RETURN TO MAIN MENU

Recital/4AGL Commands

Recital/4GL Commands

Recital Corporation,
100 Cummings Center, Suite 318J
Beverly, MA 01915

Recital may have patents and/or patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents.

COPYRIGHT ©1988-2006 Recital Corporation. All rights reserved. All Recital products are trademarks or
registered trademarks of Recital Corporation, Inc. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Last Updated April, 2006

INDEX

\and \\ 1

++ 2

-- 3

&& 4

* 5

/l 6

= 7

: 8

?2|?7? 9

?77? 10
@ 12
@...BOX 13
@...CLEAR 14
@..EDIT 15
@...FILL 17
@...GET 18
@...GET - Check Boxes 24
@...GET - Lists 27
@...GET - Popups 30
@...GET - Push Buttons 33
@...GET - Radio Buttons 36
@...GET...SPINNER 38
@...MENU 41
@...PROMPT 44
@...SAY 46
@...SAY...BITMAP 48
@...SCROLL 49
@..TO 50
ACCEPT 52
ACTIVATE MENU 53
ACTIVATE POPUP 54
ACTIVATE SCREEN 55
ACTIVATE WINDOW 56
ALIAS 57
APPEND 58
APPEND AUTOMEM 60
APPEND BLANK 61
APPEND FROM 62
APPEND FROM ARRAY 64
APPEND MEMO 65
ASSERT 66
AVERAGE 67
BEGIN SEQUENCE 68
BEGIN TRANSACTION 69
BLANK 71
BROWSE 72
BUILD 76
CALCULATE 78
CALCULATOR 80
CALENDAR 81

CANCEL 82

CHANGE 83

CLASS 86

CLASS - Methods 90

CLASS - Parameters 92

CLASS - Properties 94

CLASS - Scoping 96

CLEAR 98

CLEAR ALL 99

CLEAR AUTOMEM 100
CLEAR FCACHE 101
CLEAR GETS 102
CLEAR IOSTATS 103
CLEAR KEYS 104
CLEAR LOCKS 105
CLEAR MEMORY 106
CLEAR MENUS 107
CLEAR POPUPS 108
CLEAR PROGRAM 109
CLEAR PROMPT 110
CLEAR READ 111
CLEAR SCREEN 112
CLEAR TYPEAHEAD 113
CLEAR WINDOWS 114
CLOSE 115
CLOSE ALL 116
CLOSE ALTERNATE 117
CLOSE DATABASES 118
CLOSE FORMAT 119
CLOSE INDEX 120
CLOSE PROCEDURE 121
CLOSE TABLES 122
COMPILE 123
COMPILE DATABASE 124
CONTINUE 125
CONVERT 126
COPY DICTIONARY TO 128
COPY FILE 129
COPY INDEXES 130
COPY MEMO 131
COPY STRUCTURE 132
COPY STRUCTURE EXTENDED 133
COPY TAG 134
COPY TO 135
COPY TO ARRAY 138
COUNT 139
CREATE 140
CREATE BRIDGE 146
CREATE DICTIONARY FROM 148
CREATE FROM 150
CREATE GATEWAY 150
CREATE LABEL 151

CREATE REPORT

152

CREATE SCREEN 155
CREATE VIEW 163
DEACTIVATE MENU 165
DEACTIVATE POPUP 166
DEACTIVATE WINDOW 167
DEBUG 168
DECLARE 170
DECRYPT 172
#DEFINE 173
DEFINE BAR 174
DEFINE CLASS 175
DEFINE MENU 177
DEFINE PAD 178
DEFINE POPUP 180
DEFINE TABLE 182
DEFINE WINDOW 186
DELETE 190
DELETE FILE 191
DELETE TAG 192
DESIGN 193
DIALOG BOX 195
DIALOG FIELDS 196
DIALOG FILES LIKE 197
DIALOG GET 198
DIALOG MESSAGE 200
DIALOG QUERY 201
DIALOG SCOPE 203
DIMENSION 204
DIR 206
DISPLAY 207
DISPLAY DATABASE 209
DISPLAY DICTIONARY 211
DISPLAY FILES 212
DISPLAY HISTORY 213
DISPLAY INDEXES 214
DISPLAY MEMORY 216
DISPLAY PROCEDURE 217
DISPLAY PROTECTION 218
DISPLAY REPORT 219
DISPLAY STATUS 220
DISPLAY STRUCTURE 221
DISPLAY TABLES 222
DISPLAY TRIGGERS 223
DISPLAY USERS 224
DO 225
DO CASE 226
DO WHILE 227
EDIT 229
EJECT 232
ENCRYPT 233
END TRANSACTION 234
ENDFUNC 236
ENDPROC 237

ERASE 238
ERROR 239
EXIT 240
EXTERNAL 241
FIND 242
FLUSH 243
FOR ... NEXT 244
FUNCTION 245
GATHER 247
GENERATE 248
GOTO 249
HELP 250
HIDE MENU 251
HIDE POPUP 252
HIDE WINDOW 253
IF 255
#IF...#ENDIF 256
#IFDEF...#ENDIF 257
#INCLUDE 258
INDEX ON 259
INFO 261
INPUT 263
INSERT 264
INSTALL 266
JOIN 267
KEYBOARD 268
KEYWORD 269
LABEL 270
LINK 272
LIST 274
LIST DATABASE 276
LIST DICTIONARY 278
LIST FILES 279
LIST HISTORY 280
LIST INDEXES 281
LIST MEMORY 283
LIST PROCEDURE 284
LIST PROTECTION 285
LIST REPORT 286
LIST STATUS 287
LIST STRUCTURE 288
LIST TABLES 289
LIST TRIGGERS 290
LIST USERS 291
LOCAL 292
LOCATE 293
LOCKF 294
LOCKR 295
LOGIN 296
LOGOUT 297
LOOP 298
LPARAMETERS 299
MENU 300

MENU AT 302
MENU BAR 304
MENU BROWSE 306
MENU COMMAND 308
MENU FIELDS 309
MENU FILES LIKE 311
MENU FORMAT 313
MENU FRAME 315
MENU FROM 316
MENU QUERY 318
MENU SCOPE 321
MENU TO 323
MESSAGE 324
METHOD 325
MODIFY BRIDGE 326
MODIFY COMMAND 327
MODIFY FILE 328
MODIFY LABEL 330
MODIFY MEMO 331
MODIFY REPORT 332
MODIFY SCREEN 333
MODIFY STRUCTURE 334
MODIFY VIEW 335
MOVE WINDOW 336
NOEXIT 337
NOTE 338
ON BAR 339
ON ERROR 340
ON ESCAPE 341
ON EXIT BAR 342
ON EXIT MENU 343
ON EXIT PAD 344
ON EXIT POPUP 345
ON FINISH 346
ON KEY 347
ON MAIL 349
ON MENU 351
ON MOUSE 351
ON PAD 352
ON PAGE 353
ON POPUP 354
ON READERROR 355
ON SELECTION BAR 356
ON SELECTION MENU 357
ON SELECTION PAD 358
ON SELECTION POPUP 359
ON TERMINATION 360
ON TIMEOUT 361
PACK 362
PACK DATABASE 363
PARAMETERS 364
POP KEY 365
POP MENU 366

POP POPUP 367
PRINT 368
PRIVATE 369
PROCEDURE 370
PUBLIC 372
PUSH KEY 373
PUSH MENU 374
PUSH POPUP 375
QUERY 376
QUIT 378
READ 379
READ MENU TO 381
READ MENU BAR TO 382
RECALL 383
RECOVER 384
REINDEX 385
REINDEX DATABASE 386
RELEASE 387
RELEASE LIBRARY 388
RELEASE MENUS 389
RELEASE POPUPS 390
RELEASE WINDOWS 391
RENAME 392
REPLACE 393
REPLACE AUTOMEM 395
REPLAY 39
REPORT 397
RESET IN 400
RESIZE WINDOW 401
RESTORE 402
RESTORE COLOR 403
RESTORE GETS 404
RESTORE KEYS 405
RESTORE MENU 406
RESTORE RECORDVIEW 407
RESTORE SCREEN 408
RESTORE WINDOW 409
RESUME 410
RETRY 411
RETURN 412
ROLLBACK 413
RUN 415
SAVE COLOR 416
SAVE ERROR 417
SAVE GETS 418
SAVE KEYS 419
SAVE MENU 420
SAVE RECORDVIEW 421
SAVE SCREEN 422
SAVE TO 423
SAVE WINDOW 424
SCAN 425
SCATTER 426

SCROLL 427
SEEK 428
SELECT 429
SHOW GET 430
SHOW GETS 432
SHOW MENU 433
SHOW OBJECT 434
SHOW POPUP 435
SHOW WINDOW 436
SKIP 437
SLEEP 438
SORT 439
SPAWN 440
STORE 441
STORE AUTOMEM 443
SUM 444
SUSPEND 446
TEXT 447
TOTAL 449
TREPORT 451
TRY...ENDTRY 457
TYPE 460
#UNDEF 461
UNLOCK 462
UPDATE 463
USE 464
WAIT 468
WITH...ENDWITH 469

ZAP

470

Commands by Category

Applications

V[N && *

i = ;

ALIAS CANCEL CLEAR PROGRAM
CLOSE PROCEDURE COMPILE CONTINUE
DISPLAY PROCEDURE DO DO CASE

DO WHILE ENDFUNC ENDPROC
EXIT FOR...NEXT FUNCTION

IF #IF...#ENDIF #IF...#ENDIF
#INCLUDE KEYWORD LINK

LIST PROCEDURE LOOP LPARAMETERS
METHOD NOTE ON ERROR
PARAMETERS PROCEDURE QUIT

RELEASE LIBRARY RETURN SCAN

SLEEP

Array Processing

DECLARE DIMENSION GATHER
SCATTER

Data Connectivity

CREATE BRIDGE CREATE GATEWAY LOGIN
LOGOUT MODIFY BRIDGE MODIFY GATEWAY
Databases

CLOSE DATABASES

CLOSE TABLES

COMPILE DATABASE

DISPLAY DATABASE

DISPLAY TABLES

LIST DATABASE

LIST TABLES

PACK DATABASE

REINDEX DATABASE

DES3 Encryption

| DECRYPT | ENCRYPT
Disk and File Utilities
COPY FILE COPY TO DELETE FILE
DIR DISPLAY FILES ERASE
LIST FILES RENAME RUN
SPAWN

Environment

CLEAR ALL DISPLAY MEMORY DISPLAY STATUS
DISPLAY TRIGGERS DISPLAY USERS LIST MEMORY
LIST STATUS LIST TRIGGERS LIST USERS

ON TERMINATION

Error Handling and Debugging

ASSERT BEGIN SEQUENCE DEBUG

DISPLAY HISTORY ERROR LIST HISTORY
ON FINISH RESUME RETRY

SAVE ERROR SUSPEND TRY

Fields and Records

APPEND BLANK APPEND FROM ARRAY AVERAGE
BLANK CALCULATE COPY TO ARRAY
COUNT DELETE DISPLAY
GOTO LIST LOCATE
PACK RECALL REPLACE
RESTORE RECORDVIEW SAVE RECORDVIEW SKIP
SORT SUM TOTAL
UPDATE ZAP
Information Center

| DESIGN | INFO |
Indexing
CLOSE INDEX COPY INDEXES COPY TAG
DELETE TAG DISPLAY INDEXES FIND
INDEX ON LIST INDEXES REINDEX
SEEK
Input / Output
?]?? @ @...SAY
@...SAY...BITMAP CLOSE ALTERNATE INPUT
LABEL ON MAIL REPORT
TEXT TYPE
Keyboard Events
CLEAR KEYS CLEAR TYPEAHEAD KEYBOARD
ON ESCAPE ON KEY ON TIMEOUT
POP KEY PUSH KEY REPLAY
RESTORE KEYS SAVE KEYS WAIT
Manual Locking
CLEAR LOCKS LOCKF LOCKR
UNLOCK
Memory Variables
++ -- APPEND AUTOMEM
CLEAR AUTOMEM CLEAR MEMORY #DEFINE
LOCAL PRIVATE PUBLIC
RELEASE REPLACE AUTOMEM RESTORE
SAVETO STORE STORE AUTOMEM
Memos

| APPEND MEMO | COPY MEMO | MODIFY MEMO

Menus

@...MENU @...PROMPT ACTIVATE MENU
ACTIVATE POPUP CLEAR MENU CLEAR POPUPS
CLEAR PROMPT DEACTIVATE MENU DEACTIVATE POPUP
DEFINE BAR DEFINE MENU DEFINE PAD
DEFINE POPUP DEFINE TABLE HELP

HIDE MENU HIDE POPUP MENU

MENU AT MENU BAR MENU BROWSE
MENU COMMAND MENU FIELDS MENU FILES LIKE
MENU FORMAT MENU FRAME MENU FROM

MENU QUERY MENU SCOPE MENU TO

NOEXIT ON BAR ON EXIT BAR

ON EXIT MENU ON EXIT PAD ON EXIT POPUP

ON MENU ON PAD ON POPUP

ON SELECTION BAR ON SELECTION MENU ON SELECTION PAD
ON SELECTION POPUP POP MENU POP POPUP

PUSH MENU PUSH POPUP READ MENU TO
READ MENU BAR TO RELEASE MENUS RELEASE POPUPS
RESTORE MENU SAVE MENU SHOW MENU
SHOW POPUP

Objects

CLASS CLASS - METHODS CLASS - PARAMETERS

CLASS - PROPERTIES

CLASS - SCOPING

DEFINE CLASS

WITH...ENDWITH

Performance and Optimization

CLEAR FCACHE

| CLEAR IOSTATS

Printing

7?7? EJECT ON PAGE
PRINT

Screen Dialogs

CALCULATOR CALENDAR DIALOG BOX
DIALOG FIELDS DIALOG FILES LIKE DIALOG GET

DIALOG MESSAGE

DIALOG QUERY

DIALOG SCOPE

Screen Forms

@...BOX @...CLEAR @...EDIT

@...FILL @...GET @...GET - CHECK BOXES
@...GET - LISTS @...GET - POPUPS @...GET - PUSH BUTTONS
@...GET - RADIOBUTTONS | @...GET...SPINNER @...SCROLL

@...TO ACCEPT ACTIVATE SCREEN
APPEND BROWSE CHANGE

CLEAR CLEAR GETS CLEAR READ

CLEAR SCREEN CLOSE FORMAT EDIT

FLUSH INSERT MESSAGE

ON READERROR QUERY READ

RESTORE COLOR RESTORE GETS RESTORE SCREEN

SAVE COLOR SAVE GETS SAVE SCREEN

SCROLL SHOW GET SHOW GETS

SHOW OBJECT

Screen Windows

ACTIVATE WINDOW

CLEAR WINDOWS

DEACTIVATE WINDOW

DEFINE WINDOW

HIDE WINDOW

MOVE WINDOW

RELEASE WINDOWS

RESIZE WINDOW

RESTORE WINDOW

SAVE WINDOW

SHOW WINDOW

Table Basics
APPEND FROM BUILD CLOSE
CLOSE ALL CLOSE DATABASES CONVERT
COPY DICTIONARY TO COPY STRUCTURE COPY STRUCTURE
EXTENDED

CREATE DICTIONARY FROM | CREATE FROM DISPLAY DICTIONARY
DISPLAY PROTECTION DISPLAY STRUCTURE GENERATE
INSTALL JOIN LIST DICTIONARY
LIST PROTECTION LIST STRUCTURE RECOVER
SELECT USE
Terminal Developer Development Tools
CREATE CREATE BRIDGE CREATE GATEWAY
CREATE LABEL CREATE REPORT CREATE SCREEN
CREATE VIEW ED MODIFY BRIDGE
MODIFY COMMAND MODIFY FILE MODIFY GATEWAY
MODIFY LABEL MODIFY REPORT MODIFY SCREEN
MODIFY STRUCTURE MODIFY VIEW \4
Transaction Processing

| BEGIN TRANSACTION | RESET IN | ROLLBACK

Xbase Compatibility

| EXTERNAL

T\

Class
Applications

Purpose
Output lines of text

Syntax
\ <text> | \\ <text>

See Also
SET TEXTMERGE TO, SET TEXTMERGE DELIMITERS, SET TEXTMERGE ON|OFF,
TEXT...ENDTEXT, TREPORT

Description

The \ and \\ commands are used to output lines of text to the screen, to a file, or to window. <text> may
also include expressions which are bracketed by < and >. These expressions will be evaluated before the
text is output.

Any spaces, text and delimited expressions following the \ command are preceded by a new line character
in UNIX and a carriage return/line feed pair in OpenVMS. The <text> line is then output. Any spaces, text
and delimited expressions following the \\ command are not preceded by an end of line marker. The <text>
line is then output. Delimited expressions may include table field names, memory variables, and functions.
The default text delimiters are < and >.

The SET TEXTMERGE DELIMITERS command may be used to change this default. The SET
TEXTMERGE TO command is used to merge text to a file, or a window. The SET TEXTMERGE
ON|OFF command determines whether delimited expressions will be evaluated, or output literally. Text is
output when it is placed after the \ and \\ commands, or when it is between the TEXT...ENDTEXT
commands.

Example

use test

set textmerge to balance.txt

set textmerge to delimiters to “{{",“}}”

set textmerge on

go top

do while balance > 0
\Date: {{date()}}
\Name: {{last_name}} {{first_name}}
\
\Account Number : {{account_no}}
\Current Balance : {{balance}}
\Credit Limit: o {{limit}}
\

enddo

set textmerge off

set textmerge to

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

++

Class
Memory Variables

Purpose
Increment memory variable by one

Syntax
++ <memvar>

See Also
--, STORE, PRIVATE, PUBLIC, PARAMETERS, SUM, COUNT, AVERAGE

Description
The ++ command is used to automatically increment a previously declared numeric memory variable by
one. The ++ command must be placed at the beginning of the command line.

Example

i=0

do while i <100
++ |

enddo

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Class
Memory Variables

Purpose
Decrement memory variable by one

Syntax
-- <memvar>

See Also
++, STORE, PRIVATE, PUBLIC, PARAMETERS, SUM, COUNT, AVERAGE

Description
The -- command is used to automatically decrement a previously declared numeric memory variable by
one. The -- command must be placed at the beginning of the command line.

Example

i=100

do whilei>0
|

enddo

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

&&

Class
Applications

Purpose
Add comments to a program to improve its readability and maintainability

Syntax
&& <expC>

See Also
* [NOTE

Description

The && command allows all characters following it on a line to be treated as a comment and to be ignored
by the Recital/4GL. The && command differs from the NOTE command, and the * command, in that it
can be placed anywhere on a line, even following an executable command.

Example
&& open the table
use patrons index names && view in name order

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Class
Applications

Purpose
Comment line

Syntax
* <expC>

See Also
&&, NOTE, //

Description

The * command allows comment lines to be inserted in programs to enhance their readability and
maintainability. The "' character must be the first non-space character on the line. The *' command
differs from the && command in that comments that commence with && can be placed on the same line as
an executable command whereas those beginning with * cannot.

Example
open the table
use patrons index names

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Il

Class
Applications

Purpose
Comment line

Syntax
Il <expC>

See Also
* &&, NOTE

Description

The // command allows comment lines to be inserted in programs to enhance their readability and
maintainability. Like the && command, the // command allows all characters following it on a line, to be
treated as a comment and to be ignored by the Recital/4GL. The // command differs from the NOTE
command, and the * command, in that it can be placed anywhere on a line, even following an executable
command.

Example
// open the table
use patrons index names // view in name order

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Class
Applications

Purpose
Inline assignment

Syntax
<alias>-><field> | [m->]<memvar> := <exp>

See Also
REPLACE, STORE

Description

The := inline assignment operator is used to assign a value to a field or memory variable. Assignment can
also be achieved using the STORE command or ‘=" operator in the case of memory variables and the
REPLACE command for fields. The tables alias name and alias operator, ‘->" must be specified when
assigning a value to a field. If these are missing, the target is assumed to be a memory variable and is
created as a PRIVATE memory variable if it does not already exist. The ‘m->" memory alias pointer can
be specified, but is not required.

Example

use names

3

? “mid_name="",mid_name,
//Create memvar ‘mid_name’
mid_name := “James”

replace names->mid_name with *”
//Assign value to field *‘mid_name’
names->mid_name ;= “James”
m_name := “James”

(31 (122311

? “mid_name="",mid_name, “’”

? “mid_name="",m->mid_name, “’”
? “m_name="",m_name,“’”

?

Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

Class
Applications

Purpose
Command separator /continuation character

Syntax
<command> [; <command>]

See Also
* I, &&, NOTE

Description

Multiple commands can be placed on a line by separating each command with a ';' character. The ;'
character may also be used to continue a literal character string to the next line. When the ';' character is
used in this way, a space is added to the string. If ;" is the last character on a line, it can be used as a
continuation character to extend commands over more than one line.

Example
// Used as a command separator
if deleted()
dialog box “Record deleted.”; clear; return
else
dialog box “Record not deleted.”
endif
// Used as a continuation character
menu browse accounts->name;
label “Account Names”
// Used in a character string
dialog message “That file does not exist. Do you wish to;
continue?”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

?1?7?

