> or <expT>.

Example
?gomonth({04/14/2004}, 4)
08/14/2004

? gomonth({01/21/2004 03:18:33 PM},-12)
01/21/2003

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

241

HOUR()

Class
Date and Time Data

Purpose
Function to return the numeric hours from a specified datetime

Syntax
Hour(<expT>)

See Also
AMPM(), CTOT(), DATE(), DATETIME(), ELAPTIME(), HOURS(), MINUTE(), MINUTES(), SEC(),
SECONDS(), SECS(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(), VALIDTIME(), SET
CLOCK, SET CLOCKRATE, SET SECONDS, SET VAXTIME

Description
The HOUR() function returns the hours from the specified datetime expression <expT> as a numeric value.

Example
? hour({10/10/2004 10:15:43 AM})
 10
m_Hour = hour(datetime())
? type(“m_Hour”)
N

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

242

HOURS()

Class
Date and Time Data

Purpose
Function to extract number of hours from a time string

Syntax
HOURS(<time-string>)

See Also
AMPM(), CTOT(), DATE(), DATETIME(), ELAPTIME(), HOUR(), MINUTE(), MINUTES(), SEC(),
SECONDS(), SECS(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(), VALIDTIME(), SET
CLOCK, SET CLOCKRATE, SET SECONDS, SET VAXTIME

Description
The HOURS() function extracts the hours from the specified time-string and returns the number of hours as
a numeric value.

Example
? hours(“10:00:00”)
 10

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

243

ICASE()

Class
Applications

Purpose
Function to execute an immediate case statement

Syntax
ICASE(<expL1>, <exp1>[, <expL2>, <exp2>] [,…] [, <exp-otherwise>)

See Also
DO CASE, IF, IF()

Description
The ICASE() function operates as an immediate DO CASE statement. It evaluates the specified conditions
<expL1> to <expLn> and returns the matching expression <exp1> to <expn> for the first condition that
evaluates to True (.T.). If none of the conditions evaluates to True, the ‘otherwise’ expression, <exp-
otherwise>, is returned. If there is no otherwise expression specified, and none of the conditions evaluates
to True, ICASE() returns a null (.NULL.).

Example
accept “Enter a command: ” to command
&(icase(upper(command) = “BROWSE”, “browse”, upper(command) = “DIR”, “dir”,;
 “Set message to [Unknown command.]”))

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

244

IF()

Class
Applications

Purpose
Function to execute an immediate if

Syntax
IF(<expL>, <exp1>, <exp2>)

See Also
ACC(), CALC(), ICASE(), IIF(), IF

Description
The IF() function returns the value of the expression <exp1> or the value of the expression <exp2>,
depending on the result of the expression <expL>. If the expression <expL> returns .T., the IF() function
returns the value of <exp1>. If the expression <expL> returns .F., the IF() function returns the value of
<exp2>. The expressions <exp1> and <exp2> may themselves contain IF() functions. The IF() function
may be used anywhere that a normal expression can be used (e.g. in SQL SELECT column expressions).

The IF() function is synonymous with the IIF() function.

Example
event = “drama”
? if(event = “drama”, “It’s for Drama”, “It’s not for Drama”)
It’s for Drama

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

245

IIF()

Class
Applications

Purpose
Function to execute an immediate if

Syntax
IIF(<expL>, <exp1>, <exp2>)

See Also
ACC(), CALC(), ICASE(), IF(), IF

Description
The IIF() function returns the value of the expression <exp1> or the value of the expression <exp2>,
depending on the result of the expression <expL>. If the expression <expL> returns .T., the IIF() function
returns the value of <exp1>. If the expression <expL> returns .F., the IIF() function returns the value of
<exp2>. The expressions <exp1> and <exp2> may themselves contain IIF() functions. The IIF() function
may be used anywhere that a normal expression can be used (e.g. as part of expressions in REPORT,
DICTIONARY and LABEL formats).

Example
event = “drama”
? iif(event = “drama”, “It's for Drama”, “It's not for Drama”)
It's for Drama

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

246

ISNULL()

Class
Expressions and Type Conversion

Purpose
Function to test if an expression evaluates to NULL

Syntax
ISNULL(<expr>)

See Also
EMPTY(), ISALPHA(), ISBLANK(), ISDIGIT()

Description
The ISNULL() function will return True (.T.) if the specified expression, <expr> is NULL otherwise False
(.F.).

Example
select account_no, isnull(last_name) from customer;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

247

LIKE()

Class
String Data

Purpose
Function to compare two strings for similarities

Syntax
LIKE(<expC1>, <expC2>)

See Also
LIKE PREDICATE

Description
The LIKE() function is used to compare two character strings for matching qualities. The <expC1>
specifies the matching pattern to look for. The <expC2> specifies the string in which to look. The
<expC1> accepts “wildcard” characters with which to construct the pattern. Wildcard characters may
represent upper case or lower case characters, but specific characters are case sensitive. The Recital/4GL
supports the following wildcard characters:

Characters Description
? Matches any one character
% Synonymous with ?
* Matches zero or more characters

If the LIKE() function is used in SQL mode (SET SQL ON or embedded EXEC SQL statements), the
following wildcard characters are available:

Characters Description
_ Matches any one character
% Matches zero or more characters

The LIKE() function returns .T. if a matching pattern is found, or .F. otherwise.