Class
Input/Output

Purpose
Evaluate expression and output result

Syntax

? <exp> [,<exp>] | ?? <exp> [,<exp>]
[AT <expN>]

[FUNCTION <expC1>]

[PICTURE <expC2>]

[STYLE <expC3>]

See Also
@...GET, @...SAY, ACCEPT, INPUT, WAIT, SET SPACE, TRANSFORM()

Description

The ? command outputs a carriage return, then a line feed, then evaluates each expression in turn and
displays the result. The ?? command evaluates the expression and displays the results on the same line, no
carriage return/line feed sequence is output. If more than one expression is specified and SET SPACE is
ON, a single space is output between each expression. If SET SPACE is OFF, the expressions are output
with no space in between.

Clause Description

AT <expN> You may optionally specify the column at which the expression will be
output with the AT <expN> clause.

PICTURE <expC1> The PICTURE clause supports all picture template symbols listed in the

@...SAY command.

FUNCTION <expC2> The FUNCTION qualifier allows picture functions to be specified.
Normally this can be done with the PICTURE qualifier by preceding the
picture with ‘@’. If the FUNCTION qualifier is used the ‘@’ is not needed.

STYLE <expC3> The STYLE qualifier has been added for compatibility with other Xbase
languages.

In Recital Mirage, the following style qualifiers are supported in <expC3>:

<expC3> Style

B Bold

I Italic

) Underline

- Strikeout
Example

? “price” at 01 picture “@!”,1234.56 picture “$99,999.99”
PRICE $1,234.56

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

27?7

Class
Printing

Purpose
Evaluate expression and output result to printer

Syntax
777 <expC>

See Also
?,??, SET DEVICE TO PRINT, PRINT, SET PRINTER ON, SET PRINT TO \SPOOLER

Description

The ??? command evaluates the specified expression and sends the output to the printer. This command is
particularly useful for sending initialization strings to a printer. Initialization strings contain control
characters that prescribe certain printing attributes. If your printer driver does not support a certain printing
capability, the ??? command can be used to circumvent the driver and send printer control codes directly to
the printer. Your printer manual contains a table of control codes and the correct use of each. Printer
control codes may contain any printable character with the exception of the double quote mark “”.
Printable character codes may be expressed in a variety of ways, however strings that name non-printable
characters must include curly braces {}. The <expC> can contain directives that are translated from the
following table:

ASCII Code Control Character Specification
0 {NULL} or {CTRL @}

1 {CTRL-A}

2 {CTRL-B}

3 {CTRL-C}

4 {CTRL-D}

5 {CTRL-E}

6 {CTRL-F}

7 {BELL} or {CTRL-G}

8 {BACKSPACE} go {CTRL-H}
9 {TAB} or {CTRL-I}

10 {LINEFEED} or {CTRL-J}
11 {CTRL-K}

12 {CTRL-L}

13 {RETURN} or {CTRL-M}
14 {CTRL-N}

15 {CTRL-0O}

16 {CTRL-P}

17 {CTRL-Q}

18 {CTRL-R}

19 {CTRL-S}

20 {CTRL-T}

21 {CTRL-U}

22 {CTRL-V}

23 {CTRL-W}

24 {CTRL-X}

25 {CTRL-Y}

26 {CTRL-Z}

10

ASCII Code Control Character Specification
27 {ESCAPE} or {ESC} or {CTRL-[}
28 {CTRL-\}
29 {CTRL-]}
30 {CTRL-"}
31 {CTRL- }
32 {DEL} or {DELETE}
Example

??? “{ESCAPE}24”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

11

Q@

Class
Input/Output

Purpose
Position the cursor on the screen and clear to the end of the line

Syntax
@<expN1>,<expN2>

See Also
@...BOX, @..CLEAR, @...FILL, @...GET, @...MENU, @...PROMPT, @...SAY, @...SCROLL, @...TO,
SET ALTERNATE, SET DEVICE, CREATE REPORT, TREPORT, ROW(), COL(), PROW(), PCOL()

Description

The @ command is used to position the cursor at the specified row, <expN1> and column, <expN2> on the
screen, and then clear to the end of the row. Rows on the screen are addressable from 0 to the height of the
screen display, and columns are addressable from 0 to 79. If SET DEVICE TO PRINT has been issued,
any range is addressable and the print head of the printer is positioned at the row, column specified.

Example
@0,0
@i+1,]

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

12

@...BOX

Class
Screen Forms

Purpose
Draw a box using the specified coordinates

Syntax
@<expN1>,<expN2>,<expN3>,<expN4> BOX [<expC>]

See Also
@...CLEAR, @...FILL, @...GET, @...MENU, @...PROMPT, @...SAY, @...SCROLL, @...TO

Description

This command can be used to draw a box on the screen, or on a user-defined window. <expN1>and
<expN2> define the row and column coordinates of the upper left-hand corner of the box, and <expN3>
and <expN4> define the row and column coordinates of the lower right hand corner of the box. If
<expN1> and <expN3> contain the same value, a horizontal line will be drawn. If <expN2> and <expN4>
are the same value, a vertical line will be drawn.

The optional argument <expC> defines the characters to fill the box. Up to nine characters may be used
and if fewer than nine characters are used, a partial box will be drawn. The first character of the <expC>
fills the top left corner of the box. The second character of the <expC> fills the top row of the box. The
third character fills the top right corner of the box. The fourth character fills the right side of the box. The
fifth character fills the bottom right corner of the box. The sixth character fills the bottom row of the box.
The seventh character fills the bottom left corner of the box. The eighth character fills the left side of the
box, and the ninth character fills the remaining center of the box.

Example
@0,0,10,10 box “123456789”

12222222223
89999999994
89999999994
89999999994
89999999994
89999999994
89999999994
89999999994
89999999994
89999999994
76666666665

Products
Recital Mirage Server, Recital Terminal Developer

13

@...CLEAR

Class
Screen Forms

Purpose
Position the cursor on the screen and clear to the end of the screen

Syntax
@<expN1>,<expN2> CLEAR
@<expN1><expN2> CLEAR TO <expN3>,<expN4> [BOLD] [REVERSE]

See Also
@..BOX, @...FILL, @...GET, @...MENU, @...PROMPT, @...SAY, @...SCROLL, @...TO, ROW(),
COL()

Description
The @...CLEAR command positions the cursor at the specified row <expN1> and column <expN2> on the
screen and then clears the rest of the screen or window from that point downwards.

The @...CLEAR TO command clears a rectangular area of the screen or window, whose upper-left corner
is at <expN1> and <expN2> and bottom left corner is at <expN3> and <expN4>. If the REVERSE
keyword is specified, the area is displayed in reverse video. If the BOLD keyword is specified, the area is
displayed in highlighted reverse video.

Example
@10,0 clear

Products
Recital Mirage Server, Recital Terminal Developer

14

@...EDIT

Class
Screen Forms

Purpose
Create a FoxPro style text-editing region for data input

Syntax

@<expN1><expN2> EDIT <memvar> | <field>
SIZE <expN3>,<expN4> [,<expN5>]

[COLOR SCHEME <expN6> | COLOR <expC1>]
[DEFAULT <exp>]

[ENABLE | DISABLE]

[FONT <expC2>]

[FUNCTION <expC3>]

[MESSAGE <expC4>]

[NOMODIFY]

[SCROLL]

[STYLE <expC5>]

[TAB]

[VALID <expL1> [ERROR <expC6>]]

[WHEN <expL2>]

See Also
@...GET, @...SAY, APPEND, CHANGE, EDIT, SET COMPATIBLE, SET FILETYPE, READ

Description

The @...EDIT command can be used to create a FoxPro style text-editing region. The @...EDIT
command can be used to edit a memory variable, a memo field or a character field. The text-editing region
is displayed at the row and column coordinates specified by <expN1> and <expN2>.

SIZE <expN3>,<expN4> [,<expN5>]

The SIZE <expN3>,<expN4> clause defines the size of the text-editing region. <expN3> is the height and
<expN4> is the width. The SIZE clause must be used. The optional <expN5> specifies the number of
characters that can be edited.

COLOR SCHEME <expN6> | COLOR <expC1>

The COLOR SCHEME | COLOR clause is used to define the foreground and background colors of the edit
region. The <expNG6> is the number of a color scheme. The <expC1> is a color pair in the format
foreground / background.

DEFAULT <exp>
The DEFAULT clause is used to specify a default value for the variable being edited in the edit region.

ENABLE | DISABLE
The DISABLE keyword can be included to prevent the edit region from being selected. By default, edit
regions are enabled.

FONT <expC2>
The FONT clause specifies the font to be used.

FUNCTION <expC3>
The FUNCTION clause determines the text justification. The following options are supported in <expC3>:

15

<expC3> Style

I Centers text.

J Right-justifies text.

MESSAGE <expC4>
The MESSAGE clause is used to specify a text message, <expC4>, of up to 80 characters, which will be
displayed in the message line when the edit region is selected.

NOMODIFY
The NOMODIFY keyword specifies that the edit region can be displayed, but the contents cannot be
edited.

SCROLL
If the SCROLL keyword is included, a scroll bar will be displayed on the edit region when the text exceeds
the displayed size.

STYLE <expC5>
The STYLE clause defines the font style. The following style qualifiers are supported in <expC5>:
<expC5> Style
B Bold
I Italic
U Underline
- Strikeout

VALID <expL1> [ERROR <expC6>]

If the VALID clause is included and changes are made to the text in the edit region, <expL1> must evaluate
to .T. (true) before the changes are saved. The optional ERROR clause causes the character expression
<expC6> to be displayed when <expL1> evaluates to .F. (false).

TAB
If the TAB keyword is included, tabs can be inserted into the edit region text using the tab key. The default
behavior is for the tab key to cause the cursor to move to the next control.

WHEN <expL2>
The text-editing region can only be used when the <expL2> condition evaluates to true (.T.).

Example

@01,01 edit customer->notes;
size 3,10

read

Products
Recital Mirage Server, Recital Terminal Developer

16

@...FILL

Class
Screen Forms

Purpose
Change the colors of a specified region

Syntax
@<expN1>,<expN2> FILL TO <expN3>,<expN4>[COLOR <color>]

See Also
@...BOX, @...CLEAR, @...GET, @...MENU, @...PROMPT, @...SAY, @...SCROLL, @...TO, SET
COLOR, SAVE COLOR, RESTORE COLOR, ISCOLOR(), SETCOLOR()

Description

The @...FILL command changes the colors of the text in the specified region of the screen, or window.
Only the standard foreground and background colors in the area can be changed. This command affects the
display already on the screen and any subsequent commands that write to this area will use the default
colors, not the colors set with the @...FILL command. If the COLOR <color> option is omitted, the
@...FILL command clears the specified region of the screen. If SET DEVICE TO PRINT is in effect, then
this command is ignored.

The region on the screen is specified using <expN1> and <expN2> as the top left corner row and column
coordinates, and <expN3>, <expN4> as the bottom right corner row and column coordinates.

Clause Description

COLOR <color> The <color> is a color pair. A color pair is a set of two letters separated by a
forward slash. The first color letter specifies the foreground color and the
second letter specifies the background color.

Example
@05,00 fill to 08,09 color gr+/b

Products
Recital Mirage Server, Recital Terminal Developer

17

@...GET

Class
Screen Forms

Purpose
Data entry

Syntax
@ <expN1>,<expN2> GET <memvar> | <field>
[BUTTON <expC1>
[LABEL <expC2>]
[GROUP <expC3>]
[HELP <expC4>]
[TRIGGER <expC5>]]
[CALCULATE]
[CALCULATED BY <exprl>]
[CHOICELIST <expC6>]
[COLOR <color> | COLOR SCHEME <expN3>]
[DEFAULT <expr2>]
[DISABLE | ENABLE]
[ERROR <expC7>]
[FONT <expC8>[, <expN4>]]
[FUNCTION <expC9> | PICTURE <expC10>]
[HELP <expC11>| MESSAGE <expC12>]
[LOOKUP IN <alias>]
[MUST_ENTER]
[NOECHO]
[NAME <expC13>]
[POSTFIELD <program | procedure>]
[PREFIELD <program | procedure>]
[PROPERTIES <expC14>]
[RANGE <expr3>,<expr4>]
[READ_ONLY [IF <expL1>] | WHEN <expL2>]
[RELATION [INTO <alias>]
[VALID <expL3> | <expN5> | IN <expC14> | VALIDATE WITH <program | procedure>]

See Also

©@...BOX, @...CLEAR, @...FILL, @...MENU, @...PROMPT, @...SAY, @...SCROLL, @...TO, CLEAR
GETS, SHOW GETS, SAVE GETS, FUNCTION, SET CONFIRM, SET FORMAT, APPEND, CHANGE,
CREATE SCREEN, EDIT, INSERT, ROW(), COL(), MENU AT, SET UPDATE, SET QUERYMODE,
READ, USE

Description

The @...GET command is used to create an editing region for the contents of a memory variable, array
element or field. @...SAY and @...GET can be combined into a single command. If both the SAY and
GET are combined into single statement, then specify only one set of screen coordinates where the
@...SAY output begins. The @...GET editing region will be placed one character after the end of the
@...SAY.

The Recital Forms Designer can be used to create data entry forms containing @...GET commands. See
CREATE SCREEN for full details.

18

When a READ command is issued, all GETS which have been processed since the last READ or CLEAR
GETS command become active.

<expN1>,<expN2>

The <expN1>, <expN2> are numeric expressions specifying the row and column coordinates. Row
numbers start at 0 and are incremented from top to bottom. Column numbers start at 0 and are incremented
from left to right.

<memvar> | <field>

@...GET creates an editing region for the memory variable or array element specified in <memvar> or the
field specified in < field>. Fields in open tables in other (not currently selected) workareas must be
prefixed with an alias pointer. An alias pointer is an alias name followed by the symbol “.” or *->’. Fields
have precedence over memory variables with the same name. Memory variables having the same name as
a field in the active table file must be prefixed by a memory variable alias pointer: ‘m.” or ‘m->’.

@...GET <memvar> | <field> BUTTON <expC1>
[LABEL <expC2>]
[GROUP <expC3>]
[HELP <expC4>]
[TRIGGER <expC5>]
The optional BUTTON keyword is used to define the <memvar> | <field> as a check box or radio button.

Check boxes correspond to logical fields or memory variables and can be selected or deselected using the
[SPACEBAR]. When a check box is selected, its corresponding <memvar> or <field> is set to true (.T.).
When it is deselected, its corresponding <memvar> or <field> is set to False (.F.). The check box edit
region is represented by square brackets: []. When a check box is deselected, the brackets are empty, when
the check box is selected an asterisk is displayed inside the brackets.

Radio buttons form groups, whereby each radio button corresponds to a possible value <expC1> for a
character field or memory variable. Only one radio button may be selected at any one time, since this
signifies the <memvar> or <field> value. The radio button edit region is represented by round brackets: ().
When a radio button is deselected, the brackets are empty, when the radio button is selected, an asterisk is
displayed inside the brackets.

The optional LABEL <expC2> keyword specifies a label for the check box or radio button. If no LABEL
is specified, the character expression specified in the BUTTON clause is used.

The GROUP <expC3> keyword is used to group radio buttons. Each radio button that you specify in a
group of radio buttons must be given the same GROUP <expC3>.

The optional HELP <expC4> keyword specifies a message that will appear in the message line of the
screen when the cursor moves onto the check box or radio button.

The optional TRIGGER <expC5> keyword specifies the name of an event driven procedure to be called
when the button is selected or deselected. The TRIGGER procedure is called with the following three
parameters:

Parameter Check Box Radio Button
<group name> | Null string The name of the group as specified in the
GROUP clause.
<button name> | The name of the button as specified in The name of the button as specified in
the BUTTON clause. the BUTTON clause.
<value> .T. if selected, .F. if not selected. .T. if selected, .F. if not selected.

19

CALCULATE
Whenever data is input into an @...GET, which has CALCULATE specified, all of the CALCULATED
BY <expr> @...GETS are recalculated and redisplayed.

CALCULATED BY <exprl>

Used to calculate and display the expression in the @...GET edit region. The expression is calculated when
the @...GET is first activated, or when data is entered in another active GET which has the CALCULATE
clause. Any valid expression may be used (including User Defined Functions). The CALCULATED BY
clause makes the @...GET read only.

CHOICELIST <expC6>

The optional CHOICELIST <expC6> keyword allows a pop-up choicelist or a User Defined Function
(UDF) to be associated with an @...GET when the [HELP] key is pressed. The CHOICELIST <expC6>
can be in one of the following three forms:

A static choicelist made up of a series of character expressions separated by commas: <expCi>
[,<expCii>].... Each set of characters between the commas becomes a separate menu option. This
choicelist is non-scrollable and can take up to 19 options.

A dynamic choicelist made up of records from tables other than the current table: “@<alias>,<expC>".
The <alias> can refer to a workarea or to a table in the current directory. If the table is not opened it will
automatically be opened and then closed again once a selection has been made. The <expC> must include
a reference to at least one field in the <alias> table. The <expC> can also include literal values and alias
pointers to related tables. The dynamic choicelist is scrollable with the [NEXT SCREEN], [PREVIOUS
SCREEN] and [ARROW] keys. The [FIND] key can also be used to find menu items in the <alias> table
being browsed. When the [FIND] key is selected, a popup DIALOG GET box is displayed, allowing the
search string to be entered. If the <alias> table is indexed, a SEEK will be performed. If not,a LOCATE
FOR will be performed. A filter condition may be defined on the <alias> table specified in the choicelist to
limit the records that will appear as menu items.

A UDF can be used to return a character expression to be placed in the field. To specify a UDF to execute
when the [HELP] key is pressed, the UDF name is prefixed with a question mark (?). For example:

@10,3 get account_name;
choicelist “?helpproc()”

The CHOICELIST option can only be used on character fields/variables. There are default help objects on
dates (calendar), numerics (calculator), memos (editor) and logicals (fixed choicelist). If a popup choicelist
is required on non-character fields/variables, this can be achieved using the VALIDATE WITH clause in
combination with one of the many MENU commands. If the VALIDATE WITH option is used, the
CHOICELIST option will be ignored. The CHOICELIST specified on an @...GET will override any pre-
defined Applications Data Dictionary choicelist.

COLOR <color code> | COLOR SCHEME <expN3>

The color of @...GET output can be specified by including a set of color pairs in the COLOR clause or
specifying a numeric COLOR SCHEME <expN3>. If you do not specify the COLOR | COLOR SCHEME
clause then the @...GET is displayed in the default Color of Fields. The color that is specified overrides the
SET COLOR command, but only for the output of the current @...GET command.

DEFAULT <expr2>
The DEFAULT clause is included for FoxPro compatibility.

DISABLE | ENABLE

If the DISABLE clause is included, the GET is not active and cannot be selected or modified. GETs are
enabled by default. READ will exit immediately if all GETs are marked DISABLE.

20

ERROR <expC7>

The optional ERROR <expC7> keyword causes an error message to be displayed if LOOKUP IN,
RELATION, VALIDATE WITH or the VALID <condition> fail. The error message <expC7> is displayed
in an ALERT message box, and can be a maximum of 80 characters in length.

FONT <expC8>[, <expN4>]

The name of the font is specified in <expC8> and, optionally, the font size in <expN4>.

FUNCTION | PICTURE
The optional PICTURE or FUNCTION clause allows for specialized formatting to be performed on the
data before it is input or output. It causes each individual character entered in the field to be validated as it

is entered.

FUNCTION codes can be included in a PICTURE clause. In this case, the PICTURE clause must start
with @. Since a FUNCTION clause affects the entire expression, it can only contain FUNCTION codes.

Function Code

Description

Allows only letters (A-Z, a-z) to be entered.

Left justifies a number.

Displays dates in the current SET DATE format.

Displays dates in European format dd/mm/yy

Centers the text.

Right justifies the text.

Selects the entire field for editing when it gets focus.

Displays leading zeros in numeric output.

Displays literal characters in the template, but does not store them in the data.

N
>
\Y

Allows horizontal scrolling of a wide character field.

Trims leading and trailing blanks.

Replaces leading zeroes in a number with spaces.

—[IN|H|» ||| X|[<|[—mM|O|m|>

Converts all alphabetic characters entered in the field to upper-case

A PICTURE template can include any characters, but only valid picture codes affect the editing, any other
value is stored in the data. Each Picture Code applies to the character at that position only, not to the entire

input.

Picture Code

Description

Allows lower-case or uppercase letters only to be entered.

Allows only logical data to be entered, (Y, N, T, or F).

Allows letters and digits only.

Allows only A-Z to be entered and automatically converted to upper case.

Allows any character to be entered.

Allows only Y or N to be entered.

Allows digits (0-9), ", '+', or '-' to be entered

Converts any characters entered to upper case.

A
L
N
)
X
Y
#
!

9

Allows digits (0-9), ", '+', or -' to be entered.

Specifies the position of a decimal point in a number.

Displays commas in ‘thousands’ places if the number is large enough.

s

Displays leading $ in front of numbers instead of spaces.

*

Displays leading * in front of numbers instead of spaces.

Others

Other characters included in the picture for character fields are added to the field.

HELP <expC11> | MESSAGE <expC12>
The HELP and MESSAGE clauses are synonymous. The character expression <expC11> or <expC12>, of
up to 80 characters in length, is displayed in the message line when the @...GET has focus.

21

LOOKUP IN <alias>

The LOOKUP IN clause defines a validity check using a cross-table lookup. The alias hame of the lookup
table must be specified as <alias>. Changing the field value causes the lookup table to be scanned for the
new value. If the value does not exist in the lookup table, a validation failed error message is displayed.
See ERROR for user-defined error messages.

MUST_ENTER
The MUST_ENTER clause is used to enforce data entry in empty GETS. You cannot commit any changes
until the GET with a MUST_ENTER clause has had data entered into it.

Data Type Empty when
Character No text entered
Numeric Equal to zero
Logical Equal to .F.
Date No data entered
Memo No text entered

NAME <expC13> (Recital Mirage only)

The NAME clause is used to create a “wrapper’ object for the GET. The <expC13> must be a unique name
for the current READ. Once defined, the NAME clause allows properties to be set and methods to be
called on the client for that GET. For additional information on object properties and methods, please see
the Recital Mirage documentation.

NOECHO
The NOECHO option is used to disable the echoing of the input characters. It is particularly useful for
entering passwords. As each character is entered, “*” is displayed.

POSTFIELD <program | procedure>
The POSTFIELD clause is used to specify a procedure name for the POSTFIELD trigger. The
POSTFIELD trigger procedure is called as the field is exited.

PREFIELD <program | procedure>
The PREFIELD clause is used to specify a procedure name for the PREFIELD trigger. The PREFIELD
trigger procedure is called as the field is entered.

PROPERTIES <expC14> (Recital Mirage only)
The PROPERTIES clause can be used to specify properties for the specified get. For information on the
available properties, please see the Recital Mirage documentation.

RANGE<expr3>,<expr4>

The RANGE option can be specified for numeric or date fields. The lowest value is represented by
<expr3> and the highest value by <expr4>. Input data is checked to verify that it lies within the specified
range. If it is out of range, a message will be displayed in the message line.

READ_ONLY [IF <expL1>] | WHEN <expL2>

The READ_ONLY option disables editing of the specified GET field. When this option is used, the
contents of the field will be redisplayed as each new record is displayed on the screen. The optional IF
<expL1> can be used to make the field READ_ONLY when the specified <expL1> is true (.T.). If the
<expL1> evaluates to false (.F.), the field can be edited. The WHEN <expL2> has the same effect, but the
opposite syntax. It is used to make the field read only when the specified <expL2> is false (.F.).

22

RELATION [INTO <alias>]

The RELATION option causes the data entered in the field to be used as a key field for a related table. The
key is searched for in the master index of the specified table, and the record associated with that key read.
The optional INTO <alias> clause specifies the target table. The INTO <alias> is not needed if
relationships have already been established with the SET RELATION command. When the target table has
any relationships to other tables specified with the SET RELATION command, the ‘relationship chain’ is
traversed, satisfying the relationships.

VALID <expL3> | <expN5> | IN <expC14>

The VALID clause is used to validate data entry. When the GET is exited, the validation is called. If the
<expL.3> evaluates to true (.T.), the input is considered correct and the editing region is exited. If it
evaluates to false (.F.), the data entered is rejected and a default error message, or the ERROR <expC7> is
displayed. VALID <expL3> cannot be used in conjunction with Application Data Dictionary
VALIDATION entries.

The VALID <expN5> option may be used with a function that returns a numeric value to select a GET for
input. GET numbers are assigned in the order that they appear on the screen. The GETNO() function
returns the number of the currently active get. The numeric value returned can have three different effects.
When <expN5> is 0, the current GET remains in focus. When <expN5> is positive, the value is used to
advance the GET focus the number of GETS specified. When <expN5> is negative, the value is used to
move back the GET focus the number of GETS specified. VALID <expN5> cannot be used in conjunction
with Application Data Dictionary VALIDATION entries.

The VALID IN option causes the input data to be checked against that specified in the character expression
<expC14>. VALID IN is only active with character fields. It checks that the input data is contained as a
sub string in <expC12>. Note that the <expC12> should consist of multiple strings of the same length as
the field. VALID IN cannot be used in conjunction with the CHOICELIST clause. The VALID IN clause
can be used in conjunction with Application Data Dictionary VALIDATION entries. The VALID IN
check will be evaluated first.

VALIDATE WITH <program | procedure>

The VALIDATE WITH clause causes the specified <program | procedure> to be called, passing the input
data as a parameter. The <program | procedure> must have a PARAMETERS statement with a single
parameter defined. The parameter passed is a character string, regardless of the data type of the field in
question. To signify that the input data has passed the validation checks the command SET VALIDATE
ON should be issued. To reject the input data, the command SET VALIDATE OFF should be issued. The
data itself may be modified using the SET FIELDVAL TO <expC> command. If the [HELP] key is
pressed on a field that has a VALIDATE WITH specified, the <program | procedure> will be called with
the parameter of “HELP”. In this way, default popups and choice lists can be bypassed. VALIDATE
WITH cannot be used in conjunction with the CHOICELIST clause. The VALIDATE WITH clause can be
used in conjunction with Application Data Dictionary VALIDATION entries. The VALIDATE WITH
check will be evaluated first.

Example

@3,3 get m_name;
picture “IXXXXXXXXXX™;
color gr+/b, riw

read

Products
Recital Mirage Server, Recital Terminal Developer

23

@...GET — Check Boxes

Class
Screen Forms

Purpose
Create a FoxPro style check box for data input

Syntax

@<expN1>,<expN2> GET <memvar> FUNCTION <expC1> | PICTURE <expC2>
[COLOR SCHEME <expN3> | COLOR <expC3>]
[DEFAULT <expr>]

[DISABLE | ENABLE]

[FONT <expC4>[, <expN4>]]

[MESSAGE <expC5>]

[PROPERTIES <expC6>]

[SIZE <expN5>,<expN6>]

[STYLE <expC7>]

[VALID <expL1> | <expN7>]

[WHEN <expL2>]

See Also
@...GET, @...SAY, SET COMPATIBLE, SET FILETYPE, READ

Description

The @...GET command can be used to create FoxPro style check box controls. Check boxes have two
states, checked, which corresponds to a logical true (.T.) or a numeric 1, or unchecked, which corresponds
to a logical false (.F.) or a numeric 0. Check boxes are displayed on the screen at the row <expN1>,
column <expN2> coordinates as a pair of square brackets followed by a character string label. If the check
box is checked, an asterisk is displayed inside the brackets. If the check box is unchecked, the brackets are
empty. The check box can be checked/unchecked using the [SPACEBAR] or the [RETURN] key. To
move off a check box, use the cursor keys. The status of the check box is returned to the <memvar>, which
must be of logical or numeric data type.

The FUNCTION or PICTURE clauses are used to define the GET as a check box. The definition must
include the check box code, “*C”, and the text label for the check box. The check box code must be
preceded with an “@” in the PICTURE clause. The following options may also be included, immediately
after the “*C”:

Picture/Function Option Description
N READ is not terminated when check box is checked.
T READ is terminated when check box is checked.

24

The following clauses can optionally be used:

Keyword

Description

COLOR SCHEME <expN3>
| COLOR <expC3>

The color of @...GET output can be specified by including a set of
color pairs in the COLOR clause or specifying a numeric COLOR
SCHEME <expN3>. If you do not specify the COLOR | COLOR
SCHEME clause then the @...GET is displayed in the default Color of
Fields. The color that is specified overrides the SET COLOR
command, but only for the output of the current @...GET command.

DEFAULT <expr>

The DEFAULT clause specifies a default value for <memvar>.

DISABLE | ENABLE

If the DISABLE clause is included, the GET is not active and cannot
be selected or modified. GETSs are enabled by default. READ will exit
immediately if all GETs are marked DISABLE.

FONT <expC4>[, <expN4>]

The name of the font is specified in <expC4> and, optionally, the font
size in <expN4>.

MESSAGE <expC5>

Defines a message to be displayed in the message line when the
checkbox is the active GET.

PROPERTIES <expC6>

The PROPERTIES clause can be used to specify properties for the
specified checkbox. For information on the available properties, please
see The Mirage Object Model in the Recital Mirage documentation.

SIZE <expN5>,<expN6>

Defines the size of the control, <expN5> is the height and <expN6> is
the width. Check boxes always have a height of one.

STYLE <expC7>

The STYLE clause can include the following in <expC7>:
B =Bold

I = Italic

U = Underline

- = Strikeout

VALID <expL1> | <expN7>

The VALID clause is used to validate data entry. When the selected
checkbox changes, the validation is called. If the <expL1> evaluates to
true (.T.), the input is considered correct and the checkbox is exited. If
it evaluates to false (.F.), the selection is rejected. The VALID
<expN7> option may be used with a function that returns a numeric
value to select a GET for input. GET numbers are assigned in the
order that they appear on the screen. The GETNO() function returns
the number of the currently active get. The numeric value returned can
have three different effects. When <expN7> is 0, the current GET
remains in focus. When <expN7> is positive, the value is used to
advance the GET focus the number of GETS specified. When
<expN7> is negative, the value is used to move back the GET focus the
number of GETS specified.

WHEN <expL2>

The checkbox only allows selection when <expL2> evaluates to true

(T).

NOTE: The @...GET...BUTTON syntax can also be used to create check box controls.

25

Example

mContinue = .F.

@20,0 get mContinue function “*CT Do you want to continue?”
read

I/l Another example

mContinue = .F.

@20,0 get mContinue picture “@*CT Do you want to continue?”;
message “Press Return key or Spacebar to continue, cursor key to exit”;
size 1,79

read

if mContinue
// Continue

else
/I Exit

endif

Products
Recital Mirage Server, Recital Terminal Developer

26

@...GET - Lists

Class
Screen Forms

Purpose
Create a FoxPro style listbox

Syntax

@<expN1>,<expN2> GET <memvar>

FROM <array> [RANGE <expN3> [,<expN4>]] | POPUP <expC1>
FUNCTION <expC2> | PICTURE <expC3>
[COLOR SCHEME <expN5> | COLOR <expC4>]
[DEFAULT <exp>]

[DISABLE | ENABLE]

[FONT <expC5>[, <expN6>]]

[MESSAGE <expC6>]

[PROPERTIES <expC7>]

[SIZE <expN7>,<expN8>]

[STYLE <expC8>]

[VALID <expL1> | <expN9>]

[WHEN <expL2>]

See Also
@...GET, @...SAY, DECLARE, DEFINE POPUP, DIMENSION, PRIVATE, PUBLIC, SET
COMPATIBLE, SET FILETYPE, READ

Description

The @...GET command can be used to create FoxPro style listboxes. Listboxes offer a scrolling list of
choices for numeric or character values. The top left hand corner of the listbox is positioned at row
<expN1>, column <expN2>. When an item is selected from the list, <memvar> is updated. If the initial
value of <memvar> is numeric, the position of the selected item is stored, if it is character, the prompt is
stored. The cursor keys and [PAGE UP], [PAGE DOWN] keys can be used to navigate within the list and
the [SPACEBAR] or [RETURN] key or mouse click to select an item.

The list can be based either on the contents of a pre-declared one or two-dimensional array using the
FROM <array> clause, or from a predefined popup using the POPUP <expC1> clause. Popups are defined
using the DEFINE POPUP command.

The optional RANGE <expN3> [,<expN4>] clause can be used with array based listboxes to restrict the
array elements that appear in the listbox. The <expN3> defines the number of the first array element to
appear in the list and the optional <expN4> defines the number of elements to include. If <expN4> is not
defined, all elements starting from <expN3> are included in the list.

The FUNCTION clause or the PICTURE clause is required. The ampersand character, ‘&’ signals that the
@...GET is a listbox:

@...GET mchoice FUNCTION “&” ...

or
@...GET mchoice PICTURE “@&”....

27

The following options may also be included, immediately after the “&”:

Picture/Function Option

Description

N

READ is not terminated when item is chosen.

T READ is terminated when item is chosen.

The following clauses can optionally be used:

Keyword Description

COLOR SCHEME <expN5> | The color of @...GET output can be specified by including a set of

| COLOR <expC4>

color pairs in the COLOR clause or specifying a numeric COLOR
SCHEME <expN5>. If you do not specify the COLOR | COLOR
SCHEME clause then the @...GET is displayed in the default Color of
Fields. The color that is specified overrides the SET COLOR
command, but only for the output of the current @...GET command.

DEFAULT <expr>

The DEFAULT clause specifies a default value for <memvar>.

DISABLE | ENABLE

If the DISABLE clause is included, the GET is not active and cannot
be selected or modified. GETSs are enabled by default. READ will exit
immediately if all GETs are marked DISABLE.

FONT <expC5>[, <expN6>]

The name of the font is specified in <expC5> and, optionally, the font
size in <expN6>.

MESSAGE <expC6>

Defines a message to be displayed in the message line when the listbox
is the active GET.

PROPERTIES <expC7>

The PROPERTIES clause can be used to specify properties for the
listbox. For information on the available properties, please see The
Mirage Object Model in the Recital Mirage documentation.

SIZE <expN7>,<expN8>

Defines the size of the listbox, <expN7> is the height and <expN8> is
the width. By default, the width and height of the listbox are
determined by the width of the widest item and the number of items in
the list

STYLE <expC8>

The STYLE clause can include the following in <expC8>:
B =Bold

I = Italic

U = Underline

- = Strikeout

VALID <expL1> | <expN9>

The VALID clause does not carry out validation in this case, since the
<memvar> has already been updated, but can be used to call a UDF
(User Defined Function). The VALID <expN9> option may be used
with a function that returns a numeric value to select a GET for input.
GET numbers are assigned in the order that they appear on the screen.
The GETNO() function returns the number of the currently active get.
The numeric value returned can have three different effects. When
<expN9> is 0, the current GET remains in focus. When <expN9> is
positive, the value is used to advance the GET focus the number of
GETS specified. When <expN7> is negative, the value is used to
move bhack the GET focus the number of GETS specified.

WHEN <expL2>

The listbox only allows selection when <expL2> evaluates to true (.T.).

28

Example

declare listarray[3]

listarray[1] = “Apple”

listarray[2] = “Banana”

listarray[3] = “Orange”

mchoice = “Banana”

@10,10 get mchoice from listarray function “&”
read

Products
Recital Mirage Server, Recital Terminal Developer

29

@...GET - Popups

Class
Screen Forms

Purpose
Create a FoxPro style popup

Syntax

@<expN1>,<expN2> GET <memvar>
[FUNCTION <expC1> | PICTURE <expC2>] | [FROM <array> [RANGE <expN3> [,<expN4>]]]
[COLOR SCHEME <expN5> | COLOR <expC3>]
[DEFAULT <exp>]

[DISABLE | ENABLE]

[FONT <expC4>[, <expN6>]]

[MESSAGE <expC5>]

[PROPERTIES <expC6>

[SIZE <expN7>,<expN8>]

[STYLE <expC7>]

[VALID <expL1> | <expN9>]

[WHEN <expL2>]

See Also
@...GET, @...SAY, DECLARE, DEFINE POPUP, DIMENSION, PRIVATE, PUBLIC, SET
COMPATIBLE, SET FILETYPE, READ

Description

The @...GET command can be used to create FoxPro style popups. Popups offer a popup list of options
for numeric or character values. The top left hand corner of the popup is positioned at row <expN1>,
column <expN2>. When an item is selected from the list, <memvar> is updated. If the initial value of
<memvar> is numeric, the position of the selected item is stored, if it is character, the prompt is stored. The
cursor keys and can be used to navigate within the list and the [SPACEBAR] or [RETURN] key or mouse
click to select an option. In Recital Terminal Developer environments, the [SPACEBAR] or [RETURN]
key is used to popup the list.

The FUNCTION clause or the PICTURE clause is required. The circumflex character, ‘*” signals that the
@...GET is a popup. The following options may also be included, immediately after the “/":

Picture/Function Option Description
N READ is not terminated when option is chosen.
T READ is terminated when option is chosen.

Unless the optional FROM <array> clause is being used, the FUNCTION or PICTURE clause must also
contain the options for the popup. The options are preceded by a space, following the circumflex and any
read termination option, and are separated with semi-colons.

@...GET mchoice FUNCTION “~ <option1>;<option2>;<option3> ..."”...
or
@...GET mchoice PICTURE “@" <option1>;<option2>;<option3> ...”...

FROM <array> [RANGE <expN3> [,<expN4>]]

As an alternative to defining the options in the FUNCTION or PICTURE clause, the popup can be based on
the contents of a pre-declared one or two-dimensional array, specified in <array>. The optional RANGE
clause can be used with array based popups to restrict the array elements that appear in the list. The

30

<expN3> defines the number of the first array element to appear in the list and the optional <expN4>

defines the number of elements to include. If <expN4> is not defined, all elements starting from <expN3>

are included in the list.

The following clauses can optionally be used:

Keyword

Description

COLOR SCHEME <expN5>
| COLOR <expC3>

The color of @...GET output can be specified by including a set of
color pairs in the COLOR clause or specifying a numeric COLOR
SCHEME <expN5>. If you do not specify the COLOR | COLOR
SCHEME clause then the @...GET is displayed in the default Color of
Fields. The color that is specified overrides the SET COLOR
command, but only for the output of the current @...GET command.

DEFAULT <expr>

The DEFAULT clause specifies a default value for <memvar>.

DISABLE | ENABLE

If the DISABLE clause is included, the GET is not active and cannot
be selected or modified. GETSs are enabled by default. READ will exit
immediately if all GETs are marked DISABLE.

FONT <expC4>[, <expN6>]

The name of the font is specified in <expC5> and, optionally, the font
size in <expN6>.

MESSAGE <expC5>

Defines a message to be displayed in the message line when the popup
is the active GET.

PROPERTIES <expC6>

The PROPERTIES clause can be used to specify properties for the
popup. For information on the available properties, please see The
Mirage Object Model in the Recital Mirage documentation.

SIZE <expN7>,<expN8>

By default, the width of the popup is determined by the width of the
widest item and the height is determined by the number of options in
the popup. The SIZE clause can optionally be used to override the
width only. The height is specified in <expN7> (this is ignored but
must be included) and the width in <expN8>.

STYLE <expC7>

The STYLE clause can include the following in <expC7>:
B =Bold

I = Italic

U = Underline

- = Strikeout

VALID <expL1> | <expN9>

The VALID clause does not carry out validation in this case, since the
<memvar> has already been updated, but can be used to call a UDF
(User Defined Function). The VALID <expN9> option may be used
with a function that returns a numeric value to select a GET for input.
GET numbers are assigned in the order that they appear on the screen.
The GETNO() function returns the number of the currently active get.
The numeric value returned can have three different effects. When
<expN9> is 0, the current GET remains in focus. When <expN9> is
positive, the value is used to advance the GET focus the number of
GETS specified. When <expN7> is negative, the value is used to
move back the GET focus the number of GETS specified.

WHEN <explL2>

The popup only allows selection when <explL 2> evaluates to true (.T.).

31

Example

clear

store "Banana" to mchoice

@10,10 get mchoice function "AT Apple;Orange;Banana”
read

dialog box “You chose” + mchoice

Products
Recital Mirage Server, Recital Terminal Developer

32

@...GET — Push Buttons

Class
Screen Forms

Purpose
Create a group of FoxPro style push buttons

Syntax

@<expN1>,<expN2> GET <memvar> FUNCTION <expC1> | PICTURE <expC2>
[COLOR SCHEME <expN3> | COLOR <expC3>]
[DEFAULT <exp>]

[DISABLE | ENABLE]

[FONT <expC4>[, <expN4>]]

[MESSAGE <expC5>]

[PROPERTIES <expC6>]

[SIZE <expN5>,<expN6>[, <expN7>]]

[STYLE <expC7>]

[VALID <expL1> | <expN8>]

[WHEN <expL2>]

See Also
@...GET, @...SAY, SET COMPATIBLE, SET FILETYPE, READ

Description

The @...GET command can be used to create FoxPro style push buttons. One of the group of push buttons
may be selected and the number of the selected push button is returned to the <memvar>, which must be of
numeric data type.

Push buttons are displayed on the screen starting at the row <expN1>, column <expN2> coordinates as a
pair of angled brackets containing a character string label. A push button can be selected using the
[SPACEBAR] or the [RETURN] key. To move off a push button, use the cursor keys.

The FUNCTION or PICTURE clauses are used to define the GET as a group of push buttons. The
definition must include the push button code, “*”, followed by a space, followed by semi-colon separated
text labels for the buttons. The push button code must be preceded with an “@” in the PICTURE clause.
The following options may also be included, immediately after the “*”:

Picture/Function Option Description

N READ is not terminated when a button is selected.

T READ is terminated when a button is selected. This is the default.
H The buttons are displayed in a horizontal row.

\Y The buttons are displayed in a vertical column. This is the default.

Accelerator keys may be defined for each button by preceding the accelerator letter in the button label with
the characters “\<”. For example, ...function “* \<Save;Save \<As”, assigns the letter “S” as the
accelerator key for “Save” and the letter “A” as the accelerator key for “Save As”.

33

The following clauses can optionally be used:

Keyword

Description

COLOR SCHEME <expN3>
| COLOR <expC3>

The color of @...GET output can be specified by including a set of
color pairs in the COLOR clause or specifying a numeric COLOR
SCHEME <expN3>. If you do not specify the COLOR | COLOR
SCHEME clause then the @...GET is displayed in the default Color of
Fields. The color that is specified overrides the SET COLOR
command, but only for the output of the current @...GET command.