Example
?like(“*Recital*”, “This is Recital”)
.T.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

248

MINUTE()

Class
Date and Time Data

Purpose
Function to return the numeric minutes from a specified datetime

Syntax
MINUTE(<expT>)

See Also
AMPM(), CTOT(), DATE(), DATETIME(), ELAPTIME(), HOUR(), HOURS(), MINUTES(), SEC(),
SECONDS(), SECS(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(), VALIDTIME(), SET
CLOCK, SET CLOCKRATE, SET SECONDS, SET VAXTIME

Description
The MINUTE() function returns the minutes from the specified datetime expression <expT> as a numeric
value.

Example
? minute({10/10/2004 10:15:43 AM})
 15
m_Min = minute(datetime())
? type(“m_Min”)
N

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

249

MINUTES()

Class
Date and Time Data

Purpose
Function to extract minutes from a specified time string

Syntax
MINUTES(<time-string>)

See Also
AMPM(), CTOT(), DATE(), DATETIME(), ELAPTIME(), HOUR(), HOURS(), MINUTE(), SEC(),
SECONDS(), SECS(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(), VALIDTIME(), SET
CLOCK, SET CLOCKRATE, SET SECONDS, SET VAXTIME

Description
The MINUTES() function extracts the number of minutes from a specified time string and returns it as a
numeric value.

Example
? minutes(“10:21:00”)
 21

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

250

MONTH()

Class
Date and Time Data

Purpose
Function to return month from a specified date or datetime

Syntax
MONTH(<expD> | <expT>)

See Also
CDOW(), CMONTH(), CTOD(), DATE(), DATETIME(), DAY(), DAYS(), DMY(), DOW(), DTOC(),
DTOM(), DTOS(), DTOV(), EPOCH(), GOMONTH(), MDY(), MTOD(), QUARTER(), STOD(),
VTOD(), YEAR(), SET CENTURY, SET DATE, SET EPOCH, SET HOURS, SET MARK

Description
The MONTH() function returns the numeric month of the year from the given date expression <expD> or
datatime expression <expT>.

Example
? month(date())
 10
? month(datetime())
 10

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

251

NVL()

Class
Expressions and Type Conversion

Purpose
Function to specify an alternative value for a null expression

Syntax
NVL(<expr1>,<expr2>)

See Also
ETOS(), ISNULL(), SET NULL

Description
The NVL() function evaluates the expression in <expr1>, and if the expression does not evaluate to NULL,
the evaluated result is returned. If the expression in <expr1> does evaluate to NULL, the expression in
<expr2> is evaluated. If <expr2> does not evaluate to NULL, the evaluated result is returned. If both
<expr1> and <expr2> evaluate to NULL, the NVL() function returns NULL.

Example
set sql to vfp
set null on
CREATE TABLE nullon (firstname c(20), lastname c(20))
INSERT INTO nullon (lastname) VALUES (“Smith”)
SELECT lastname, nvl(firstname,“Unknown”) from nullon

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

252

QUARTER()

Class
Date and Time Data

Purpose
Function to return year quarter for the specified date or datetime

Syntax
QUARTER(<expD> | <expT>[, <expN>])

See Also
CDOW(), CMONTH(), CTOD(), DATE(), DATETIME(), DAY(), DAYS(), DMY(), DOW(), DTOC(),
DTOM(), DTOS(), DTOV(), EPOCH(), GOMONTH(), MDY(), MONTH(), MTOD(), STOD(), VTOD(),
YEAR(), SET CENTURY, SET DATE, SET EPOCH, SET HOURS, SET MARK

Description
The QUARTER() function returns the year quarter for the specified date expression <expD> or datetime
expression <expT>. The optional <expN> is used to specify the number of an alternative starting month
for the year; the default is 1 (January).

Example
? quarter({01/22/2004})
 1
? quarter({^20040822 12:34:29 PM})
 3
? quarter({01/22/2004},2)
 4

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

253

REFERENCES()

Class
Fields and Records

Purpose
Function to perform a cross-table lookup for a specified key expression

Syntax
REFERENCES(<key expression>, <workarea | alias> [,<tag name>])

See Also
SET RELATION, LOOKUP(), RLOOKUP(), SEEK()

Description
The REFERENCES() function looks up the specified <key expression> in the master tag index of the
specified <workarea | alias>. The <workarea | alias> is the workarea or alias name of an open table. To
search in a tag index which is not the current master index, the optional <tag name> parameter can be used.
The tag name must be specified as a string.

The REFERENCES() function returns True (.T.) or False (.F.), depending on the success of the lookup
operation.

Please see the RLOOKUP() function for cross-table lookups using single indexes (.ndx).

Example
use customer.rdb
index on account_no tag account_no
index on upper(last_name) tag uplast
index on zip tag zip
? references(“STEREK”,customer,“uplast”)
.T.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

254

SEC()

Class
Date and Time Data

Purpose
Function to return the numeric seconds from a specified datetime

Syntax
SEC(<expT>)

See Also
AMPM(), CTOT(), DATE(), DATETIME(), ELAPTIME(), HOUR(), HOURS(), MINUTE(),
MINUTES(), SECONDS(), SECS(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(),
VALIDTIME(), SET CLOCK, SET CLOCKRATE, SET SECONDS, SET VAXTIME

Description
The SEC() function returns the seconds from the specified datetime expression <expT> as a numeric value.