DEFAULT <expr>

The DEFAULT clause specifies a default value for <memvar>.

DISABLE | ENABLE

If the DISABLE clause is included, the GET is not active and cannot
be selected or modified. GETSs are enabled by default. READ will exit
immediately if all GETs are marked DISABLE.

FONT <expC4>[, <expN4>]

The name of the font is specified in <expC4> and, optionally, the font
size in <expN4>.

MESSAGE <expC5>

Defines a message to be displayed in the message line when the
buttons are the active GET.

PROPERTIES <expC6>

The PROPERTIES clause can be used to specify properties for the
buttons. For information on the available properties, please see The
Mirage Object Model in the Recital Mirage documentation.

SIZE <expN5>,<expN6>
[, <expN7>]

Defines the size of the buttons, <expN5> is the height and <expN6> is
the width. The optional <expN7> defines the spaces between buttons.

STYLE <expC7>

The STYLE clause can include the following in <expC7>:
B =Bold

I = Italic

U = Underline

- = Strikeout

VALID <expL1> | <expN8>

When a button is selected, the validation is called. If the <expL1>
evaluates to true (.T.), the selection is considered valid and the buttons
are exited. If it evaluates to false (.F.), the selection is rejected. The
VALID <expN7> option may be used with a function that returns a
numeric value to select a GET for input. GET numbers are assigned in
the order that they appear on the screen. The GETNO() function
returns the number of the currently active get. The numeric value
returned can have three different effects. When <expN7> is 0, the
current GET remains in focus. When <expN7> is positive, the value is
used to advance the GET focus the number of GETS specified. When
<expN7> is negative, the value is used to move back the GET focus the
number of GETS specified.

WHEN <expL2>

The buttons can only be selected when <expL2> evaluates to true (.T.).

34

Example

mButton = 2

@10,10 get mButton function “*TH OK;Cancel”;
message “Select Button to continue”

read
if mButton = 1
/I OK selected
else
/I Cancel or no selection made
endif
Products

Recital Mirage Server, Recital Terminal Developer

35

@...GET — Radio Buttons

Class
Screen Forms

Purpose
Create a group of FoxPro style radio buttons

Syntax

@<expN1>,<expN2> GET <memvar> FUNCTION <expC1> | PICTURE <expC2>
[COLOR SCHEME <expN3> | COLOR <expC3>]
[DEFAULT <exp>]

[DISABLE | ENABLE]

[FONT <expC4>[, <expN4>]]

[MESSAGE <expC5>]

[PROPERTIES <expC6>]

[SIZE <expN5>,<expN6>]

[STYLE <expC7>]

[VALID <expL1> | <expN7>]

[WHEN <expL2>]

See Also
@...GET, @...SAY, SET COMPATIBLE, SET FILETYPE, READ

Description

The @...GET command can be used to create FoxPro style radio buttons. One of the group of radio
buttons may be selected and the number of the selected push button is returned to the <memvar>, which
must be of numeric data type. Radio buttons are displayed on the screen starting at the row <expN1>,
column <expN2> coordinates as a pair of brackets followed by a space then a character string label. If the
radio button is selected, an asterisk is displayed inside the brackets. If the radio button is not selected, the
brackets are empty. The radio buttons can be selected/deselected using the [SPACEBAR] or the
[RETURN] key. To move off a radio button, use the cursor keys.

The FUNCTION or PICTURE clauses are used to define the GET as a group of radio buttons. The
definition must include the radio button code, “*R”, followed by a space, followed by semi-colon separated
text labels for the buttons. The radio button code must be preceded with an “@” in the PICTURE clause.
The following options may also be included, immediately after the “*R”:

Picture/Function Option Description
N READ is not terminated when a button is selected. This is the default.
T READ is terminated when a button is selected.

36

The following clauses can optionally be used:

Keyword

Description

COLOR SCHEME <expN3>
| COLOR <expC3>

The color of @...GET output can be specified by including a set of
color pairs in the COLOR clause or specifying a numeric COLOR
SCHEME <expN3>. If you do not specify the COLOR | COLOR
SCHEME clause then the @...GET is displayed in the default Color of
Fields. The color that is specified overrides the SET COLOR
command, but only for the output of the current @...GET command.

DEFAULT <expr>

The DEFAULT clause specifies a default value for <memvar>.

DISABLE | ENABLE

If the DISABLE clause is included, the GET is not active and cannot
be selected or modified. GETs are enabled by default. READ will exit
immediately if all GETs are marked DISABLE.

FONT <expC4>[, <expN4>]

The name of the font is specified in <expC4> and, optionally, the font
size in <expN4>.

MESSAGE <expC5>

Defines a message to be displayed in the message line when the any of
the buttons is the active GET.

PROPERTIES <expC6>

The PROPERTIES clause can be used to specify properties for the
specified button. For information on the available properties, please
see The Mirage Object Model in the Recital Mirage documentation.

SIZE <expN5>,<expN6>

Defines the size of the control, <expN5> is the height and <expN6> is
the width. Radio buttons always have a height of one, by default have
the same width as their label, and are displayed on consecutive rows.

STYLE <expC7>

The STYLE clause defines the font style. The following style
qualifiers are supported in <expC7>:

B = Bold

I = Italic

U = Underline

- = Strikeout

VALID <expL1> | <expN7>

The VALID clause is used to validate data entry. When the selected
button is changed, the validation is called If the <expL1> evaluates to
true (.T.), the input is considered correct and the button group is exited.
If it evaluates to false (.F.), the data change is rejected. The VALID
<expN7> option may be used with a function that returns a numeric
value to select a GET for input. GET numbers are assigned in the
order that they appear on the screen. The GETNO() function returns
the number of the currently active get. The numeric value returned can
have three different effects. When <expN7> is 0, the current GET
remains in focus. When <expN7> is positive, the value is used to
advance the GET focus the number of GETS specified. When
<expN7> is negative, the value is used to move back the GET focus the
number of GETS specified.

WHEN <expL2>

The buttons can only be selected when the <expL2> condition
evaluates to true (.T.).

NOTE: The @...GET...BUTTON syntax can also be used to create radio button controls.

Example
mDest = 2

@10,10 get mDest function “*R Screen;Printer;File”

read

Products

Recital Mirage Server, Recital Terminal Developer

37

@...GET...SPINNER

Class
Screen Forms

Purpose
Create a FoxPro style numeric spinner

Syntax

@<expN1><expN2> GET <memvar> | <field> SPINNER <expN3> [, <expN4> [,<expN5>]]
[COLOR SCHEME <expN6> | COLOR <expC1>]
[DEFAULT <expN7>]

[DISABLE | ENABLE]

[FONT <expC2>[, <expN8>]]

[FUNCTION <expC3>]

[MESSAGE <expC4>]

[PICTURE <expC5>]

[PROPERTIES <expC6>]

[RANGE [<expN9][,expN10>]]

[SIZE <expN11>,<expN12>]

[STYLE <expC7>]

[VALID <expL1> | <expN13> [ERROR <expC8>]]
[WHEN <expL2>]

See Also
@...GET, @...SAY, DECLARE, DEFINE POPUP, DIMENSION, PRIVATE, PUBLIC, SET
COMPATIBLE, SET FILETYPE, READ

Description

The @...GET...SPINNER command can be used to create FoxPro style numeric spinners. Spinners allow
you to “spin’ through a series of numeric values. The top left hand corner of the spinner is positioned at
row <expN1>, column <expN2>.

Spinners are only available in Recital Mirage. In Recital Terminal Developer the @...GET...SPINNER
command is treated as a standard numeric @...GET. In Recital Mirage, the mouse is used to click on the
up or down arrows to change the spinner value.

The numeric expression, <expN3>, defines the increment/decrement value to be used when the up/down

arrow is clicked. The range of allowed values can be specified in the optional <expN4>, used to specify the
minimum value, and <expN5>, used to specify the maximum value.

38

The following clauses can optionally be used:

Keyword

Description

COLOR SCHEME <expN6>
| COLOR <expC1>

The color of @...GET output can be specified by including a set of
color pairs in the COLOR clause or specifying a numeric COLOR
SCHEME <expN6>. If you do not specify the COLOR | COLOR
SCHEME clause then the @...GET is displayed in the default Color
of Fields. The color that is specified overrides the SET COLOR
command, but only for the output of the current @...GET command.

DEFAULT <expN7>

The DEFAULT clause specifies a default value for <memvar>.

DISABLE | ENABLE

If the DISABLE clause is included, the GET is not active and cannot
be selected or modified. GETs are enabled by default. READ will
exit immediately if all GETs are marked DISABLE.

FONT <expC2>[, <expN8>]

The name of the font is specified in <expC2> and, optionally, the
font size in <expN8>.

FUNCTION <expC3>

The FUNCTION clause can include the following in <expC3>:
B = The value is left justified.

| = The value is centered.

J = The value is right justified.

K = The entire value is selected when the spinner is selected.

L = The value is displayed with leading zeroes.

Z = The value is displayed as blank if zero.

~ = The value is displayed using scientific notation.

$ = The value is displayed in currency format.

MESSAGE <expC4>

Defines a message to be displayed in the message line when the
spinner is the active GET.

PICTURE <expC5>

The PICTURE clause can include the following in <expC5>:
9 = Allows digits and signs (+ -) to be entered.

= Allows digits, blanks and signs (+ -) to be entered.

$ = Displays the currency symbol.

* = Displays asterisks to the left of the value.

. = Specifies the position of the decimal point.

, = Specifies the position of ‘thousand’ separators.

PROPERTIES <expC6>

The PROPERTIES clause can be used to specify properties for the
spinner. For information on the available properties, please see The
Mirage Object Model in the Recital Mirage documentation.

RANGE [<expN9][,expN10>]

The RANGE clause can be used to check whether the spinner value
falls between acceptable minimum, <expN9> and maximum,
<expN10> limits. Either limit can be omitted.

SIZE <expN11>,<expN12>

Defines the size of the control, <expN11> is the height and
<expN11> is the width.

STYLE <expC7>

The STYLE clause can include the following in <expC7>:
B = Bold

I = Italic

U = Underline

- = Strikeout

39

VALID <expL1> | <expN13>
[ERROR <expC8>]

The VALID clause is used to validate data entry. When the selected
button is changed, the validation is called If the <expL1> evaluates to
true (.T.), the input is considered correct and the button group is exited.
If it evaluates to false (.F.), the data change is rejected. The optional
ERROR clause causes the character expression <expC6> to be
displayed when <expL1> evaluates to .F. (false). The VALID
<expN13> option may be used with a function that returns a numeric
value to select a GET for input. GET numbers are assigned in the
order that they appear on the screen. The GETNO() function returns
the number of the currently active get. The numeric value returned can
have three different effects. When <expN13> is 0, the current GET
remains in focus. When <expN13> is positive, the value is used to
advance the GET focus the number of GETS specified. When
<expN13> is negative, the value is used to move back the GET focus
the number of GETS specified.

WHEN <expL2>

The spinner can only be used when the <expL2> condition evaluates to
true (.T.).

Example
store 1 to mspinner

@20,0 say “Spinner: “ get mspinner spinner 1, -5, 20

Products
Recital Mirage

40

@...MENU

Class
Menus

Purpose
Define a menu option

Syntax

@<expN1>,<expN2> MENU <expC1>

[COMMAND <commands>]

[HELP <expC2>]

[HELPFILE <.hlp filename> | (<expC3>)]

[NOREFRESH]

[PULLDOWN <expC4> | @<program | procedure> WITH [<parameter-list>]

See Also

MENU, MENU FIELDS, MENU QUERY, MENU SCOPE, MENU FRAME, MENU AT, MENU
FORMAT, MENU(), MENUITEM() SAVE MENU, SET MCONFIRM, SET PREMENU, SET
POSTMENU, RESTORE MENU

Description

The @...MENU command is used to create menus. This command defines the menu options that are
activated with the MENU command. @...MENU menus can also be created in the Forms Designer, see the
CREATE SCREEN command for full details.

Menus can be navigated using the cursor keys. Pulldown menus will be activated automatically as they are
highlighted, unless SET MCONFIRM is ON. Menu items can be selected using the first character of the
item, the item accelerator key or the [RETURN] key. If SET MCONFIRM is ON, then a menu must be
highlighted using the cursor keys or accelerator, then selected using the [RETURN] key.

The MENU <expC1> clause defines the menu option that will be displayed at the specified row <expN1>
and column <expN2> when the MENU command is executed. You may also use the character expression
<expC1> to define horizontal lines, non-selectable items, and accelerator keys in menus. Horizontal lines
are defined by specifying a backslash and a dash (\-). Non-selectable items are defined by preceding the
menu option with a backslash. Accelerator keys are highlighted letters in menu option text that select the
option when pressed. To designate a letter as an accelerator key, precede the letter with a backslash and a
“less than” sign (\<). Recital menu options can always be selected by pressing the first letter of the option.
Accelerator keys are an excellent way to illustrate that selection method, and to provide alternate keys when
there are menu options beginning with the same first letter.

NOTE: When a menu is placed in user-defined window, the coordinates are relative to the window not to
the screen.

COMMAND <commands>

The COMMAND <commands> clause specifies the commands to be executed if the particular menu option
is selected when the menu is activated. Multiple commands can be used by separating each command with
the “;” character. If no COMMAND option is specified, you will exit from the menu when a menu option
is selected. If you want to exit from the menu and use an @...MENU COMMAND option, the EXIT
keyword must be specified on the MENU command. Selection of any item from the menu will then exit
the menu after execution of the specified COMMAND line, unless the NOEXIT keyword is included in the
COMMAND line.

41

It should be noted that the COMMAND option in the MENU command can call another menu, which can
in turn call another menu. By nesting MENU commands the Recital/4GL code can be written in a non-
procedural way, since once the menu is exited, control will return automatically to the calling menu.

HELP <expC2>

A HELP message, associated with each menu option, can be displayed in the message line when the menu
option is highlighted. The message <expC2>, is a text line (maximum 80 characters) which can include
macro substitution of memory variables and function key substitution of legal control characters.

HELPFILE <.hlp filename> | (<expC3>)

The HELPFILE clause allows context sensitive help information to be displayed when the [HELP] key is
pressed. The <.hlp filename> will be displayed in a read-only window for viewing when the [HELP] key is
pressed. The file name can be substituted with a <expC3>, enclosed in round brackets, which returns a
valid filename. The command, SET INSTRUCT, must be ON when using this option.

NOREFRESH
By default, when returning from executing the command(s) specified for the menu option, the current menu
is refreshed on the screen. The NOREFRESH keyword disables this.

PULLDOWN <expC4> | @<program | procedure> WITH [<parameter-list>]

Pulldown and pullright menus can be invoked in Recital/4GL programs by using the PULLDOWN option
of the @...MENU command and the PULLRIGHT option of the MENU command respectively. The
PULLDOWN <expC4> refers to a list of items that will appear in the pulldown menu upon placing the
cursor on the associated menu item. The items are defined in a comma-separated character string.

If a text item is selected (i.e. by pressing [RETURN] while the item is highlighted) the MENUITEM() and
MENU() functions can be used in the command line to allow processing to continue based on the item that
was selected.

The PULLDOWN <program | procedure> WITH <parameter-list> option will cause execution of a
command procedure or function and pass parameters to it when the cursor is placed on the menu item. In
this option, <program | procedure> is any procedure or function name and <parameter-list> is a list of
parameters separated by commas that will be passed to the <program | procedure>. The <program |
parameter> can include expressions, so that if you pass MENUITEM() or MENU() as a parameter to a
procedure, processing can proceed selectively based on the menu item chosen.

The @...MENU command also supports FOXBASE+ style menus, in which case the full syntax is as shown
below:

@ <row>, <col> MENU <array name>,<nitems> [,<scroll size>];
[TITLE <expC>]

This FoxBASE+ command cannot be used in conjunction with any of Recital's @...MENU commands.
The READ MENU TO command is used to activate the FOXBASE+ @...MENU command.

Example
@0,0 menu “Exit”;
help “Exit from the system.”
@0,5 menu “Browse”;
help “Browse the table.”;
command “Browse; clear”
@0,12 menu “Append”;
help “Append a new record.”;
command “append”
menu

42

Products

Recital Mirage Server, Recital Terminal Developer

43

@...PROMPT

Class
Menus

Purpose
Display a menu option

Syntax

@ <expN1>,<expN2> PROMPT <expC1l>
[MESSAGE <expC2>]

[SIZE <expN3>,<expN4>]

[IMAGE <expC3>]

See Also
©@...BOX, @...CLEAR, @...GET, @...FILL, @...MENU, @...SAY, @...SCROLL, @...TO, CREATE
SCREEN, MENU TO, MODIFY SCREEN

Description

The @...PROMPT command is used in conjunction with the MENU TO command. @..PROMPT displays
a menu with the prompt <expC1> at the row and column position specified by <expN1> and <expN2>.
The menu is activated using the MENU TO <variable> command and the number of the selected menu is
stored to <variable>. Menu numbers start from 1.

MESSAGE <expC2>
If the optional MESSAGE clause is specified, <expC2> is displayed in the message line when that menu is
highlighted.

SIZE <expN3>,<expN4>

The SIZE clause can be used under Recital Mirage to define the size of the prompt <expC1> or image
<expC3>. The <expN3> refers to the number of rows occupied by an image, <expN4> to the number of
columns occupied by an image or prompt.

IMAGE <expC3>
The IMAGE clause can be used under Recital Mirage to define an image to be displayed in place of the
textual prompt. The GIF or JPEG image file to be displayed is specified using <expC3>.

Example

@10,10 prompt “edit”;
message “Edit a record”

@11,10 prompt “append”;
message “Add a record”

@12,10 prompt “delete”;
message “Delete a record”

menu to choice

do case

case choice =1
do editproc

case choice =2
do addproc

case choice =3
do deleproc

otherwise

44

? “No choice made”
endcase

//Recital Mirage

@5,30 prompt “Edit” message “Edit menu” size 2,2 image “lockbtn.gif”
@7,30 prompt “Append” message “Append menu” size 2,2 image “newbtn.gif”
@9,30 prompt “Delete” message “Delete menu” size 2,2 image “deletebtn.gif”
menu to m_var

Products
Recital Mirage Server, Recital Terminal Developer

45

@...SAY

Class
Input/Output

Purpose
Display the result of an expression at a specified screen position

Syntax

@<expN1>,<expN2> SAY <expr>

[COLOR <standard | enhanced> | COLOR SCHEME <color-scheme>]
[FUNCTION <expC1> | PICTURE<expC2>]

[NAME <expC3>]

[PROPERTIES <expC4>]

[GET <field>|<memvar>]

See Also
?,??,?7?7?, @..BOX, @...CLEAR, @...GET, @...FILL, @..MENU, @...PROMPT, @...SCROLL, @...TO,
@.. TOOLBUTTON, SET DEVICE, SET PRINT

Description

The @...SAY command displays the result of an expression, <expr> at the specified row, <expN1> and
column, <expN2> on the screen. @...SAY may also be used with an optional GET clause. This causes the
specified field or memory variable to be displayed on the screen at the current cursor position. The <expr>
can be any valid Recital/4GL expression , including user-defined functions. For screens and windows, the
first addressable row, column coordinate pair is 0,0. Rows are numbered from top to bottom, columns from
left to right. If SET DEVICE TO PRINT is in effect, then the @...SAY command directs output to the
printer. The specified row and column denote the position of the print head at which the resulting
expression will be placed. For printers the first addressable row, column coordinate pair is 1,0.

COLOR <standard> | COLOR SCHEME <color-scheme>

The color of @...SAY output can be specified by including the number of an existing color scheme in the
COLOR SCHEME clause or a set of color pairs in the COLOR clause. If you do not specify the COLOR
clause then the @...SAY is displayed in the standard color. The color that is specified overrides the SET
COLOR command, but only for the output of the current @ command. Only the first color pair in the color
scheme or color pair list affects the color of the @...SAY output. A color scheme is a set of 10 predefined
color pairs. The color pairs in a color scheme can be changed with the SET COLOR OF SCHEME. A
Color pair is a set of two letters separated by a forward slash. The first color letter specifies the foreground
color and the second letter specifies the background color.

FUNCTION <expC1>

The optional FUNCTION clause can be used to control how the <expr> is displayed or printed.
FUNCTION codes can also be specified in a PICTURE clause if they are prefixed with an @ character.
Since a FUNCTION code effects the entire expression only the following FUNCTION codes can used
with a FUNCTION.

Function Codes Description

Left-justifies numeric data within the display.

CR is displayed after a positive number to indicate credit.

Uses the current SET DATE format.

Displays as a BRITISH date.

Displays negative data blinking.

O Mmoo 0|@

DB is displayed after positive numbers.

46

Function Codes Description

Trims leading and trailing blanks.

DB is displayed after negative numbers to indicate a debit.
CR is displayed after negative numbers.

<expr> is displayed as all blanks if its numeric value is 0.
Encloses negative numbers in parentheses.

Converts characters to upper case.

=N < x|

PICTURE <expC2>

The optional PICTURE clause allows for specialized formatting to be performed on the expression result
before it is output. Picture codes apply to individual characters in the output. The following picture codes
can be used.

Picture Code Description

X Allows any character at the specified position.

Y Displays ‘Y’ for .T. and “N’ for .F. if there is a logical value at the specified
position.