Example
? sec({10/10/2004 10:15:43 AM})
 43
m_Sec = sec(datetime())
? type(“m_Sec”)
N

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

255

SECONDS()

Class
Date And Time Data

Purpose
Function to extract seconds from a time string

Syntax
SECONDS([<time-string>])

See Also
AMPM(), CTOT(), DATE(), DATETIME(), ELAPTIME(), HOUR(), HOURS(), MINUTE(),
MINUTES(), SEC(), SECS(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(), VALIDTIME(),
SET CLIPPER, SET CLOCK, SET CLOCKRATE, SET SECONDS, SET VAXTIME

Description
The SECONDS() function returns the seconds from the current time as a number. The SECONDS()
function will also return the seconds from an optionally specified <time-string>. If the command SET
CLIPPER is ON, the SECONDS() function operates in the same way as the SECS() function.

Example
? seconds(“10:33:21”)
 21

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

256

SECS()

Class
Date And Time Data

Purpose
Function to return the number of seconds since midnight

Syntax
SECS([<time-string>])

See Also
AMPM(), CTOT(), DATE(), DATETIME(), ELAPTIME(), HOUR(), HOURS(), MINUTE(),
MINUTES(), SEC(), SECONDS(), TIME(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(),
VALIDTIME(), SET CLIPPER, SET CLOCK, SET CLOCKRATE, SET SECONDS, SET VAXTIME

Description
The SECS() function returns the number of seconds since midnight. The optional <time-string>, in the
format HH:MM:SS, may be used to specify a time. If no <time-string> is passed, the SECS() function uses
the current time. This function can be used to store time as seconds in a numeric field. The TSTRING()
function is used to convert the seconds back to a time-string. If SET CLIPPER is ON, the SECS() function
behaves like the SECONDS() function.

Example
? secs(“10:10:10”)
 36610

// Another Example
use accounts
replace seconds with secs(time())
? seconds
 39306
? tstring(seconds)
10:55:00

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

257

SEQNO()

Class
Table Basics

Purpose
Function to return a unique sequence number

Syntax
SEQNO([<workarea | alias>])

See Also
ALTER TABLE, CREATE TABLE, SET SEQNO

Description
The SEQNO() function returns the next unique sequence number for the current table. Automatic locking
is performed during the operation of this function if the specified table is opened shareable. The optional
<workarea | alias> will return the next unique sequence number from the specified table. If there is no
active table the SEQNO() function will return 0.

The sequence number of a table can be reset with the command SET SEQNO TO <expN>.

Example
append blank
replace custno with seqno()

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

258

SETRESULTSET()

Class
Data Connectivity

Purpose
Function to mark an SQL cursor as a resultset

Syntax
SETRESULTSET(<expN>|<expC>)

See Also
CLEARRESULTSET(), GETRESULTSET(), SQL SELECT

Description
The SETRESULTSET() function marks an SQL cursor as a resultset. Any previous SQL cursor marker is
cleared. The workarea number or alias name of the cursor should be specified in <expN> or <expC>
respectively. The SETRESULTSET() function is particularly used in returning a resultset from a stored
procedure in SQL client/server applications.

The GETRESULTSET() function can be used to return the workarea number of an SQL cursor marked as
a resultset by SETRESULTSET(). The resultset marker can be cleared from an SQL cursor using the
CLEARRESULTSET() function.

Example
function GetExampleCursor
lparameters lcAccountNo
select * from example where account_no = lcAccountNo into cursor curExample
return setresultset(“curExample”)

open database southwind
GetExampleCursor(“00050”)
select * from curexample
? “Cleared resultset marker in work area #” + ltrim(str(clearresultset()))
? iif(getresultset() > 0,“Resultset available in work area #” + ltrim(str(getresultset())),;
 “No resultsets available”)
?
close databases

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

259

SQLVALUES()

Class
Data Connectivity

Purpose
Function to return the single row result of an SQL statement

Syntax
SQLVALUES(<SQL statement>)

See Also
SELECT

Description
The SQLVALUES() function executes the <SQL statement> and returns the result as a string. The
required <SQL statement> cannot return multiple rows. If a SELECT statement is specified it must be a
singleton select.

The SQLVALUES() function can only be used with an active gateway connection.

Example
login “Oracle”,“node”,“user”,“Password”
// Count the number of records in the employee table
cTotal = sqlvalues(“SELECT COUNT(*) FROM emp”)
total=val(cTotal)
// Count the number of records in the employee table matching the key “Mr”
cTotal = sqlvalues(“SELECT COUNT(*) FROM emp WHERE title = ‘Mr’”)

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

260

TIME()

Class
Date and Time Data

Purpose
Function to return the current system time

Syntax
TIME([<expN>])

See Also
AMPM(), CTOT(), DATE(), DATETIME(), ELAPTIME(), HOUR(), HOURS(), MINUTE(),
MINUTES(), SEC(), SECONDS(), SECS(), TIMESTAMP(), TSTRING(), TTOC(), TTOD(),
VALIDTIME(), SET CLOCK, SET CLOCKRATE, SET SECONDS, SET VAXTIME

Description
The TIME() function returns the current system time as a character string in the format HH:MM:SS. The
TIME() function always returns the time in 24 hour format, and is not affected by the SET HOURS TO
[12/24] command. The optional numeric expression <expN> must result in a non-zero value, and when
specified, the current time including hundredths of seconds is returned. This is provided for Xbase
language compatibility. The TIME() function will always return hundredths of seconds as 00.