! Displays the character at the specified position in upper case.

$ Displays a dollar sign at the specified position or prefixes numeric values with the
currency symbol specified by the SET CURRENCY command.

* Displays an asterisk at the specified position or prefixes numeric values with an
asterisk.

Specifies the decimal point position for numeric values or displays a “.” at the
specified position.

, Specifies the separation character for numeric values over one thousand or displays
a comma at the specified position.

NAME <expC3> (Recital Mirage only)

The NAME clause is used to create a “wrapper’ object for the SAY. The <expC3> must be a unique name
for the current READ. Once defined, the NAME clause allows properties to be set and methods to be
called on the client for that SAY. For additional information on object properties and methods, please see
the Recital Mirage documentation.

PROPERTIES <expC4> (Recital Mirage only)
The PROPERTIES clause can be used to specify properties for the specified text. For information on the
available properties, please see the Recital Mirage documentation.

GET

The @...SAY and @...GET commands can be combined using the @...SAY...GET syntax. The @...GET
edit region will be positioned after the @...SAY display, with a single space in between. Please see the
@...GET command itself for the full @...GET syntax.

Example
@07,03 say “Recital” color r/w

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

47

@...SAY...BITMAP

Class
Screen Forms

Purpose
Display a bitmap image

Syntax

@<expN1>,<expN2> SAY <expC> BITMAP
[CENTER]

[ISOMETRIC | STRETCH]

[SIZE <expN3>,<expN4>]

See Also
@...GET, @...SAY, SET COMPATIBLE, SET FILETYPE

Description

The FoxPro compatible @...SAY...BITMAP command is used to display images in Recital Mirage
applications. The top left hand corner of the image is displayed at row <expN1>, column <expN2>. The
name of the file to be displayed is specified in the character expression <expC>. The supported file formats
are GIF and JPG.

CENTER
If the CENTER keyword is specified, the image is centered in the limits specified in the SIZE clause.

ISOMETRIC | STRETCH

The ISOMETRIC and STRETCH keywords can be used to determine the display behavior when the image
dimensions and the SIZE dimensions do not match. If ISOMETRIC is specified, the image is scaled using
its original proportions. If STRETCH is specified, the image is stretched to fit and the original proportions
are not maintained. If the SIZE dimensions are smaller than the image size and neither ISOMETRIC nor
STRETCH is specified, the image is clipped to fit.

SIZE <expN3>,<expN4>

The size clause can be included to specify the display size of the image. If the SIZE clause is omitted, the
image is displayed at its default size. The height of the image is specified in <expN3> and the width in
<expN4>. Both the height and the width are specified as multiples of the current font size.

Example

@5,0 say “Image: 7

@6,0 say “recital.jpg” bitmap;
size 6,12

Products
Recital Mirage

48

@...SCROLL

Class
Screen Forms

Purpose
Scroll designated screen area

Syntax

@ <expN>,<expN2> TO <expN3>,<expN4> SCROLL
[UP | DOWN | LEFT | RIGHT [BY <expN>]]

[WRAP]

See Also
©@...BOX, @..CLEAR, @...GET, @...FILL, @...MENU, @...PROMPT, @...SAY, @...TO,
@..TOOLBUTTON, HSCROLL(), SCROLL, SCROLL(), MAXCOL(), MAXROW()

Description
The @...SCROLL command shifts the contents of a specified region of the screen up, or down, or to the
left or right. If a window is active, the coordinates are used relative to the origin of that window.

<expN>,<expN2> TO <expN3>,<expN4>
The top left corner is specified at <expN>,<expN2> and the bottom right corner at <expN3>,<expN4>.

UP | DOWN | LEFT| RIGHT [BY <expN>]

You may optionally specify a direction, UP, DOWN, LEFT or RIGHT in which to move contents in the
specified area. If no direction is specified, the @...SCROLL command moves characters UP. You may
also specify the number of rows or columns by which to scroll the characters with the optional BY <expN>
clause. If you have specified LEFT or RIGHT as a direction, the BY <expN> clause refers to the number
of columns. If you have specified UP or DOWN, the BY <expN> clause refers to the number of rows. If
the BY <expN> clause is not specified, the @...SCROLL command moves characters one row or column.
Negative numbers reverse the direction of scrolling.

WRAP
The WRAP keyword causes scrolled characters to move onto the opposite row or column if they are
scrolled beyond the designated area of the screen.

Example
Define window scroll from 03,05 to 15,75
activate window scroll
@ 0,0 say replicate (*07,50)
@ 1,0 say replicate (“1”,50)
@ 2,0 say replicate (“@”,50)
@ 3,0 say replicate (“#7,50)
@ 4,0 say replicate (“$”,50)
fori=1to5
@ 0,0 to 4,60 scroll
sleep 1
next
release windows

Products
Recital Terminal Developer

49

@...TO

Class
Screen Forms

Purpose
Draw a box or line on the screen

Syntax

@ <expN1>,<expN2> TO <expN3>,<expN4>

[BOLD]

[COLOR <color code> | COLOR SCHEME <color scheme>]
[DOUBLE | SINGLE | PANEL | BOX <expC>]

[FILL <expC>]

[LABEL <expC>]

[REVERSE]

[SHADOW]

See Also
@..BOX, @..CLEAR, @...GET, @...FILL, @..MENU, @...PROMPT, @...SAY, @...SCROLL, MENU
FRAME, MENU AT, ROW(), COL()

Description
This command is used to draw a box or a line. If you omit the optional clauses, the box is drawn with
single lines.

<expN1>, <expN2> TO <expN3>, <expN4>

The top left corner is specified at row <expN1>, column <expN2> and a bottom right corner at row
<expN3>, column <expN4>. If the two row coordinates are the same, a horizontal line is drawn. If the two
column coordinates are the same, a vertical line is drawn.

BOLD
If the BOLD keyword is specified, then the contents of the box are displayed in highlighted reverse video.

COLOR <color> | COLOR SCHEME <color-scheme>

The optional COLOR <color> clause will set the foreground, background or both colors when the color
code is specified. These are the same codes used by SET COLOR. If you do not provide color codes, this
command uses the <standard> colors as defined in the SET COLOR command. The COLOR SCHEME
<color scheme> takes a color scheme from a set of 10 predefined color pairs. The color pairs in a color
scheme can be changed with the SET COLOR OF SCHEME command. The color scheme number should
be specified in <color scheme>.

DOUBLE | SINGLE | PANEL | BOX <expC>

If SINGLE is specified, then the box is drawn with a single line border. If DOUBLE is specified, then the
box is drawn with a double-line border. If PANEL is included, the box is drawn with a solid border. The
BOX <expC> specifies characters to use to draw the box. The <expC> is a string of up to nine characters.
The characters define the top-left corner, top row, top-right corner , right side, bottom right corner, bottom
row, bottom left corner, left side and the inside of the box, in that order.

LABEL <expC>
The LABEL clause draws a box with the specified title, <expC>.

REVERSE
If the REVERSE keyword is specified then the contents of the box are displayed in reverse video.

50

SHADOW
The SHADOW keyword shades the right hand side and bottom edge of the box, producing a 3D effect.

Example
@05,00 to 08,79 box “123456789”

Products
Recital Mirage Server, Recital Terminal Developer

51

ACCEPT

Class
Screen Forms

Purpose
Prompt for input to a memory variable

Syntax
ACCEPT [<expC>] TO <memvar>

See Also
INPUT, WAIT, @...GET, READ, MENU

Description

The ACCEPT command prompts for input to the memory variable <memvar>. If the optional <expC> is
specified, this will be displayed as the prompt, otherwise a colon “:” will be displayed. The user entry is
stored in the <memvar> as a character string. If the [RETURN)] key is entered, the <memvar> will contain
a null string. If the <memvar> does not exist prior to the ACCEPT then it will be created.

Example

accept “Enter customer name? ” to name
Enter customer name? BILL

? name

BILL

? type(“name”)

C

Products
Recital Mirage Server, Recital Terminal Developer

52

ACTIVATE MENU

Class
Menus

Purpose
Activate an Xbase style bar menu

Syntax

ACTIVATE MENU <expC1>
[NOCLEAR]

[NOWAIT]

[PAD <expC2>]

See Also
DEFINE MENU, DEFINE PAD, ON PAD, PAD(), DEACTIVATE MENU, SHOW MENU, MENU(),
SET COMPATIBLE ON

Description
The ACTIVATE MENU command activates and displays an Xbase style menu. The menu name <expC1>
must have been previously defined. The command SET COMPATIBLE must be set ON when using Xbase
style menus.

NOCLEAR
The NOCLEAR keyword prevents the popup display being cleared after the menu is exited.

NOWAIT
The NOWAIT clause will not wait for user input after the ACTIVATE POPUP command is issued. The
popup is displayed and activated, but program execution continues immediately.

PAD <expC2>

The optional PAD keyword will position the highlight bar on the pad name <expC2> when the menu is
displayed. The pad name must have been previously defined. If no pad name is used, then the highlight is
positioned on the first defined pad.

Example
activate menu sort_men

Products
Recital Mirage Server, Recital Terminal Developer

53

ACTIVATE POPUP

Class
Menus

Purpose
Activate an Xbase style pop-up menu

Syntax

ACTIVATE POPUP <expC>
[AT <expN1><expN2>]
[BAR <expN3>]
[NOCLEAR]

[NOWAIT]

See Also
BAR(), DEACTIVATE POPUP, DEFINE POPUP, POPUP(), PROMPT(), SHOW POPUP, SET
COMPATIBLE ON

Description

The ACTIVATE POPUP command activates an Xbase style pop-up menu name <expC> and displays it
when the user moves the highlight to the corresponding pad. Each pop-up is DEACTIVATED as the
highlight is moved to the next pad, or when the DEACTIVATE POPUP command is used.

AT <expN1><expN2>

You can specify where the popup is displayed by including AT <expN1>,<expN2>. The upper left corner
of the popup is positioned at the coordinates specified by <expN1>,<expN2>. The position specified by
this clause take precedence over a position specified by the FROM clause in DEFINE POPUP.

BAR <expN>
The BAR <expN3> allows you to specify the selected popup option number when the popup is displayed.

NOCLEAR
The NOCLEAR keyword prevents the popup display being cleared after the menu is exited.

NOWAIT
The NOWAIT clause will not wait for user input after the ACTIVATE POPUP command is issued. The
popup is displayed and activated, but program execution continues immediately.

Example

on pad file_nm of sort_men activate popup popup_1
on pad srt_type of sort_men activate popup popup_2
on pad key_nm of sort_men activate popup popup_3
on pad prfrm of sort_men activate popup popup_4

Products
Recital Mirage Server, Recital Terminal Developer

54

ACTIVATE SCREEN

Class
Screen Forms

Purpose
Activate full screen display

Syntax
ACTIVATE SCREEN

See Also

ACTIVATE WINDOW, CLEAR WINDOWS, DEACTIVATE WINDOW, DEFINE WINDOW, HIDE
WINDOW, MOVE WINDOW, MODIFY MEMO, RELEASE WINDOWS, RESIZE WINDOW,
RESTORE WINDOW, SAVE WINDOW, SHOW WINDOW, SET COMMANDWINDOW, SET
ERRORWINDOW, SET KEY...TO, SET PROCEDURE TO, SET TRACEWINDOW, SET WINDOW OF
EDIT, SET WINDOW OF MEMO, WROWS(), WCOLS(), WEXIST(), WVISIBLE(), WONTOP(),
WOUTPUT()

Description
The ACTIVATE SCREEN command disables the active window and redirects output to the entire screen.
Displayed windows remain on the screen, and subsequent output is displayed behind the windows.

A window is an area of the screen designated for output and input. Windows are defined with the DEFINE
WINDOW command, and are displayed to the screen with the ACTIVATE WINDOW or SHOW
WINDOW commands. There is no limit to the number of defined windows.

The HIDE WINDOW command may be used in a hot-key procedure to switch the screen display from
windows to full screen. Hot-keys allow a procedure to be called when the user presses a particular key.

Example

define window temp_output;
from 16,45 to 22,79;
title “Output Window™;
float;
grow

activate window temp_output
activate screen

Products
Recital Mirage Server, Recital Terminal Developer

55

ACTIVATE WINDOW

Class
Screen Windows

Purpose
Activate a defined window, or list of windows.

Syntax
ACTIVATE WINDOW <window-name> |<window-name list> | ALL
[NOSHOW]

See Also

ACTIVATE SCREEN, CLEAR WINDOWS, DEACTIVATE WINDOW, DEFINE WINDOW, HIDE
WINDOW, MOVE WINDOW, RELEASE WINDOWS, RESIZE WINDOW, RESTORE WINDOW,
SAVE WINDOW, SHOW WINDOW, WROWS(), WCOLS(), WEXIST(), WVISIBLE(), WONTOP(),
WOUTPUT()

Description

The ACTIVATE WINDOW command displays and activates windows that have been defined with the
DEFINE WINDOW command. When a window is activated, all subsequent output is displayed in that
window. Only one window may be activated at a time. Activating additional windows does not clear the
display of previously activated windows. The DEACTIVATE WINDOW command clears the display of
activated windows, but leaves the window definition in memory. The RELEASE WINDOW command
clears both the display and the definition of windows from memory. The SAVE and RESTORE WINDOW
commands may be used to keep window definitions in a file that can be reused at any time.

The ACTIVATE WINDOW command can be used to activate a single window, a list of windows, or all
currently defined windows. To activate a single window, specify the name of the window that you wish to
activate. The <window-name> is the name in the window definition created with the DEFINE WINDOW
command. The <window-name list> is a list of window names, each separated by a comma. When
activating a list of windows, the ACTIVATE WINDOW command displays the windows in the order that
they are listed, and the last window in the list is activated. To display all currently defined windows, use
the keyword ALL. The windows display in the order that they are defined, and the last window defined is
activated.

NOSHOW
If the NOSHOW keyword is included, the specified window will be activated, but will not be displayed on
the screen until the SHOW WINDOW <window-name> command is issued.

Example
define window win1;
from 2,2t0 12,43
activate window winl noshow
dir
wait
show window winl

Products
Recital Terminal Developer

56

ALIAS

Class
Applications

Purpose
Define a User Defined Command (UDC)

Syntax
ALIAS [<expC> [<command>]]

See Also
RUN, !, SPAWN, FUNCTION, KEYWORD

Description
The ALIAS command allows for the definition of User Defined Commands (UDCs). The ALIAS
command, on its own, causes all active UDCs to be listed.

<expC>
The <expC> is the name to call the user-defined command. The ALIAS <expC> without a subsequent
<command> statement removes that UDC.

<command>

The <command> character expression can contain multiple Recital/4GL commands, each separated with a
“”. Up to nine parameters may be substituted by preceding the parameter number with a ‘%’ character, e.g.
%1 %2 etc. Parameter %0 matches the complete line following the command name.

Example

alias Im “list memory” && defines Im
alias lo “list off”

alias | “list off for ord_id = [%1]”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

57

APPEND

Class
Screen Forms

Purpose
Full screen append of records into the active table

Syntax
APPEND
[NOCLEAR]

See Also
©@...GET, APPEND BLANK, APPEND FROM, CREATE, CREATE SCREEN, CHANGE, INSERT, SET
CARRY, FMT()

Description
The APPEND command is a full screen command used to append records to the end of the active table. A
default form with blank fields will be activated on the screen.

The APPEND can be terminated using the [EXIT/SAVE] key to save the current record, or the
[ABANDON] key to abandon the current record. If SET VERIFY is ON, the save or abandon must be
confirmed. If SET MENU is ON and the default APPEND form is being used, a menu with details of the
active keys is displayed at the top of the screen. Pressing the [TAB] key allows the menu to be toggled on
or off.

You can design your own forms for appending records, with the Forms Designer (CREATE SCREEN).
Once the form has been activated with SET FORMAT TO, it will be used instead of the default form when
the APPEND command is issued.

Normally, all of the fields are initialized to blank. This behavior can be overridden with the SET CARRY
ON command or the [CARRY MODE] key from within the append form. If SET CARRY is ON, data
from the previous record will be carried over as the default for the next APPEND operation. Default
information may also be automatically inserted into the form via the Applications Data Dictionary.

When memo fields are displayed, the memo field label is in lower case if the field is empty and upper case
if the memo field contains a value. Memos can be edited in a popup notepad window by pressing the
[INSERT] or [HELP] keys. Once in the notepad window, pressing the [HELP] key displays a menu of
memo editing keys. These keys include facilities for reading from and writing to external files and printing
on the system printer.

Forms may be overlaid, one on top of the other, if APPEND is used in conjunction with the FMT() function
and the SAVE SCREEN and RESTORE SCREEN commands. If the topmost form is ‘boxed’ using the
@...TO...LABEL command, the area of the screen it occupies will be cleared.

All open indexes are updated. If any of the indexes is unique, then duplicate keys will not be appended.
An appropriate error message will be displayed. If the active table is shared, other users may edit existing
records during an APPEND operation, as no records are locked.

Pressing the [EXIT/SAVE] or [NEXT SCREEN] keys causes the record to be written to the table and made
to other users. The [MENUBAR] key does not write the record to the table.

NOCLEAR
The NOCLEAR keyword disables the erasing of the screen on entry and exit from APPEND.

58

The following keys are active within an APPEND form.

Key Action
ABANDON Discard current record then exit from the form
CARRY MODE Toggle CARRY on and off

CURSOR DOWN

Skip to next field

CURSOR LEFT

Skip to previous field

CURSOR RIGHT

Skip to next field

CURSOR UP Skip to previous field

DELETE FIELD Initialize field

EDIT FIELD Enter field edit mode

EXIT/SAVE Write current record then exit from the form
HELP Activate pop-up help

MENUBAR Activate the APPEND menu bar

NEXT RECORD Write record then skip to next record
REFRESH Redraw the form

TAB Toggle function key menu on and off

If SET MOUSE is ON, cursor keys will move the cursor anywhere on the screen rather than just from field
to field. If SET NAVIGATE is ON, the cursor moves to fields following the direction specified by the key
being pressed, rather than following the order of the GETS on the form. When the RETURN key is

pressed, the cursor moves to the nearest field when SET NAVIGATE is ON.

The following keys are active in field edit mode:

Key

Action

BACKSPACE

Delete character before cursor

CURSOR LEFT

Skip to previous character

CURSOR RIGHT

Skip to next character

DELETE CHAR Delete character under cursor
DELETE FIELD Delete from cursor to end of field
DELETE WORD Delete current word

INSERT MODE Toggle insert / overwrite mode
WORD LEFT Skip left a word

WORD RIGHT Skip right a word

The following menu options are available from the APPEND menu bar in the default form:

Menu Item Action

Descriptions Toggle the field descriptions on and off
Help Activate on-line help system

Example

use patrons index names
set format to patrons

append

Products

Recital Mirage Server, Recital Terminal Developer

59

APPEND AUTOMEM

Class
Memory Variables

Purpose
Appends a blank record into the active table, then updates the fields with memory variable values

Syntax
APPEND AUTOMEM

See Also
APPEND BLANK, APPEND FROM, CLEAR AUTOMEM, REPLACE AUTOMEM, STORE
AUTOMEM, USE.. AUTOMEM

Description

The APPEND AUTOMEM command appends a blank record into the active table and then updates the
fields with the values from memory variables of the same name. Such memory variables can be generated
automatically using the STORE AUTOMEM or USE... AUTOMEM commands.

Example

use cust

store automem

m.account_no = strzero(segqno(),5)
append automem

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

60

APPEND BLANK

Class
Fields and Records

Purpose
Append a record into the active table

Syntax
APPEND BLANK [<expN>]

See Also
@...GET, APPEND, APPEND FROM, CREATE, CREATE SCREEN, CHANGE, INSERT, SET CARRY,
FMT()

Description

The APPEND BLANK command adds a blank record to the end of the active table. Default information
can automatically be inserted into the record via the Applications Data Dictionary (ADD). Using this
method can greatly increase performance of batch processes which use the APPEND BLANK command
followed by the REPLACE command. If the numeric expression <expN> is specified, then <expN> blank
records will be added.

Example
use patrons index names
append blank 10

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

61

APPEND FROM

Class
Table Basics

Purpose
Append records to the active table from another table or external file

Syntax

APPEND FROM <filename> | (<expC1>) [ENCRYPTION <expC2>]

[FOR <condition>]

[WHILE <condition>]

[[TYPE] SDF | FIXED | DELIMITED | DELIMITED WITH BLANK | DELIMITED WITH <delimiter>]

See Also
COPY, APPEND, APPEND FROM ARRAY, CREATE BRIDGE, COPY TO, DECRYPT, ENCRYPT,
SET ENCRYPTION

Description

The APPEND FROM command adds records from another file to the end of the active table. The FROM
file can be in any one of the formats shown following the TYPE option. The <filename> can be substituted
with a <expC1>, enclosed in round brackets, which returns a valid filename. The <filename> can include
the encryption key for encrypted database tables. The three part comma-separated key should be enclosed
in angled brackets and appended to the filename, e.g. mytable<key 1,key 2,key 3>.

If the FROM file is another Recital table, it cannot be open and active at the time of the APPEND. When
processing the FROM file, the Recital/AGL only copies fields which exist in both of the tables. If the field
in the FROM file is longer than the field in the active table it will be truncated. If a field in the FROM file
is shorter than that in the active table, then the field in the active table is padded with blanks if it is a
character field, otherwise it is converted to the new width. If no file extension is specified, then a *.dbf’
extension is assumed. Records marked for deletion are not appended.

If the active table is shared, then the table and any associated index files will be locked as each record is
appended. The locks are only applied as each record is added to the table, and not enforced for the full
duration of the append operation, to provide optimum concurrent access to the table. Any indexes currently
associated with the table will be automatically updated as the new records are added.

If a FILTER <condition> is currently active, then only those records in the FROM file which satisfy the
specified <condition> will be appended.

ENCRYPTION <expC2>

If the FROM table is encrypted, its DES3 encryption key must be entered correctly before the data can be
accessed. The key can be specified using ENCRYPTION <expC2>, where <expC2> is the 3 part
encryption key, e.g. “key_1,key 2,key 3”. The SET ENCRYPTION command allows a default encryption
key to be defined. If the ENCRYPTION <expC2> clause is not specified and the key is not included in the
<filename>, this default key will be used. If the default key is not the correct key for the FROM table, an
error will be given. If no default key is active, a dialog box will be displayed in Recital Terminal
Developer to allow the user to enter the key.

62

FOR <condition>

If the FOR <condition> clause is specified, then only those records in the FROM file which satisfy the
specified <condition> will be appended.

WHILE <condition>

The WHILE <condition> clause can be used to restrict the range of records which are appended. When the
<condition> becomes false, the APPEND operation will stop.

TYPE FIXED

If the FIXED keyword is specified, then the FROM file must contain fixed length records, where each field
is exactly the same width as that in the active table. A FIXED file does not contain a deletion marker as the
first character of each record. If no file extension is specified, then “.txt’ is assumed. FIXED files can be
created with the Recital/AGL COPY...FIXED command, or they can be created by an external program
written in another programming language (e.g. C, PASCAL, FORTRAN).

TYPE DELIMITED

If the DELIMITED option is used, each record ends with a carriage return/line feed. If no WITH has been
specified in the DELIMITED option, then a “,” will separate each field, and character fields will be
surrounded by “” double quotes. If no file extension is specified, then a “.txt’ extension is assumed.
DELIMITED files can be created using the Recital/4GL COPY...DELIMITED command or they too can be
created by an external program.

SDF

If the SDF keyword is specified then records from a text file which end with a carriage return/line feed can
be appended. The maximum length of the text line used with APPEND FROM...SDF is 8192 characters.
On UNIX, the carriage return is not present. On OpenVMS the records are variable length text records. If
there are any binary fields in the FROM file, then the SDF file is treated as being in FIXED format.

Example

use patrons

append from system type sdf

append from textfile type delimited
append from transactions for code <> “D”

/I Another Example

use payroll

append from (iif(dow(date())>5, “weekend.dbf”,;
“weekday.dbf”) for amount > 100

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

63

APPEND FROM ARRAY

Class
Fields and Records

Purpose
Append records to current table from an array

Syntax

APPEND FROM ARRAY <array>
[FOR <condition>]

[WHILE <condition>]
[REINDEX]

See Also

COPY TO ARRAY, APPEND FROM, DECLARE, DIMENSION, GATHER, PRIVATE, PUBLIC,
RELEASE, RESTORE FROM, SAVE TO, SCATTER, AAVERAGE(), ACHOICE(), ACOPY(), ADEL(),
ADIR(), AFIELDS(), AFILL(), AINS(), ALEN(), AMAX(), AMIN(), ASCAN(), ASORT(), ASUM(),
AVERAGE()

Description

The APPEND FROM ARRAY command allows you to append records to the current table from the
contents of a previously declared two-dimensional array of the specified name, <array>. The data types
and sizes of elements in the rows of the arrays must correspond to the fields in the table.

FOR <condition>
If the FOR <condition> clause is specified, only those elements in the rows which satisfy the specified
<condition> will be appended.

WHILE <condition>
The WHILE <condition> clause can be used to restrict the number of records appended. When the
condition becomes false, the APPEND FROM ARRAY operation will stop.

REINDEX
The REINDEX keyword can be used to automatically call the REINDEX command after the APPEND
FROM ARRAY has completed.

Example

use suppliers

declare cust[reccount(), fcount()]

copy to array cust

copy structure to customer

use customer

append from array cust for also_cust = .T.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

64

APPEND MEMO

Class
Memos

Purpose
Add a text file to a memo field

Syntax
APPEND MEMO <memo fieldname> FROM <filename> [OVERWRITE]

See Also
COPY MEMO, MEMOREAD(), MEMOWRITE(), SET MEMOFORMAT

Description

The APPEND MEMO command adds the specified text file to the memo field of the current record. The
<memo fieldname> of the current record in the active table is appended with the text in the file specified by
<filename>. If no file extension is specified with <filename>, a “.txt” extension is assumed.

OVERWRITE
The optional OVERWRITE keyword causes the APPEND MEMO command to write over pre-existing text
in the memo. Without the OVERWRITE keyword text will be appended to the memo field.

Example
append memo minutes from meeting

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

65

ASSERT

Class
Error Handling and Debugging

Purpose
Display a message dialog with options when a condition evaluates to False

Syntax
ASSERT <expL> [MESSAGE <expC>]

See Also
DEBUG, SET ASSERTS, SET COMPILE

Description

The ASSERT command is used for program debugging purposes: to display a message dialog with options
when a condition evaluates to False (.F.). The condition is specified in <expL>. An optional message can
be specified using the MESSAGE <expC>clause. If no message is specified; the default message is:

Assertion failed on line <#> of
procedure <prg>.

The dialog has four buttons, offering the following options:

Button Option

Debug Suspends program execution and starts the Debugger. The Debug option is only available if
the program is being run uncompiled.

Cancel Stops program execution.

Ignore Continues program execution.

Ignore All | Continues program execution and issue SET ASSERTS OFF, causing subsequent asserts to
be ignored.

If SET ASSERTS is OFF, asserts are ignored. SET ASSERTS is OFF by default.

Example

set asserts on

parameters paral, para2, para3

assert pcount() = 3 message [3 parameters required]
I/ code continues

return

Products
Recital Mirage Server, Recital Terminal Developer

66

AVERAGE

Class
Fields and Records

Purpose
Calculate the average of specified numeric expressions

Syntax

AVERAGE [<scope>] <exp> [,<exp>...]

[FOR <condition>]

[WHILE <condition>]

[TO <memvar-list> | TO ARRAY <array name>]

See Also
SUM, COUNT, TOTAL, AAVERAGE()

Description
The AVERAGE command calculates the arithmetic mean of all the specified numeric expressions. All
records in the currently selected table are averaged unless the <scope> is specified.

FOR <condition>
If the FOR clause is specified, then only those records matching the specified <condition> are averaged.

WHILE <condition>

The WHILE is used to restrict the range of records processed while the specified <condition> is true.
When used in conjunction with the SEEK or LOCATE commands, it gives a quick way of averaging
selected records. When the WHILE clause is used, the <scope> will default to REST unless otherwise
specified.

TO <memvar>
If TO <memvar> is specified then the result of AVERAGE will be stored in the specified memory variable.
If the variable does not exist it will be created.

TO ARRAY <array>

The TO ARRAY clause is used to store results in a pre-defined one-dimensional array. The result of the
first numeric expression is placed in the first array element, the second result is placed in the second
element, and so on. If there are fewer elements than expressions, the AVERAGE command will only store
results for which there are elements. If there are more elements than expressions, the remaining elements
are left empty.

Example

use patrons

average seats, cost;
to avg_seats, avg_cost;
for event = “PHANTOM”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

67

BEGIN SEQUENCE

Class
Error Handling and Debugging

Purpose
Start error-handling block

Syntax

BEGIN SEQUENCE
<command>
[BREAK]
<command>

END SEQUENCE

See Also
ON ERROR

Description

The main purpose of the BEGIN SEQUENCE ... BREAK ... END SEQUENCE construct is to allow for
programmable error handling. The commands that follow the END SEQUENCE command will normally
be devoted to error handling and will be executed immediately.

BREAK

The BREAK keyword can be used whenever the program commands detect an error. For this purpose,
BREAK may appear at any depth within nested procedures. When BREAK is encountered, all stacked
procedures will unwind automatically.

Example
error = .F.
begin sequence
do while not eof()
if empty(name)
rec = recno()
error =.T.
break
else
display name
endif
skip
enddo
end sequence
if error

set message to “Error: No name in record; &rec.”

else

set message to “End of file reached.”

endif

Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

68

BEGIN TRANSACTION

Class
Transaction Processing

Purpose
Begin transaction Before Image Journaling

Syntax

BEGIN TRANSACTION [<path name>]
<commands>

END TRANSACTION

See Also
SET ROLLBACK, ISMARKED(), RESET IN, ROLLBACK, ROLLBACK(), COMPLETED()

Description

The BEGIN TRANSACTION command is used to flag the beginning of a transaction for Before Image
Journaling (B1J). A ‘transaction’ consists of all file modifications that occur within the commands BEGIN
TRANSACTION and END TRANSACTION.

When BEGIN TRANSACTION is issued all currently open files and all files opened between BEGIN and
END TRANSACTION will have BIJ invoked automatically. If BIJ is not required on a particular table
then the RESET IN command should be issued for the relevant workarea so that journaling will no longer
occur in that workarea. The journals are stored in a log file (with a file extension of “.log") which the
Recital/AGL generates automatically. You can optionally specify the disk and directory <path name>
where the log file will be stored when the BEGIN TRANSACTION command is issued.

A “rollback” causes record contents to be restored to their value before modification (i.e. at the time
BEGIN TRANSACTION was issued). This is particularly useful if an error occurs during a program that
modifies files.

If SET ROLLBACK is ON, the Recital/4GL will automatically execute the ROLLBACK command if an
error occurs during the transaction process. Otherwise, error trapping should be handled manually using
the ON ERROR command.

The COMPLETED() function can be used after the END TRANSACTION command to determine if any
errors occurred during processing of the commands between BEGIN and END TRANSACTION.

Please note that the following commands are not allowed during a transaction:
CLEAR ALL

CLOSE ALL

CLOSE DATABASE

CLOSE INDEX

MODIFY STRUCTURE

PACK

ZAP

Example
procedure recovery
rollback
if rollback()
dialog box “Rollback was ok.”
else

69

dialog box “Rollback not completed.”
endif
return

use accounts
on error do recovery
begin transaction
delete first 15
insert
replace all t1 with (t2*t3)/100
list
end transaction
if completed()
dialog box “Transaction completed”
else
dialog box “Errors occurred during transaction”
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

70

BLANK

Class
Fields and Records

Purpose
Fill fields with blanks

Syntax

BLANK [<scope>]

[FIELDS <field list> | LIKE | EXCEPT <skeleton>]
[REINDEX]

[FOR <condition>]

[WHILE <condition>]

See Also
APPEND BLANK, EMPTY(), ISBLANK(), REPLACE

Description

The BLANK command is used to fill a field or fields with empty values. This command is often used to
empty out records that have been marked for deletion. This allows the record to be re-used without the
need to perform an APPEND BLANK. Fields in the current record of the active table will be blanked,
unless a <scope> is specified.

The way that the BLANK command fills each field depends on its data type. The following table describes
how each data type is filled with blanks.

Data Type Description
Character All spaces
Data Empty date
Logical F.

Memo Length of 0
Numeric 0

FIELDS <expC>

You may specify which fields to fill with blanks with a field list of comma-separated fieldnames, or a
pattern matching skeleton to blank those fields whose contents either match (LIKE), or do not match
(EXCEPT) the specified pattern. If no fields or patterns are specified, the BLANK command will fill all
fields in the current record with empty values.

FOR <condition>
Use a FOR <condition> to blank the specified fields in records where a certain condition is true.

WHILE <condition>

To blank fields until a condition is false, use the WHILE <condition>. Blanking a field that is involved in a
WHILE <condition> is not recommended as the order of the records will be changed for each key field
blanked.

Example
blank all for deleted()

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

71

BROWSE

Class
Screen Forms

Purpose
User-Interface tool browse

Syntax

BROWSE

[COLOR <color code> | COLOR SCHEME <color-scheme>]
[COMPRESS]

[FIELDS <field list>]

[FOR <expL1>]

[FORMAT]

[FREEZE <fieldname>]
[KEY <key expression>]
[LAST | NOINIT]
[LOCK<expN1>]
[NOAPPEND]

[NOCLEAR]

[NODELETE]

[NOEDIT | NOMODIFY]
[NOFOLLOW]

[NOMENU]

[NOWAIT]

[OVERLAY]

[STYLE <expC1>]
[TIMEOUT <expN2>]
[TITLE <expC2>]

[VALID [:F] <expL2> [ERROR <expC3>]]
[WHEN <expL3>]
[WIDTH<expN3>]
[WINDOW <window name>]

See Also
@...GET, CHANGE, SET EDITFIELD, SET FORMAT, APPEND, EDIT

Description

The BROWSE user-interface tool displays the records from the currently active table in a grid window.
Browse can also have an edit window, and/or a memo window active at the same time. If the table being
browsed is related to other tables, then these related tables can also be edited from within the edit widow.
Full automatic record locking in the browse window is performed on shared tables.

All the dictionary attributes defined in the Application Data Dictionary (ADD) are active in BROWSE.
From the ADD, field validation, editing pictures, static and dynamic choice lists, calculated and default
attributes can be defined. Security and field protection can also be defined. Enabling or disabling of
update, append, delete and hidden fields by user and group ID is available.

72

Keyword

Description

COLOR <color code>
| COLOR SCHEME
<color-scheme>

Specifies a set of color pairs or the number of an existing color
scheme in the COLOR SCHEME to change the default color of
BROWSE. A color scheme is a set of 10 predefined color pairs.
The color pairs in a color scheme can be changed with the SET
COLOR OF SCHEME. A color pair is a set of two letters
separated by a forward slash. The first color letter specifies the
foreground color and the second letter specifies the background
color.

COMPRESS

Places column headings on the top line of the BROWSE work
surface, with no separating line above the records, to allow more
records to be displayed.

FIELDS <field list>

The comma-separated <field list> enables you to: specify the order
in which the specified fields display and incorporate special
handling options for each field. Please see below for these options.

<field> [:R] [:column width]

[:B = <expr>, <expr>[:F]]

[:C = <expC> | <@alias>,<expC>]
[}V = <expL> [F:] [:E = <expC>]
[:P = <expC>]

[:H = <expC>]

[}W = <expL>]

Each field in the <field list> may be followed by special handling options. A delimiter precedes each

option, either : or \.

Option

Description

‘R

Fields are read-only, so may be viewed, but not edited.

:<column width>

The <column width> allows you to specify the numeric display
width of a field.

:B = <expr>,<expr> [:F]

Restricts valid data input to a range of values. The expressions
specified must match the data type of the field and represent low
<exprl> and high <exprl> values. The specified range is only
enforced when the field value changes unless the :F option is used.

:C = <expC> | <@alias>,<expC>

The Choicelist option associates a pop-up choicelist or a User
Defined Function (UDF) with a field. The choicelist may be either
‘static’, a string of comma-separated choices, ‘dynamic’,
@alias,string or a UDF, a function name prefixed with a question
mark.

'V = <expL> [:E = <expC>] [:F]

Validates the field value based on the evaluation of <expL>. If
<expL> returns true (.T.), the field value is considered valid. If
<expL> returns false (.F.), the value is rejected and an error
message displayed. If the :E option is specified, <expC> replaces
the default error message. The validation is only enforced when the
field value changes unless the :F option is used.

This option does not work on memo fields.

:H = <expC> Replaces the default field headings, field name or description, with
the character expression <expC>.

‘M = <expC> Displays <expC> in the message line when the field is selected.

P = <expC> Sets the picture format to <expC>. For more information on
picture template characters and picture formatting, see @...GET.

‘W = <expL> Only allows data entry when <expL> evaluates to true (.T.),

otherwise the field is read-only.

73

The <field list> can also include memory variables calculated by specified expressions. These take the
format <memvar> = <expression>. The memory variables may not be manually updated in the BROWSE.

Keyword Description
FOR <condition> Restricts the BROWSE to those records matching the <condition>.
FORMAT Causes BROWSE to assumes the triggers and @...GET attributes as

defined in the currently active format file.

FREEZE <fieldname>

Restricts cursor movement to the column containing the field
<fieldname>.

KEY <key expression>

Restricts the BROWSE to those records whose index key matches the
specified <key expression>.

LAST | NOINIT Causes BROWSE to inherit the settings and clauses from the
previous BROWSE.

LOCK <expN1> Locks the specified number of columns <expN1> from the left. As
you pan right and left, the locked columns remain on the screen and
the columns to the right are panned.

NOAPPEND Disables the appending of new records into the table.

NOCLEAR Leaves the BROWSE window displayed on the screen when you exit.

NODELETE Disables record deletion.

NOEDIT | NOMODIFY Disables record editing, providing read-only access to the table.

NOFOLLOW Prevents repositioning in the worksurface when an index key field
value is edited.

NOMENU The NOMENU clause disables the BROWSE menu system.

NOWAIT Continues program execution immediately after the BROWSE
command has been issued, rather than when the BROWSE is exited.
The BROWSE is displayed, but not active.

OVERLAY Allows format files to be overlaid on the BROWSE worksurface
rather than clearing the screen.

STYLE <expC1> Specify the font style, <expC1>, to be used. Recital Mirage only.

TIMEOUT <expN2>

Specify how many seconds, <expN2>, BROWSE should wait for
input before closing automatically.

TITLE <expC2>

Specify a title, <expC2> to be displayed. Recital Mirage only.

VALID [:F] <expL2>
[ERROR <expC3>]

Allows record-level validation in a Browse window. VALID is
executed only if a change is made to the record and an attempt is
made to move the cursor to another record. The VALID clause is not
executed if the only change is to a memo field. If <expL2> evaluates
to true (.T.), the cursor can be moved to another record. If <expL2>
evaluates to false (.F.), the cursor remains in the current field, and the
system message “Invalid input” appears. An alternative error
message can be specified, using the optional ERROR clause and the
character expression <expC3> will be displayed. To force the
VALID clause to execute before moving to another record even if no
changes have been made, include the optional :F.

WHEN <explL 3>

FoxPro syntax compatibility only.

WIDTH

Specifies a display size for all fields. This option will override the
width specified at the field level.

WINDOW <window name>

Causes the BROWSE output window to take on the characteristics of
the named <window name> pre-defined window. The specified
window need not be visible or active.

74

Example

use demo

browse field title:c=“MR.Mrs,Miss,Mr”;
last_name:w=10,;
first_name

Products
Recital Mirage Server, Recital Terminal Developer

75

BUILD

Class
Table Basics

Purpose
Exports bridge files, tables and their associated files in ASCII format to allow them to be transferred to a
binary incompatible platform

Syntax
BUILD <filename> [INTO <directory>]

See Also
INSTALL, SET FILETYPE

Description

The BUILD command exports tables and their associated memo, dictionary and multiple index files into
ASCII format to allow them to be transferred to a binary incompatible format. The import on the target
machine requires the use of the INSTALL command.

<filename>
The <filename> is the name of a “.xaf’ file. This is a text file in the following format, assuming the files
datal.dbf and data2.dbf are the tables to be converted:

dbf,datal.dbf
dbf,data2.dbf

The dictionary, memo and multiple index file information is picked up automatically.

The BUILD command creates a single “.xat’ file with information about all the files being exported. The
‘. xat’ file has the same name as <filename> and is specified in the INSTALL command on the target
machine. A “.xds’ file is created for each table specified, containing the table structure information. A
“.xmd’ file is created for each table that has a memo file and a “.xdd’ file for each table’s data. These files
contain the information required to rebuild the files on the target machine.

Recital Bridges can also be transferred. The name of the bridge file should be specified in the “.xaf” file,
e.g.

brg,cisamdemo.dbf

Note: although the default extension for bridge files is “.brg’, many bridge files are given a ‘.dbf’ extension
to allow them to be opened with the USE command by specifying the basename only. This is the case for
the cisamdemo.dbf C-ISAM bridge file included in the Linux and UNIX distributions.

The matching “.str’ file and the target data files are automatically picked up. For the cisamdemo.dbf bridge,
this means that the following files are included:

cisamdemo.str
cisamdemo.dat
cisamdemo.idx

INTO <directory>

If the optional INTO <directory> clause is used, the export files will be created in the specified directory.
If the directory does not exist, it will be created.

76

Example

On Source machine demo.xaf contains the following lines:
dbf,customer.rdb

dbf,accounts.rdb

dbf,state.rdb

dbf,product.rdb

brg,cisamdemo.dbf

> build demo into ./transfer

On Target Machine, once files have been transferred
» install demo from ./transfer

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

77

CALCULATE

Class
Fields and Records

Purpose
Computes certain financial and statistical calculations for a range of records

Syntax

CALCULATE [<scope>] <options list>
[FOR <condition>]

[WHILE <condition>]

[TO <memvar-list>]

[TO ARRAY <array name>]

See Also
AVERAGE, COUNT, TOTAL, SUM, REPORT

Description

The CALCULATE command computes certain financial and statistical functions against the records of the
current and related tables. If no <scope> is specified, all records will be processed. If a WHILE
<condition> is specified, the <scope> will default to REST.