Example
? time()
17:47:24
? time(1)
17:47:31.00

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

261

TTOC()

Class
Expressions and Type Conversion

Purpose
Function to convert a datetime expression to a string value in an optionally specified format

Syntax
TTOC(<expT> [, <expN>])

See Also
AMPM(), CDOW(), CMONTH(), CTOD(), CTOT(), DATE(), DATETIME(), DAY(), DAYS(), DMY(),
DOW(), DTOC(), DTOM(), DTOS(), DTOV(), ELAPTIME(), EMPTY(), EPOCH(), GOMONTH(),
HOUR(), HOURS(), LTOS(), MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), MTOS(),
QUARTER(), SEC(), SECONDS(), SECS(), STOD(), STR(), TIME(), TIMESTAMP(), TSTRING(),
TTOC(), TTOD(), TYPE(), VAL(), VALIDTIME(), VTOD(), YEAR(), SET CENTURY, SET DATE,
SET EPOCH, SET HOURS, SET MARK, SET SECONDS, SET VAXTIME

Description
The TTOC() function converts the datetime expression <expT> to a string value. By default, the date part
of the string returned will conform to the current SET DATE, SET MARK and SET CENTURY settings,
in the same format as DTOC(). The time will be returned in the format hh:mm:ss AM | PM. If the
expression to be converted contains no time information, 12:00:00 AM will be assumed. If SET
SECONDS is OFF (ON by default), no seconds will be displayed. The SET HOURS set command
determines whether hours are shown in 24 hour format or in 12 hour format with AM | PM postfix.

<expN>
The optional <expN> can be used to specify the format of the return value:

<expN> Format
0 As defaults
1 YYYYMMDDhhmmss
2 Time only: hh:mm:ss AM|PM (SET SECONDS ON)

or hh:mm AM|PM (SET SECONDS OFF)

Example
set date american
? ttoc({^2004-03-29 10:15:43 AM})
03/29/2004 10:15:43 AM
? ttoc({^2004-03-29 10:15:43 AM},1)
20040329101543
? ttoc({^2004-03-29 10:15:43 AM},2)
10:15:43 AM

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

262

TTOD()

Class
Expressions and Type Conversion

Purpose
Function to convert datetime to date

Syntax
TTOD(<expT>)

See Also
AMPM(), CDOW(), CMONTH(), CTOD(), CTOT(), DATE(), DATETIME(), DAY(), DAYS(), DMY(),
DOW(), DTOC(), DTOM(), DTOS(), DTOV(), ELAPTIME(), EMPTY(), EPOCH(), GOMONTH(),
HOUR(), HOURS(), LTOS(), MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), MTOS(),
QUARTER(), SEC(), SECONDS(), SECS(), STOD(), STR(), TIME(), TIMESTAMP(), TSTRING(),
TTOC(), TYPE(), VAL(), VALIDTIME(), VTOD(), YEAR(), SET CENTURY, SET DATE, SET
EPOCH, SET HOURS, SET MARK, SET SECONDS, SET VAXTIME

Description
The TTOD() function is the datetime to date conversion function. It converts the <expT> datetime
expression specified to a date. The <expT> must be a valid datetime, or the TTOD() function will return
an empty date. The date returned will conform to the current SET DATE, SET MARK and SET
CENTURY settings. For example, the default settings, SET DATE AMERICAN and SET CENTURY
ON, will return a date in the format “MM/DD/YYYY”.

Example
set date american
set century on
mdate = ttod({^2004-03-29 10:15:43 AM})
? mdate
03/29/2004
? type(“mdate”)
D

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

263

TXNISOLATION()

Class
Transaction Processing

Purpose
Function to return the current Transaction Isolation Level setting

Syntax
TXNISOLATION()

See Also
BEGIN…END TRANSACTION, COMMIT, ROLLBACK, SAVE TRANSACTION, SAVEPOINT, SET
TRANSACTION, TXNLEVEL()

Description
The TXNISOLATION() function returns the current Transaction Isolation setting. The Transaction
Isolation Level is set using the SET TRANSACTION [ISOLATION LEVEL <level>] command.

The Transaction Isolation Level can be any of the following, please see the SET TRANSACTION Set
Command for full details:

• SERIALIZABLE
• REPEATABLE READ
• READ COMMITTED
• READ UNCOMMITTED

Example
set transaction isolation level read uncommitted;
cTrans = txnisolation()

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

264

TXNLEVEL()

Class
Transaction Processing

Purpose
Function to return the current Transaction Level number

Syntax
TXNLEVEL()

See Also
BEGIN…END TRANSACTION, COMMIT, ROLLBACK, SAVE TRANSACTION, SAVEPOINT, SET
TRANSACTION, TXNISOLATION()

Description
The TXNLEVEL() function returns the current Transaction level as a number. Transactions can be nested
by issuing a further BEGIN TRANSACTION when a transaction is already active. If no transaction is
active, the TXNLEVEL() function returns 0. A transaction and any transactions nested within it are closed
when a COMMIT, ROLLBACK or END TRANSACTION is issued.

Example
// config.db
set sql to recital
set sql on
// end of config.db

// Nested Transactions
? txnlevel() && 0
BEGIN TRANSACTION trans1;
? txnlevel() && 1
INSERT INTO customer

(TITLE, LAST_NAME, FIRST_NAME, INITIAL, STREET,
CITY, STATE, ZIP,LIMIT, START_DATE)
VALUES
(‘Ms’, ‘Jones’, ‘Susan’, ‘B’, ‘177 High Street’,‘Beverly’, ‘MA’, ‘01915’, 2000, date());

INSERT INTO accounts (ORD_VALUE) VALUES (30);
BEGIN TRANSACTION trans2;
? txnlevel() && 2
INSERT INTO accounts (ORD_VALUE) VALUES (60);
// Commit the trans1 transaction and any transactions
// nested in trans1
COMMIT TRANSACTION trans1;
? txnlevel() && 0
END TRANSACTION;
? txnlevel() && 0
// End of program

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

265

TYPE()

Class
Expressions and Type Conversion

Purpose
Function to return a letter code that represents a data type

Syntax
TYPE(<expC>)

See Also
ERROR(), ERRNO(), MESSAGE(), ON ERROR

Description
The TYPE() function returns a letter code which represents the data type of the expression in <expC>. The
return value of the letter code is a character string from the table below.

Data type Return Value
ARRAY (STATIC) A
ARRAY (DYNAMIC) O
BIGINT N
BIT L
BYTE N
CHARACTER C
CURRENCY Y
DATE D
DATETIME T
DECIMAL N
DOUBLE N
FLOAT N
GENERAL G
INTEGER N
LOGICAL L
LONG VARCHAR M
LONG VARBINARY G
MEDIUMINT N
MEMO M
NUMERIC N
OBJECT O
PACKED N
QUAD N
REAL N
SHORT N
SMALLINT N
Syntax error U
TEXT M
TIME C
TIMESTAMP T
TINYINT N
Undefined U

FUNCTIONS

266

VAXDATE C
VARCHAR C
ZONED NUMERIC C

If <expC> contains a syntax error, or an undeclared variable, then TYPE() returns ‘U’. TYPE() will also
return a ‘U’ for an undefined variable if SET CLIPPER is ON. TYPE() is primarily used to check for the
existence of a variable, or the syntax of an expression.

Example
i = 10
? type(“i”)
N

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

267

VARTYPE()

Class
Expressions and Type Conversion

Purpose
Function to return a letter code that represents a data type

Syntax
VARTYPE(<exp>[,<expL>])

See Also
ERROR(), ERRNO(), MESSAGE(), TYPE(),ON ERROR

Description
The VARTYPE() function returns a letter code which represents the data type of the expression in <exp>.
The return value of the letter code is a character string from the table below.

Data type Return Value
ARRAY (STATIC) A
ARRAY (DYNAMIC O
BIGINT N
BIT L
BYTE N
CHARACTER C
CURRENCY Y
DATE D
DATETIME T
DECIMAL N
DOUBLE N
FLOAT N
GENERAL G
INTEGER N
LOGICAL L
LONG VARCHAR M
LONG VARBINARY G
MEDIUMINT N
MEMO M
NULL X
NUMERIC N
OBJECT O
PACKED N
QUAD N
REAL N
SHORT N
SMALLINT N
Syntax error U
TEXT M
TIME C
TIMESTAMP T
TINYINT N

FUNCTIONS

268

Undefined U
VAXDATE C
VARCHAR C
ZONED NUMERIC C

If <exp> contains a syntax error, or an undeclared variable, then VARTYPE() returns ‘U’. VARTYPE()
will also return a ‘U’ for an undefined variable if SET CLIPPER is ON. Unlike the TYPE() function,
VARTYPE() does not require the expression for evaluation to be enclosed in quotes.

The optional <expL> is used to determine whether VARTYPE() returns the data type for expressions
which evaluate to null (.NULL.). If <expL> is True (.T.) the data type is returned for <exp>. If <expL> is
False (.F.), then VARTYPE() returns “X”.

Example
i = 10
? vartype(i)
N

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

FUNCTIONS

269

YEAR()

Class
Date and Time Data

Purpose
Function to extract year from date or datetime

Syntax
YEAR(<expD> | <expT>)

See Also
CDOW(), CMONTH(), CTOD(), DATE(), DATETIME(), DAY(), DAYS(), DMY(), DOW(), DTOC(),
DTOM(), DTOS(), DTOV(), EPOCH(), GOMONTH(), MDY(), MONTH(), MTOD(), QUARTER(),
STOD(), VTOD(), SET CENTURY, SET DATE, SET EPOCH, SET HOURS, SET MARK

Description
The YEAR() function returns the numeric year value from a date expression, <expD> or a datetime
expression <expT>. If SET CENTURY is ON (default), the century will be displayed with normal date
displays.

Example
? date()
04/04/2004
? year(date())
 2004
? year(datetime())
 2004

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

270

SET…

Class
SQL Applications

Purpose
Used to issue a SET COMMAND

Syntax
SET <SET COMMAND>

See Also
EXEC, SET EXCLUSIVE, SET DELETED,

Description
Any Recital/4GL SET COMMAND can be issued in an SQL application by prefixing it with the EXEC
SQL statement prefix.