The options list consists of one or more of the following CALCULATE functions:

Function Description

AVG(<expN>) Returns the arithmetic mean of <expN>.

CNT() Returns the number of records selected during a calculate
command.

MAX(<expN>) Returns the maximum number of <expN>.

MIN(<expN>) Returns the minimum number of <expN>.

NPV(<expN1><expN2><expN3>) | Calculates net present. The value <expN1> is the interest
percentage represented by a decimal number. (For example,
0.15is 15%). The value <expN2> represents the periodic
payment amounts. <expN3> is a numeric value that represents
an initial investment. The initial value should be a negative
number since it represents cash outflow

STD(<expN>) Calculates the standard deviation of <expN>. Standard
deviation measures the degree to which each individual score in
a sample varies from the mean of the scores in the sample

SUM(<expN>) Returns the sum of <expN>.

VAR(<expN>) Calculates the population variance of <expN>

FOR <condition>
If a FOR <condition> is specified, only those records matching the <condition> are included in the
calculations.

WHILE <condition>

The WHILE <condition> can be used in conjunction with the FIND or SEEK commands, and the REST
<scope>, to restrict the number of records which are processed and therefore optimize the performance of
the CALCULATE command.

TO <memvar>

78

The results of the CALCULATE operation will be displayed on the screen if the TO <memvar-list> list
clause is not specified and SET TALK is ON. If SET TALK is OFF, the results will not be displayed, so
the <memvar list> must be specified to make the results accessible. The memory variables do not need to
be predefined. The memory variables are specified in a comma-separated list and their number must match
the number of functions used

TO <array>

The TO ARRAY clause is used to store results in a pre-defined one-dimensional array. The result of the
first numeric expression is placed in the first array element, the second result is placed in the second
element, and so on. If there are fewer elements than expressions, the CALCULATE command will only
store results for which there are elements. If there are more elements than expressions, the remaining
elements are left empty.

Example

I/ Calculate the average and variance.

use accounts

seek “al456”

calculate;
cnt(),avg(ord_value),sum (ord_value),;
var(ord_value) to cnt,avg,sum,var;
while acc_no="“A1456"

I/ Calculate the net present value.

use payments

m_rate = 0.12

m_initial = -40000

calculate npv(m_rate, payment, m_initial) to m_npv

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

79

CALCULATOR

Class
Screen Dialogs

Purpose
Display a popup calculator

Syntax

CALCULATOR

[AT <expN1><expN2>]
[BOLD]

See Also
CALENDAR, MENUITEM(), VAL()

Description
The CALCULATOR command displays a calculator that can be used to perform addition, subtraction,
multiplication, division and percentage operations entered using the keyboard.

The calculator is operated by pressing the appropriate mathematical operators and digits on the keyboard.
Percentage calculations are performed by loading the value to be calculated before entering the percentage.
If the value is already displayed in the calculator, press the '=' operator, then press, for example: '50 % ="' to
calculate fifty percent of that value. If the value is not already displayed in the calculator, type for example
'2000 =" to indicate that you are going to calculate a percentage of two thousand, then enter the percentage
amount followed by the '=" operator. if the [EXIT/SAVE] key is pressed the MENUITEM)() function will
return the result from the CALCULATOR as a character string. The VAL() function can be used to convert
a character string to a numeric. If the [ABANDON] key is pressed, MENUITEM() will return a null string.

When editing a numeric field, pressing the [HELP] key displays the CALCULATOR. If you save the
result of the currently displayed calculation, using the [EXIT/SAVE] key, then the value is returned to the
field.

Keyword Description

AT <expN1><expN2> | Specify the calculator top left row and column coordinates. If no
coordinates are specified, the calculator is centered on the screen.

BOLD Display the calculator in bold, if supported by the terminal display.

Example
calculator at 2,30

Products
Recital Terminal Developer

80

CALENDAR

Class
Screen Dialogs

Purpose
Display a pop-up monthly calendar relating to today or to a specified date

Syntax

CALENDAR

[AT <expN1><expN2>]
[BOLD]

[CLEAR]

[DATE <expD>]
[LABEL <expC>]
[MENU [SCHEDULE]]

See Also
@...GET, CALCULATOR, DIARY, SET SCHEDULE

Description
The CALENDAR command displays a pop-up calendar page for the current month, with today's date
highlighted. Alternatively, it can be used to display the monthly calendar relating to a specified date.

When editing a date field, pressing the [HELP] key invokes the CALENDAR. Selecting a date from the
CALENDAR causes the date value to be returned to the field.

Keyword Description

AT <expN1><expN2> | Specify the calendar top left row and column coordinates. If no coordinates
are specified, the calendar is centered on the screen.

BOLD Display the calendar in bold, if supported by the terminal display.

CLEAR Clears the screen behind the calendar display area.

DATE <expD> Specify a date to be displayed on the calendar. The dates from that month
will be shown and the date <expD> itself will be highlighted.

LABEL <expC> Specify a character expression <expC> to replace the default title
“Calendar”.

MENU Allows the calendar to be ‘paged’ between months. You can locate a

specific date using the [FIND] key and select a date by pressing
[EXIT/SAVE] when the required date is highlighted. The MENUITEM()
function will return the selected date from the CALENDAR, or a null string
if no date is selected.

MENU SCHEDULE Also displays the time scheduler, allowing appointment and other details to
be associated with a specific date and time.

Example
calendar menu at 10,10

Products
Recital Terminal Developer

81

CANCEL

Class
Applications

Purpose
Cancel processing of commands in a program file

Syntax
CANCEL

See Also
RETURN, RETRY, QUIT

Description

The CANCEL command cancels the execution of the current program, closes all open command files and
returns the system to the interactive command mode. If the current program was called from the Operating
System prompt, control will be returned to the Operating System.

Example
cancel

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

82

CHANGE

Class
Screen Forms

Purpose
Full screen editing of records through a form

Syntax

CHANGE
[<scope>]

[FIELDS <field list>
[FOR <condition>]
[KEY <exp>]
[NOAPPEND]
[NOCLEAR]
[NODELETE]
[NOEDIT]
[NOFOLLOW]
[NOINIT]
[NOMENU]
[NOORGANIZE]
[NOWAIT]
[WHILE <condition>]

See Also
APPEND, BROWSE, EDIT, READ, SET FORMAT, SET UPDATE

Description

The CHANGE command provides the facility to edit records in the active table that match specified record
selection criteria. The CHANGE command uses a default form to display and allow updating of the
specified records.

When memo fields are displayed, the memo field label is in lower case if the field is empty, and upper case
if the field contains text. If a memo window (SET WINDOW OF MEMO) is active, then the memo can be
displayed and edited in the specified window. Otherwise, pressing the [INSERT] key or the [HELP] key on
the memo field will popup a notepad editor. Pressing the [HELP] key within the notepad editor displays
the memo editing keys available. These keys include facilities for reading from and writing to external files
and printing on the system printer.

You can design your own forms using the Forms Designer (CREATE SCREEN). The Form Designer will
automatically generate a format file that can contain @...GET, @...SAY, @...MENU and other display
objects. This form will be used by the CHANGE command if it has been activated using the SET
FORMAT command.

If the active table is shared, then automatic record locking will take place for each of the tables referenced
on the form. The records are automatically unlocked when you skip to another record, or exit from the
CHANGE command. If UPDATE is ON then ‘Upd’ appears in the 3rd box of the status bar at the bottom
of the screen. When UPDATE is ON records are automatically locked before they are read from the
database. When UPDATE is OFF, no record locking is performed. It is recommended that you toggle
UPDATE mode ON when you have a record displayed on the form which you want to update, and leave
UPDATE OFF while you are browsing through your records. If SET LOCKWAIT is OFF, then whenever
an attempt is made to lock a record that is already locked by another user, you are given the choice of
waiting for the lock or continuing in query mode.

83

When UPDATE is toggled ON, the form is refreshed with the most current information from the table. As
only one user at a time can be in UPDATE mode on a particular record, the information displayed on the
form is always current at the time of editing. The changed data on the form is written to the table and the
lock released when the [EXIT/SAVE], [NEXT SCREEN], [PREVIOUS SCREEN] or [MENUBAR] keys
are pressed. If the [ABANDON] key is pressed and changes have been made to the data, SET VERIFY ON
causes a dialog box to be displayed asking for confirmation.

Keyword

Description

<scope>

If no <scope> is specified, CHANGE is activated on the current record and all
records are accessible using the [NEXT RECORD] and [PREVIOUS
RECORD] keys.

FIELDS <field list>

The active fields can be restricted to those specified in the comma separated
<field list>.

FOR <condition>

Record navigation is restricted to those records that match the <condition>.

KEY <exp> The active records can be restricted to those that match the specified <exp>.
The <exp> must be based on the index key of the current master index.

NOAPPEND The ability to append records is disabled.

NOCLEAR Erasing of the screen on entry and exit from CHANGE is disabled.

NODELETE The ability to delete records is disabled.

NOEDIT The ability to edit the record is disabled. Access is read only.

NOFOLLOW The NOFOLLOW key word determines whether the record pointer follows a
record whose position has changed. A record's position may change when
fields that are part of the master index expression are modified. Normally, upon
update, the record pointer will be moved to the new position, NOFOLLOW
disables this.

NOINIT The work surface retains the keywords and specifications from the last
CHANGE session.

NOMENU The menu bar is disabled in the default CHANGE form.

NOORGANIZE Language compatibility only

NOWAIT Control is returned to the executing program without waiting for the user to exit

the CHANGE worksurface.

WHILE <condition>

Record navigation is restricted to those records that match the specified
<condition>. Navigation cannot continue beyond a record that does not match
the <condition>.

The following keys are active in CHANGE:

Key

Action

ABANDON

Discard current changes then exit from the form

CURSOR DOWN

Skip to next field

CURSOR LEFT

Skip to previous field

CURSOR RIGHT

Skip to next field

CURSOR UP

Skip to previous field

DELETE FIELD

Initialize field

DELETE RECORD

Delete / Recall the record

EDIT FIELD Enter field edit mode

EXIT/SAVE Write current changes then exit from the form

FIND Find record by key or condition

FIND NEXT Find next record matching specified key or condition
HELP Activate pop-up help

MENUBAR Activate the CHANGE menu bar

NEXT RECORD Write current changes then skip to next record

PREVIOUS RECORD

Write current changes then skip to next record

84

REFRESH Redraw the form

TAB Toggle function key menu on and off

UPDATE MODE Toggle update mode on and off

If SET MOUSE is ON, cursor keys will move the cursor anywhere on the screen rather than just from field
to field. If SET NAVIGATE is ON, the cursor moves to fields following the direction specified by the key
being pressed, rather than following the order of the GETS on the form. When the RETURN key is
pressed, the cursor moves to the nearest field when SET NAVIGATE is ON.

The following keys are active in field edit mode:

Key

Action

BACKSPACE

Delete character before cursor

CURSOR LEFT

Skip to previous character

CURSOR RIGHT

Skip to next character

DELETE CHAR

Delete character under cursor

DELETE FIELD

Delete from cursor to end of field

DELETE WORD Delete current word

INSERT MODE Toggle insert / overwrite mode
WORD LEFT Skip left a word

WORD RIGHT Skip right a word

The following menu options are available from the CHANGE menu bar in the default form:

Menu Item Action

Descriptions Toggle the field descriptions on and off

Top Position to the top of the table or selected records
Bottom Position to the bottom of the table or selected records
Order Select index order

Query Query the table for selected records

Help Activate on-line help system

Example

use demo

change

Products

Recital Mirage Server, Recital Terminal Developer

85

CLASS

Class
Objects

Purpose
Create a user-defined class

Syntax

CLASS <class name>
[OF <base class> [, ...]]
[PUBLIC | PRIVATE]
[DYNAMIC]
[NOTIFY]
[PROPAGATE]
ENDCLASS

See Also

CLASS - METHODS, CLASS - PARAMETERS, CLASS - PROPERTIES, CLASS - SCOPING, DEFINE
CLASS, METHOD, ADDPROPERTY/(), CREATEOBJECT(), DODEFAULT(), NEWOBJECT(),
REMOVEPROPERTY ()

Description

The Class construct is a fundamental part of the object-oriented programming language (OOPS) which is
part of the Recital/4GL. The OOPS language supports encapsulation, inheritance (single and multiple),
polymorphism, complex member scoping, property notification, and method propagation.

Fundamental to object-oriented programming is the concept of Objects and classes. An object is a self-

contained unit of data and functions that manipulate that data. A class is a specification of an object. A
class contains memory variable specifications known as properties and functions that perform actions on
the object known as methods. An object is an instance of a class.

The NEW operator is used to define a new object based on a class. The class name must be postfixed with
parentheses when the new operator is used. The syntax is therefore as follows:

<object> = NEW <class>()

e.g.
myobject = new myclass()

The CLASS...ENDCLASS construct is used to create a user-defined class. The beginning of a class is
specified with CLASS <class name>, where <class name> can be any valid name up to 32 characters. The
ENDCLASS command is used to complete the class construct. The CLASS...ENDCLASS construct is
built using the commands describe in this section. Any Recital/4GL command can be used in building
methods in the class, however these commands cannot be used outside the method definition inside a
CLASS...ENDCLASS construct.

OF <base-name> [, ...]

A key feature of the object-oriented code is reusability through a mechanism called inheritance, that is, one
class can inherit the members and their implementation from another class. Building new classes out of
existing classes allows for the reusing of proven classes and the incorporation of system classes into user
defined classes. Inheritance enables developers to build a hierarchy of descending objects. The inheriting
class is called a derived class, and the class from which the derived class inherits is called a base class. The

86

OF clause is used to inherit the <base name>. You can inherit multiple classes by specifying a class name
comma separated list.

PUBLIC | PRIVATE

A user-defined class by default is defined as PRIVATE, which means that it will be visible only at the level
where the class is instantiated. If the PUBLIC clause is specified, then when the class is instantiated, it will
be visible at all levels until it is RELEASED from memory.

DYNAMIC
The DYNAMIC keyword provides the ability to add property names to objects at runtime.

NOTIFY

The Recital/AGL supports what is known as Property notification. If you specify the NOTIFY clause all
properties defined will have notify set. Property notification is an essential element in the real-time
interaction with system objects. When a property that has been defined with the NOTIFY clause is read,
and the class contains a method called GETPROPERTY, that method is called. The property name is
passed to the GETPROPERTY method as a parameter.

PROPAGATE

Any methods which are called, which have the PROPAGATE attribute set, cause a cascading execution
effect down through the class hierarchy. After the method is executed, a search is made in all of the sub-
objects (if any) that are defined as properties within the current object. If a method with the same name is
found and that method has the NOTIFY attribute specified, then that method is called.

The CONSTRUCTOR and the DESTRUCTOR methods always act as if sub-objects have the
PROPAGATE and the NOTIFY attributes set. This allows any properties that have been specified as sub-
objects to operate correctly when an object is created with the NEW operator.

All classes have an inbuilt ADDPROPERTY ‘factory method’. This can be used as an alternative to the
ADDPROPERTY/() function to add properties to an object at runtime.

Example

class Null dynamic
property CHARACTER
property NUMERIC

endclass

ONULLDATA = new Null()
ONULLDATA.CHARACTER =~
ONULLDATA.NUMERIC =0
ONULLDATA.DATE={// }
ONULLDATA.LOGICAL = f.
display memory

87

/I Use of the Notify Keyword
class CharWin
public notify:
property IVISIBLE as logical
property nROW, nCOL, nENDROW, nENDCOL
public:
property c WINDOW
property cCOLOR

method Constructor
parameters cWINDOW, cCOLOR, nROW, nCOL, nENDROW, nENDCOL
define window &cWINDOW ;
from nROW, nCOL to nENDROW,nENDCOL ;
color &cCOLOR panel float grow
this.cWINDOW = cWINDOW
this.cCOLOR =cCOLOR
this.nROW =nROW
this.nCOL =nCOL
this.nENDROW = nENDROW
this.nENDCOL = nENDCOL
return && Constructor

method SetProperty
parameter cNAME
if lower(cNAME) = [lvisible]
if this.IVISIBLE
activate window &(this.cWINDOW)
else
hide window &(this.cWINDOW)
endif
endif
return && SetProperty
endclass

clear screen

OMYWIN = new CharWin(“mywin”, “w/r”,2,20,15,60)
dialog box [Calling a NOTIFY property]
OMYWIN.IVISIBLE = .t.

?

?[Welcome to the world of Objects]
?

88

//[Example of Constructor & Destructor

class OpenTable
property cALIAS
property nRECNUM

method Constructor
parameters cTABLENAME, cTAGNAME
local cTMPALIAS
CTMPALIAS = basename(cTABLENAME)
CTMPALIAS = iif(at(".',c.TMPALIAS) =0, ;
CTMPALIAS, ;
left(cTMPALIAS at('.",c.TMPALIAS) - 1))
if select(cTMPALIAS) =0
use &(cTABLENAME + iif(empty(cTAGNAME), ", ;
“order ” + cTAGNAME)) in workarea()
else
select select(cTABLENAME)
set order tag &cTAGNAME
endif
this.cCALIAS = alias()
this.nRECNUM = recno()
return && Constructor

method Destructor
close &(this.cALIAS)
return && Destructor

endclass

set exclusive off

0COMPANY = new OpenTable(*“/usr/recital/unixdeveloper/demo/state.rdb”, “state™)
? o0COMPANY.cALIAS

? 0COMPANY.nRECNUM

//[Example of ADDPROPERTY method

class Box
endclass

oDIALOG = new Box()
oDIALOG.AddProperty(“myprop”, “hello world”)
dialog box oDIALOG.myprop

release oDIALOG

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

89

CLASS - Methods

Class
Objects

Purpose
Define a method in a user-defined class

Syntax
METHOD <method name> [EXTERNAL]
RETURN

See Also

CLASS, CLASS - PARAMETERS, CLASS - PROPERTIES, CLASS - SCOPING, DEFINE CLASS,
METHOD, ADDPROPERTY (), CREATEOBJECT(), DODEFAULT(), NEWOBJECT(),
REMOVEPROPERTY()

Description

An object encapsulates properties and all of the methods that perform operations on the object.
Encapsulation hides data within an object, and makes an object into a full self-contained operational unit.
A class method is a self-contained function defined in the class, accessible only through an instantiation of
the class.

You define the methods of a class using the METHOD command in the CLASS...ENDCLASS construct.
The “This.” operator is used to reference properties of the active object from within its methods. Parameters
can be passed to a method, the PARAMETER statement can be used to define the parameters in the
method.

<method name>

The <method name> must be unique name of up to 32 characters. The method is called using the
“object.method()” syntax. You can create special methods in the class. When a new object is created, and
the class contains a method called CONSTRUCTOR, that method is called to complete the process of
creating the object. You can pass parameters to the CONSTRUCTOR method when you create the new
object. The PARAMETER statement must be specified in the method for accepting parameters. When the
object is released, and it contains a method called DESTRUCTOR, that method is called prior to the object
storage being released. The Visual FoxPro equivalents are also supported: INIT for CONSTRUCTOR and
DESTROY for DESTRUCTOR. When a property that has been defined with the NOTIFY clause is read,
and the class contains a method called GETPROPERTY, that method is called. The property name is
passed as an upper case character string to the GETPROPERTY method as a parameter. When a property
that has been defined with the NOTIFY clause is updated, and the class contains a method called
SETPROPERTY, that method is called. The property name, in upper case, and the new value are passed to
the SETPROPERTY method as parameters.

EXTERNAL

Methods can be defined outside the CLASS...ENDCLASS construct with the METHOD command. The
EXTERNAL clause is used to make an external method known to the CLASS...ENDCLASS construct.
When a method is defined externally, its name should be preceded by the keyword METHOD, followed by
the Class name, followed by two colon characters (e.g. Method MyClass::ExtMethod).

RETURN
The RETURN clause is used to specify the end of the method definition.

90

Example
/I Example of External Method
class Box

method DrawFrame external
endclass

Method Box::DrawFrame
parameters nX1, nY1, nX2, nY2, cFGCOL, cBGCOL
@nX1,nY1 clear to nX2,nY2
@nX1,nY1 fill to nX2,nY2;

color &(cFGCOL + “/” + cBGCOL)
@nX1,nY1tonX2,nY2;

color &(cFGCOL + “/” + cBGCOL)
return && DrawFrame

oDIALOGOK = new Box()
oDIALOGOK.DrawFrame(5,25,12,54, “R”, “Gr”)

// Example of Visual FoxPro Method names

class Box
procedure Draw
messagebox(“This is the parent Draw Method”)
endproc && Draw
endclass

class Dialogl of Box
procedure Init
messagebox(“This is the object Init Method™)
endproc
procedure Destroy
messagebox(“This is the object Destroy Method™)
endproc
procedure Draw
messagebox(“This is the object Draw Method™)
dodefault()
endproc && Draw
endclass

oDIALOG = createobject(“Dialogl”)
oDIALOG.Draw()
oDIALOG.AddProperty(“myprop”, “hello world”)
messagebox(oDIALOG.myprop)

release oDIALOG

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

91

CLASS - Parameters

Class
Objects

Purpose
Define a parameter list for a method inside a user-defined class

Syntax
PARAMETERS <name>
[AS CHARACTER | NUMERIC | LOGICAL | DATE | <class name>]

L]

See Also

CLASS, CLASS - METHODS, CLASS - PROPERTIES, CLASS - SCOPING, DEFINE CLASS,
METHOD, ADDPROPERTY(), CREATEOBJECT(), DODEFAULT(), NEWOBJECT(),
REMOVEPROPERTY()

Description

The PARAMETER command is used inside the CLASS...ENDCLASS construct to define a parameter list
for a method. You can pass parameters to methods just as you would to regular functions. If the method
name is called CONSTRUCTOR then the parameters are passed to this method when you create the object.