Example
exec sql

set exclusive on

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

271

SET AUTOCATALOG

Class
Databases

Purpose
Enable files to be automatically added to a database catalog

Syntax
SET AUTOCATALOG ON | OFF | (<expL>)
SET AUTOCATALOG TO <database>

See Also
ADD TABLE, ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE DATABASES,
CLOSE TABLES, COMPILE DATABASE, CREATE DATABASE, CREATE INDEX, CREATE
TABLE, CREATE VIEW, DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP
DATABASE, DROP INDEX, DROP TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES,
OPEN DATABASE, PACK DATABASE, REBUILD DATABASE, REINDEX DATABASE, RESTORE
DATABASE, USE, SET EXCLUSIVE, ADATABASES(), DBUSED(), DB_MAXWKA

Description
The SET AUTOCATALOG commands allow tables and their index files to be automatically added to a
database catalog. The database itself should be closed when using the auto catalog commands. The SET
AUTOCATALOG TO <database> command specifies the name of the database for which the catalog
should be updated. SET AUTOCATALOG ON | OFF allows updates to the catalog to be toggled on and
off. Once the auto catalog commands are active, tables and their indexes can be opened from the
interactive prompt or from an application and the database catalog will automatically be updated. For
additional details on the information stored in the database catalog, please see the OPEN DATABASE
command.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Databases are opened using the SQL OPEN DATABASE command.

Example
close databases
set autocatalog to southwind
set autocatalog on
do myapp

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

272

SET CENTURY

Class
Date and Time Data

Purpose
Enable century in dates

Syntax
SET CENTURY ON | OFF | (<expL>)

See Also
CDOW(), CMONTH(), CTOD(), DATE(), DATETIME(), DAY(), DAYS(), DMY(), DOW(), DTOC(),
DTOM(), DTOS(), DTOV(), EPOCH(), GOMONTH(), MDY(), MONTH(), MTOD(), QUARTER(),
STOD(), VTOD(), YEAR(), SET DATE, SET EPOCH, SET HOURS, SET MARK

Description
If SET CENTURY is ON, then dates are displayed, and can be input with the century prefix specified. If
CENTURY is OFF then the year part of dates is only two digits, and the 20th century is assumed. By
default, CENTURY is ON.

Example
set century on
use patrons index dates
list all for date = ctod(“01/01/2003”)

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

273

SET GATEWAY

Class
Data Connectivity

Purpose
Establishes a connection to a Recital Database Gateway

Syntax
SET GATEWAY TO [<expC1>] [IN <workarea/alias>] [ALIAS <expC2>]

See Also
CONNECTED(), GATEWAY()

Description
The SET GATEWAY command is used to establish a connection to a Recital Database Gateway via the
Recital Database Server. Each workarea can have a separate gateway established.

<expC1> is a character string that must be formatted in the following way:
servername@machinename:username/password-database.protocol

If <expC1> is not included with the SET GATEWAY command, the connection in that workarea will be
detached.

An optional ALIAS <expC2> keyword can be used to specify an alias name for the workarea.

Example
set gateway to ora@sales:scott/tiger.tcpip

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

274

SET HOURS

Class
Recital Terminal Developer Environment

Purpose
Change time display to 12 or 24 hours

Syntax
SET HOURS TO [12 | 24]

See Also
AMPM(), CDOW(), CMONTH(), CTOD(), CTOT(), DATE(), DATETIME(), DAY(), DAYS(), DMY(),
DOW(), DTOC(), DTOM(), DTOS(), DTOV(), ELAPTIME(), EMPTY(), EPOCH(), GOMONTH(),
HOUR(), HOURS(), LTOS(), MDY(), MINUTE(), MINUTES(), MONTH(), MTOD(), MTOS(),
QUARTER(), SEC(), SECONDS(), SECS(), STOD(), STR(), TIME(), TIMESTAMP(), TSTRING(),
TTOC(), TTOD(), TYPE(), VAL(), VALIDTIME(), VTOD(), YEAR(), SET CENTURY, SET DATE,
SET EPOCH, SET MARK, SET SECONDS, SET VAXTIME

Description
The SET HOURS TO command changes the system clock to a 12 hour or a 24 hour display. If the
optional qualifier 12 | 24 is not specified, then the clock is set to the default. The default setting is 12
hours. This command also affects the display of datetime values, determining whether hours are shown in
24 hour format or in 12 hour format with AM | PM postfix.

Example
set hours to 24

Products
Recital Terminal Developer

SET COMMANDS

275

SET NULL

Class
SQL Applications

Purpose
To determine NULL value support

Syntax
SET NULL ON | OFF

See Also
ALTER TABLE, CREATE TABLE, INSERT, EMPTY(), ISBLANK(), ISNULL(), SET NULLDISPLAY

Description
The SET NULL ON | OFF command is used to determine whether columns in a table support NULL
values. With SET NULL ON, table columns will support NULL values by default. INSERT will insert a
NULL into any column that does not have a value specified. With SET NULL off, NULL values are not
supported by default. INSERT will insert a NULL into any column that does not have a value specified..
This default can be overridden by specifying the NULL or NOT NULL column constraint on an individual
column.

SET NULL is OFF by default.

Example
set sql to vfp
set null on
CREATE TABLE nullon (firstname c(20), lastname c(20))
INSERT INTO nullon (lastname) VALUES (“Smith”)
? [SET NULL ON]
? [ISNULL()], isnull(firstname)
? [EMPTY()], empty(firstname)
wait

SET NULL ON
ISNULL() .T.
EMPTY() .F.
Press any key to continue...

set null off
CREATE TABLE nulloff (firstname c(20), lastname c(20))
INSERT INTO nulloff (lastname) VALUES (“Smith”)
? [SET NULL OFF]
? [ISNULL()], isnull(firstname)
? [EMPTY()], empty(firstname)
wait

SET NULL OFF
ISNULL() .F.
EMPTY() .T.
Press any key to continue...

SET COMMANDS

276

set null off
CREATE TABLE nulloff2 (firstname c(20) NULL, lastname c(20))
INSERT INTO nulloff2 (firstname,lastname) VALUES (NULL,“Smith”)
? [SET NULL OFF, NULL Column Constraint]
? [ISNULL()], isnull(firstname)
? [EMPTY()], empty(firstname)
wait

SET NULL OFF, NULL Column Constraint
ISNULL() .T.
EMPTY() .F.
Press any key to continue...

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

277

SET NULLDISPLAY

Class
SQL Applications

Purpose
To specify the text displayed for NULL values

Syntax
SET NULLDISPLAY TO [<expC>]

See Also
ALTER TABLE, CREATE TABLE, INSERT, EMPTY(), ISBLANK(), ISNULL(), SET NULL

Description
The SET NULLDISPLAY command is used to specify the text displayed for NULL values. By default
NULL values are displayed as .NULL.. The optional <expC> is used to specify alternative display text. If
<expC> is omitted, then the display is reset to the default.

Example
set sql to vfp
set null on
set heading off
CREATE TABLE nullon (firstname c(20), lastname c(20))
INSERT INTO nullon (lastname) VALUES (“Smith”)
list off

.NULL. Smith

set nulldisplay to “<null>”
list off

<null> Smith

set nulldisplay to
list off

.NULL. Smith

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

278

SET SECONDS

Class
Date and Time Data

Purpose
Specify whether the display of datetime values includes seconds

Syntax
SET SECONDS ON | OFF | (<expL>)

See Also
CDOW(), CMONTH(), CTOD(), DATE(), DATETIME(), DAY(), DAYS(), DMY(), DOW(), DTOC(),
DTOM(), DTOS(), DTOV(), EPOCH(), GOMONTH(), MDY(), MONTH(), MTOD(), QUARTER(),
STOD(), VTOD(), YEAR(), SET CENTURY, SET DATE, SET EPOCH, SET HOURS, SET MARK

Description
If SET SECONDS is ON, then the display of datetime values includes seconds. If SECONDS is OFF then
the time part of datetime values only includes hours, minutes and AM | PM. By default, SECONDS is ON.
The SET HOURS set command determines whether hours are shown in 24 hour format or in 12 hour
format with AM | PM postfix.

Example
set seconds off
? datetime()
01/23/2004 01:18 PM
set seconds on
? datetime()
01/23/2004 01:18:22 PM

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

279

SET SEQNO

Class
Table Organization

Purpose
Reset sequence numbering to specified number

Syntax
SET SEQNO TO <expN>

See Also
ALTER TABLE, CREATE TABLE, SEQNO

Description
The SET SEQNO TO <expN> command resets the sequence number of the currently active table to the
specified <expN> value. The next time the SEQNO() function is called, the value returned will be <expN>
+ 1.

Example
set seqno to 2000

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

280

SET SQL

Class
Environment

Purpose
Enable or disable use of SQL statements or configure SQL statement syntax

Syntax
SET SQL ON | OFF | (<expL>)
SET SQL[DIALECT] TO RECITAL | VFP | MYSQL

See Also
EXEC SQL

Description
When SQL is set ON, commands that follow are assumed to be SQL, not Recital/4GL. In the development
environment of Recital Terminal Developer, the interactive SQL prompt will be displayed and valid
Recital/ SQL commands can be executed. Most of the Recital non-SQL commands can also be executed,
but commands that conflict with SQL are not permitted. When SQL is set OFF, the normal Recital prompt
is displayed. By default, SQL is OFF.

The SET SQL ON command can also be used in config.db configuration files for session, application or
system wide setting. Since it affects the compilation of programs, it should be set prior to compilation
rather than in a program itself. Program files with a ‘.sql’ file extension are automatically compiled and
run with SET SQL ON.

Where Recital, MySQL and VFP differ in their SQL syntax, the SET SQL TO <dialect> command can be
used to select the syntax to be used. By default, SQL is set to RECITAL (see exceptions in notes below).
Since the SQL setting affects program compilation, it should be set prior to compilation rather than in a
program itself, for example in a config.db configuration file.

NOTES:
;
The semi-colon, ‘;’, is used to terminate SQL statements when SQL is set to RECITAL or MYSQL. It is
used as a line continuation character when SQL is set to VFP.

EXEC SQL
When SQL is set to RECITAL, SQL statements embedded in programs must be preceded by the EXEC
SQL statement unless SET SQL is ON.

.sql programs
When a program with a ‘.sql’ file extension is run, SQL is automatically set to MYSQL and SET SQL is
set ON.

Recital Command Prompt
At the Recital/4GL Command Prompt in Recital Terminal Developer and Recital Visual Developer, SQL is
always set to VFP.

SET COMMANDS

281

Example
> set sql on
Recital/SQL> select * from accounts;

set sql to vfp

set sql to mysql
set sql on

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

282

SET SQLPROMPT

Class
Recital Terminal Developer Environment

Purpose
Specify the Recital/SQL interactive prompt

Syntax
SET SQLPROMPT TO <expC> | DEFAULT

See Also
SET SQL

Description
The SET SQLPROMPT TO <expC> command allows you to specify the interactive SQL prompt. The
<expC> can be a maximum of 10 characters long. The SET SQLPROMPT TO DEFAULT command sets
the SQL prompt to ‘SQL>‘.

Example
Recital/SQL> set sqlprompt to “R-SQL> “
R-SQL> set sqlprompt to default
SQL>

Products
Recital Terminal Developer

SET COMMANDS

283

SET SQLROWID

Class
SQL Applications

Purpose
To include a unique row identifier in SELECT * statements

Syntax
SET SQLROWID ON | OFF

See Also
SELECT, UNIQUEROWID()

Description
The SET SQLROWID ON | OFF command is used to determine whether a unique row identifier in should
be included in SELECT * statements. If SET SQLROWID is ON, the unique row identifier will be
included, if SET SQLROWID is OFF, only the fields from the table will be included.

Example
set sql on
set sqlrowid on
select * from state.rdb where state = “M”;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

284

SET TCACHE

Class
SQL Applications

Purpose
Enable, disable and configure table caching during SQL operations

Syntax
SET TCACHE ON | OFF | TO <expN>

See Also
ALTER INDEX, ALTER TABLE, CREATE INDEX, CREATE TRIGGER, DELETE, DROP INDEX,
GRANT, INSERT, REVOKE, SELECT, UPDATE

Description
The SET TCACHE command is used to enable or disable table caching and configure the number of tables
that can be cached during SQL operations. If SET TCACHE is ON, a table accessed by an SQL statement
is left open until the session or connection is closed. With SET TCACHE OFF, tables are opened and
closed with every SQL statement.

With SET TCACHE ON, the default number of tables that can be cached corresponds to the number of
available workareas (DB_MAXWKA environment variable / symbol). This number can be reduced using
the SET TCACHE TO <expN> command. The <expN> specifies the maximum number of tables that can
be cached.

Enabling TCACHE can give significant performance benefits where multiple operations are being carried
out on the same table or tables. With TCACHE ON, individual tables can still be closed if required using
the USE command in the relevant workarea or the CLOSE <alias> command.

Example
// Up to 4 tables will remain open after a completed SQL statement
set tcache on
set tcache to 4
set sql to recital

EXEC SQL
 OPEN DATABASE southwind;

EXEC SQL
 INSERT INTO shippers
 VALUES (4,“Recital Corporation”,“(978) 921-5594”);

EXEC SQL
 UPDATE employees
 SET extension=“256”
 WHERE employeeid=4;

EXEC SQL
 DELETE FROM suppliers
 WHERE supplierid=1;

SET COMMANDS

285

EXEC SQL
 ALTER TABLE example
 ADD (email char(40));

EXEC SQL
SELECT * from products;

// Next free workarea is workarea 5
// as tables in workareas 1 to 4 remain open
? workarea()
?
close databases

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

286

SET TRANSACTION

Class
SQL Applications

Purpose
To set the current transaction state

Syntax
SET TRANSACTION [READ ONLY | READ WRITE]
SET TRANSACTION ISOLATION LEVEL <level>

See Also
CLOSE, DECLARE CURSOR, DROP CURSOR, FETCH, OPEN, SELECT

Description
A current transaction state can be either read-only or read-write. Three further aspects of transaction
behavior are configurable: dirty reads, non-repeatable reads and phantom reads.

Dirty reads occur when a transaction updates a row, then a second transaction reads that row before the
first transaction commits. If the first transaction rolls back the change, the information read by the second
transaction becomes invalid.

Non-repeatable reads occur when a transaction reads a row then another transaction updates the same row.
If the second transaction commits, subsequent reads by the first transaction get different values than the
original read.

Phantoms occur when a transaction reads a set of rows that satisfy a search condition and then another
transaction updates, inserts, or deletes one or more rows that satisfy the first transaction's search condition.
In this case, if the first transaction performs subsequent reads with the same search condition, it reads a
different set of rows.

The <level> can be any one of the following:-
• SERIALIZABLE
• REPEATABLE READ
• READ COMMITTED
• READ UNCOMMITTED

If you use a SET TRANSACTION statement, it must be the first statement in your transaction.
NOTE: This command can also be used as a standard SET COMMAND in the config.db file, to set the
transaction state on a system or application wide basis.

SET COMMANDS

287

Keywords Description
READ ONLY Set the default transaction type to read-only.
READ WRITE Set the default transaction type to read-write.
ISOLATION LEVEL Specify how the transaction will perform.
SERIALIZABLE This will disable dirty reads, non-repeatable reads and phantom reads.

This is the default isolation level.
REPEATABLE READ This will disable dirty reads, non-repeatable reads and enable only

phantom reads.
READ UNCOMMITTED This will enable dirty reads, non-repeatable reads and phantom reads.
READ COMMITTED This will disable dirty reads and enable non-repeatable reads and phantom

reads.

Example
set transaction isolation level read uncommitted;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

SET COMMANDS

288

SET XMLFORMAT

Class
SQL Applications

Purpose
Specify the default format for XML files created by SELECT...SAVE AS XML

Syntax
SET XMLFORMAT TO <RECITAL | ADO>

See Also
SELECT

Description
The SET XMLFORMAT TO <RECITAL | ADO> command allows you to specify the default format for
XML files created by SELECT...SAVE AS XML. The XMLFORMAT can be either RECITAL or ADO
(Microsoft® ActiveX® Data Objects). Any XML files created in the ADO format can be loaded with the
Open method of an ADO Recordset object.

The default XMLFORMAT setting is ADO. The default XMLFORMAT setting can also be overridden
using the FORMAT clause on the SELECT statement.

Example
set xmlformat to ADO
EXEC SQL
SELECT * FROM example
SAVE AS XML example;
// In Visual Basic the file can then be loaded:
// Set adoPrimaryRS = New Recordset
// adoPrimaryRS.Open “example.xml”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