<name>
The parameter <name> is the name of a memory variable or array.

AS CHARACTER | NUMERIC | LOGICAL | DATE

The data type of values assigned to a property within an object can be checked at run-time by associating a
data type with the property in the class definition. The AS clause is used to perform data scoping. Once a
variable has been defined to a specific data type, you cannot change its data type by assigning it a value
from a different data type. Doing this will result in the run-time error “Data type mismatch”.

AS <class name>

A property data type can inherit a class <class name>, and its members and their implementation from
another class. Inheritance enables developers to build a hierarchy of descendant objects. The specification
of a property data type as an existing class name provides for construction of a class hierarchy. The
inheriting class is called a derived class, and the class that the derived class inherits is called a base class.

Example
class Box
method Draw
parameters nX1, nY1, nX2, nY2, cFGCOL, cBGCOL
@nX1,nY1 clear to nX2,nY2
@nX1,nY1fill to nX2,nY2 ;
color &(cFGCOL + “/” + cBGCOL)
@nX1,nY1tonX2,nY2;
color &(cFGCOL + “/” + cBGCOL)
return && Draw
endclass

92

class Dialogl of Box
property IOK

method Show
parameters nX1, nY1, nX2, nY2, cMESSAGE

this.Draw(nX1,nY1,nX2,nY2, “n”, “bg”)

@nX1+2nY1l+int((nY2-nY1-;
len(cMESSAGE))/2) say cMESSAGE color w+/bg

@nX2-2,nY1+int((nY2-nY1-5)/2);
menu [\<Ok]

menu quit

this.IOK = (not empty(menuitem()))

@0,0 clear to 0,79

return && Show

endclass

oDIALOGOK = new Dialogl()
oDIALOGOK.Show(5,25,12,54, “Completed”)

? oDIALOGOK.IOK
?

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

93

CLASS - Properties

Class
Objects

Purpose
Create properties in a user-defined class

Syntax
PROPERTY <memvar> | <array> | <dynamic array> [, ...]
[AS CHARACTER | NUMERIC | LOGICAL | DATE | <class>] [, ...]

See Also

CLASS, CLASS - METHODS, CLASS - PARAMETERS, CLASS - PROPERTIES, CLASS - SCOPING,
DEFINE CLASS, LOCAL, METHOD, PRIVATE, PUBLIC, STATIC, ADDPROPERTY/(),
CREATEOBJECT(), DODEFAULT(), NEWOBJECT(), REMOVEPROPERTY ()

Description

The PROPERTY command is used inside the CLASS...ENDCLASS construct to define properties of a
class. The PROPERTY command can create memory variables, arrays, and dynamic arrays. You reference
properties in an object using the dot (.) member access operator. The full syntax is <object>.<property>.

The visibility of the properties of an object is governed by their scope. Unless otherwise specified, all
properties defined within a class are public.

<memvar> | <array> | <dynamic array>

The property name is either a memory variable name <memvar>, or an array name <array>. Arrays are
defined with the “arrayname[<expN>]" construct. The <expN> represents the number of array elements, if
the number is not specified then the array is defined dynamic.

AS CHARACTER | NUMERIC | LOGICAL | DATE

The data type of values assigned to a property within an object can be checked at run-time by associating a
data type with the property in the class definition. The AS clause is used to perform data scoping. Once a
variable has been defined as a specific data type, you cannot change its data type by assigning it a value
from a different data type: doing this will result in the run-time error “Data type mismatch”.

AS <class name>

A property data type can inherit a class <class name>, and its members and their implementation from
another class. Inheritance enables developers to build a hierarchy of descendant objects. The specification
of a property data type as an existing class name provides for construction of a class hierarchy. The
inheriting class is called a derived class, and the class that the derived class inherits is called a base class.

Example

// Example of Properties

class Company
property cCOMPANY _NAME as character
property cCOMPANY _CODE as character
property aADDRESS]]
property cCOUNTRY as character
property cWWW
property cTEL
property cFAX

endclass

94

0COMPANY = new Company()
0COMPANY.cCOMPANY_NAME = [Recital Corporation Inc]
0COMPANY .aADDRESS.linel = [85 Constitution Lane]
0COMPANY .aADDRESS.line2 = [Danvers]

0COMPANY .aADDRESS.line3 = [MA 01923]
0COMPANY.cWWW = [http:/www.recital.com]

display memory

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

95

CLASS - Scoping

Class
Objects

Purpose
Specify scoping in user-defined class

Syntax
LOCAL | PRIVATE | PUBLIC | STATIC
[NOTIFY] [PROPAGATE]:

See Also

CLASS, CLASS - METHODS, CLASS - PARAMETERS, CLASS - PROPERTIES, DEFINE CLASS,
METHOD, ADDPROPERTY (), CREATEOBJECT(), DODEFAULT(), NEWOBJECT(),
REMOVEPROPERTY()

Description

The visibility of the properties of an object is governed by their scope. The default visibility is public, but
this can be changed by using one of the scoping commands. Once the scope is changed, it remains in effect
on all property and method definitions that follow, until it is changed again or the ENDCLASS command is
reached.

Scope Description

LOCAL Local properties and methods are visible only to the object where they are defined.

PRIVATE Private properties and methods are visible only to the object where they are defined and
to all methods and properties of objects called by the object.

PUBLIC Public properties and methods are visible everywhere.
STATIC Static property values are shared by all objects of the same class.
NOTIFY

The Recital/AGL supports what is known as Property notification. If you specify the NOTIFY clause all
properties defined will have ‘notify” set. Property notification is an essential element in the real-time
interaction with system objects. When a property that has been defined with the NOTIFY clause is read,
and the class contains a method called GETPROPERTY, that method is called. The property name is
passed to the GETPROPERTY method as a parameter. When a property that has been defined with the
NOTIFY clause is updated, and the class contains a method called SETPROPERTY, that method is called.
The property name and the new value are passed to the SETPROPERTY method as parameters.

PROPAGATE

Any methods called, which have the PROPAGATE attribute set, cause a cascading execution effect down
through the class hierarchy. After the method is executed, a search is made in all of the sub-objects (if any)
that are defined as properties within the current object. If a method with the same name is found and that
method has the NOTIFY attribute specified, then that method is called.

The CONSTRUCTOR and the DESTRUCTOR methods always act as if sub-objects have the
PROPAGATE and the NOTIFY attributes set. This means that any properties that have been specified as
sub-objects operate correctly when an object is created with the NEW operator.

The colon (:) is used to terminate the property scoping command. All properties following will now have
the visibility of the specified scoping command, until a new scoping command is specified or the
ENDCLASS is reached.

96

Example
/I Use of Scope Options
class myclass
public:
property cPUBLIC_PROPERTY

method Show && Publicly available method
/...
return && Show

private:

property cPRIVATE_PROPERTY
local:

property cLOCAL_PROPERTY
static:

property cSTATIC_PROPERTY
endclass

oMyObj = New myclass()
display memory

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

97

CLEAR

Class
Screen Forms

Purpose
Clear the screen

Syntax
CLEAR

See Also
@...CLEAR, CLEAR ALL, CLEAR GETS, CLEAR MEMORY, CLEAR LOCKS, CLEAR SCREEN

Description
The CLEAR command clears the terminal screen, positions the cursor at the top left corner of the screen,
and releases all pending GETS issued with the @...GET command.

Example
clear

Products
Recital Mirage Server, Recital Terminal Developer

98

CLEARALL

Class
Environment

Purpose
Reinitialize the Recital environment

Syntax
CLEAR ALL

See Also
CLEAR, CLEAR GETS, CLEAR MEMORY, CLEAR LOCKS, CLOSE ALL, UNLOCK

Description

The CLEAR ALL command closes all tables which are currently open, all associated index files and format
files, releases all memory variables, releases all record and file locks, releases all pending GETS, and
selects workarea 1. In effect, it does a software reset of the system.

Example
clear all

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

99

CLEAR AUTOMEM

Class
Memory Variables

Purpose
Initializes memory variables corresponding to the current record of the active table

Syntax
CLEAR AUTOMEM

See Also
REPLACE AUTOMEM, STORE AUTOMEM, USE..AUTOMEM

Description

The CLEAR AUTOMEM command re-initializes memory variables corresponding to the current record of
the active table, setting them to empty. Such memory variables can be generated automatically using the
STORE AUTOMEM and USE...AUTOMEM commands.

Data Type Empty
Character
Numeric 0
Logical F.
Date {}
Memo
Example

set locktype to optimistic

use customer

store automem

@1,1 get m.name

@2,1 get m.address

@3,1 get m.state

read

if not change()

replace customer.name with m.name,;

customer.address with m.address,;
customer.state with m.state

endif

clear automem

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

100

CLEAR FCACHE

Class
Performance and Optimization

Purpose
Close files that are logically closed but physically open

Syntax
CLEAR FCACHE

See Also
SET FCACHE, CLEAR PROGRAM

Description

The CLEAR FCACHE command physically closes any files that are logically closed but physically open
due to the use of SET FCACHE ON. SET FCACHE ON speeds up program execution by leaving files
physically open, thereby eliminating the involvement of the operating system when re-opening a file.

Normally this command should not be needed as files should be removed from the open file cache when an
open request conflicts with the file’s current status, for example, shared versus exclusive or update versus
read-only.

Example
I/ Program to tidy up on exit of application
clear fcache

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

101

CLEAR GETS

Class
Screen Forms

Purpose
Clear pending @...GET commands

Syntax
CLEAR GETS

See Also
@...GET, CLEAR, CLEAR MEMORY, CLEAR ALL, CLEAR LOCKS, READ

Description

The CLEAR GETS command releases all pending GETS issued with the @...GET command. This
command is often used with SAVE GETS and RESTORE GETS to save a batch of GETS, clear them to
free the screen for other input and then restore them.

Example
clear gets

Products
Recital Mirage Server, Recital Terminal Developer

102

CLEAR IOSTATS

Class
Performance and Optimization

Purpose
Reset all /O statistics to zero

Syntax
CLEAR IOSTATS

See Also
SET ICACHE, SET DCACHE, SET FCACHE, IOSTATS()

Description

The CLEAR IOSTATS command is used to clear statistics that have been generated as a result of the
IOSTATS() Input/Output monitoring function. The CLEAR IOSTATS command resets all of the I/O
statistics to zero. Note that whenever a table is opened, the 1/O statistics for that particular workarea are
reset to zero.

Example
clear iostats

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

103

CLEAR KEYS

Class
Keyboard Events

Purpose
Reset function key assignments to default

Syntax
CLEAR KEYS

See Also
SET KEY...TO, SAVE KEYS, RESTORE KEYS, ON KEY

Description

The CLEAR KEYS command clears hot key assignments that have been established with the SET
KEY...TO, ON KEY, or RESTORE KEYS commands. All hot keys are disabled and all keys will perform
their normal settings. Hot key assignments that have been saved with the SAVE KEYS command may be
reinstated with the RESTORE KEYS command.

Example

set key -1 to helpfile

save keys to m_hotkeys

clear keys

/...

restore keys from m->m_hotkeys

Products
Recital Mirage Server, Recital Terminal Developer

104

CLEAR LOCKS

Class
Manual Locking

Purpose
Release all file and record locks

Syntax
CLEAR LOCKS

See Also
CLEAR, CLEAR GETS, CLEAR ALL, CLEAR MEMORY, UNLOCK ALL, CLOSE ALL

Description

The CLEAR LOCKS command releases all file and record locks. The UNLOCK ALL command is
synonymous with CLEAR LOCKS. The CLEAR LOCKS command is only necessary if you are using
manual locking techniques because the Recital/AGL automatically performs record locking and unlocking.

Example
clear locks

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

105

CLEAR MEMORY

Class
Memory Variables

Purpose
Release all memory variables

Syntax
CLEAR MEMORY

See Also
CLEAR, CLEAR ALL, CLEAR LOCKS, CLEAR GETS, RELEASE

Description
The CLEAR MEMORY command releases all memory variables and frees the storage that they had
occupied. This includes user-defined classes, arrays and the system parameters, _paral to _para9.

Example
clear memory

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

106

CLEAR MENUS

Class
Menus

Purpose
Release all pending MENUS

Syntax
CLEAR MENUS

See Also
@...CLEAR, CLEAR ALL, CLEAR GETS, CLEAR MEMORY, CLEAR LOCKS, CLEAR PROMPT,
CLEAR SCREEN

Description
The CLEAR MENUS command clears all pending MENUS issued with the @...MENU command.

Example
clear menus

Products
Recital Mirage Server, Recital Terminal Developer

107

CLEAR POPUPS

Class
Menus

Purpose
Clears the screen of Xbase style pop-ups and releases them from memory

Syntax
CLEAR POPUPS

See Also
DEACTIVATE POPUP, RELEASE POPUPS, SHOW POPUP, SET COMPATIBLE

Description

The CLEAR POPUPS command clears the screen of Xbase style pop-up menus and releases them from
memory. The active pop-up is deactivated in the process, and all ON SELECTION commands related to
that pop-up are cleared. The command SET COMPATIBLE should be set ON when using Xbase style
menus.

Example

/l Tidy up
clear popups
close tables
return

Products
Recital Mirage Server, Recital Terminal Developer

108

CLEAR PROGRAM

Class
Applications

Purpose
Closes files that are logically closed but physically open

Syntax
CLEAR PROGRAM

See Also
SET FCACHE, CLEAR FCACHE

Description

The CLEAR PROGRAM closes files that are logically closed but physically open because of the SET
FCACHE ON command. SET FCACHE ON speeds up program execution by leaving files physically
open, thereby eliminating the involvement of the operating system when re-opening a file.

Normally this command should not be needed as files should be removed from the open file cache when an
open request conflicts with the file’s current status, for example shared versus exclusive or update versus
read-only.

Example
I/ Program to tidy up on exit of an application
clear program

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

109

CLEAR PROMPT

Class
Menus

Purpose
Release pending @...PROMPT menus

Syntax
CLEAR MENUS

See Also
@...CLEAR, CLEAR ALL, CLEAR GETS, CLEAR MEMORY, CLEAR LOCKS, CLEAR MENUS,
CLEAR SCREEN

Description
The CLEAR PROMPT command clears all pending menus issued with the @...PROMPT command.

Example
clear prompt

Products
Recital Mirage Server, Recital Terminal Developer

110

CLEAR READ

Class
Screen Forms

Purpose
Exit the active READ

Syntax
CLEAR READ [ALL]

See Also
@...CLEAR, CLEAR, CLEAR ALL, CLEAR GETS, CLEAR LOCKS, CLEAR MEMORY, CLEAR
MENUS, CLEAR SCREEN, READ

Description
The CLEAR READ command exits the active READ. If the active READ is nested, control is returned to
the parent READ. If the ALL keyword is specified all READs are terminated.

Example
set compatible to foxpro

@2,2 say “First Name:”

@4,2 say “Last Name:”

@2,16 get firstname size 1,24 default “”
@4,16 get lastname size 1,24 default “”
on key label f3 clearexit()

read

function clearexit
clear read
return

Products
Recital Mirage Server, Recital Terminal Developer

111

CLEAR SCREEN

Class
Screen Forms

Purpose
Clear the screen

Syntax
CLEAR SCREEN

See Also
@...CLEAR, CLEAR, CLEAR ALL, CLEAR GETS, CLEAR MEMORY, CLEAR LOCKS

Description

The CLEAR SCREEN command resembles the CLEAR command in that it clears the terminal screen and
positions the cursor at the top left corner of the screen (0,0). CLEAR SCREEN differs from the CLEAR
command in that it does not release all pending GETS issued with the @...GET command.

Example
clear screen

Products
Recital Mirage Server, Recital Terminal Developer

112

CLEAR TYPEAHEAD

Class
Keyboard Events

Purpose
Clear terminal typeahead buffer

Syntax
CLEAR TYPEAHEAD

See Also
SET TBUFSIZE

Description

The CLEAR TYPEAHEAD command clears the typeahead buffer of all keystrokes entered. The CLEAR
TYPEAHEAD commands also resets the LASTKEY () and READKEY () functions to zero, unless SET
COMPATIBLE is set to FOXBASE | FOXPRO | FOXPLUS.

Example
clear typeahead
dialog box “Press W to continue, *G to abandon.”
if lastkey()=ctrl(“g™)
return
endif

Products
Recital Mirage Server, Recital Terminal Developer

113

CLEAR WINDOWS

Class
Screen Windows

Purpose
Clear windows from screen and memory

Syntax
CLEAR WINDOWS

See Also
ACTIVATE WINDOW, DEFINE WINDOW, DEACTIVATE WINDOW, HIDE WINDOW

Description

The CLEAR WINDOWS command erases all displayed windows from the screen and releases all window
definitions from memory. A window is an area of the screen designated for output and input. Windows are
defined with the DEFINE WINDOW command, and displayed to the screen with the ACTIVATE
WINDOW or SHOW WINDOW commands. There is no limit to the number of defined windows.

The CLEAR WINDOWS command is a quick way to clear the screen and reclaim memory space for more
windows. Once the CLEAR WINDOWS command is issued, the DEFINE WINDOW command must be
used to establish new window definitions, and the ACTIVATE WINDOW or SHOW WINDOW
commands must be used to display them.

The CLEAR WINDOWS command is synonymous with the RELEASE WINDOWS ALL command. If
you wish to clear a window from the screen, but retain its definition in memory, use the DEACTIVATE
WINDOW command. If you wish to clear a window from the screen, but keep it active, use the HIDE
WINDOW command. If you wish to clear windows from the screen, and save the window definition and
the current window contents to a file, use the SAVE WINDOW and RESTORE WINDOW commands.

Example
clear windows

Products
Recital Mirage Server, Recital Terminal Developer

114

CLOSE

Class
Table Basics

Purpose
Close a table and associated files in a specified workarea

Syntax
CLOSE <workarea | alias>

See Also
CLOSE DATABASES, CLOSE FORMAT, CLOSE INDEX, CLOSE PROCEDURE, CLOSE ALL

Description
The CLOSE command closes the table and its associated index files and format files in the specified
<workarea | alias> workarea.

Example

select a

use patrons index names
select b

close patrons

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

115

CLOSE ALL

Class
Table Basics

Purpose
Close all open files

Syntax
CLOSE ALL

See Also
CLOSE, CLOSE ALL, CLOSE ALTERNATE, CLOSE INDEX, CLOSE FORMAT, CLOSE
PROCEDURE

Description

The CLOSE ALL command closes all open files. If FCACHE is OFF, the CLOSE ALL command will
physically close files in the operating system. If FCACHE is ON, the CLEAR FCACHE must be issued as
well as the CLOSE ALL command in order to physically close files in the operating system. To close
procedure libraries, use the CLOSE PROCEDURE command.

Example
select a
use patrons
select g
use diary
close all

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

116

CLOSE ALTERNATE

Class
Input/Output

Purpose
Close the alternate output file

Syntax
CLOSE ALTERNATE [TO PRINT]

See Also
SET ALTERNATE, SET CONSOLE, PRINT

Description

The CLOSE ALTERNATE command closes the active alternate output file then optionally prints the file
on the system printer. 1f the TO PRINT option is specified, then the system specific print command
contained in the symbol DB_ PRINT is executed. Under OpenVMS, DB_PRINT is defined in the
Recital/4GL file, login.com, and by default will queue the print job on SYS$PRINT. Under UNIX and
Linux, DB_PRINT is defined in the file profile.db, and by default will queue a print job using the ‘Ip’
command.

Example

use patrons index names
set alternate to namelist
set console off

list for event = “BALLET”
close alternate to print

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

117

CLOSE DATABASES

Class
Databases

Purpose
Closes the currently open database

Syntax
CLOSE DATABASES [ALL]

See Also

ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE TABLES, COMPILE DATABASE,
CREATE DATABASE, CREATE TABLE, CREATE INDEX, CREATE VIEW, DISPLAY DATABASE,
DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP INDEX, DROP TABLE, LIST
DATABASE, LIST INDEXES, LIST TABLES, OPEN DATABASE, RESTORE DATABASE, USE, SET
EXCLUSIVE, ADATABASES(), DBUSED(), GETENV()

Description
The CLOSE DATABASES command closes the currently open database and its tables. If no database is
currently open, all tables and their associated files are closed.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

CLOSE DATABASES does not close gateway sessions. The SET GATEWAY TO or CLOSE ALL
commands can be used for this purpose.

Example

VFP/SQL> OPEN DATABASE hr EXCLUSIVE
VFP/SQL> SELECT staff_no, lastname from staff
VFP/SQL> CLOSE DATABASES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

118

CLOSE FORMAT

Class
Screen Forms

Purpose
Close screen format file in current workarea

Syntax
CLOSE FORMAT

See Also
CLOSE, CLOSE ALL, CLOSE ALTERNATE, CLOSE INDEX, CLOSE DATABASES, CLOSE
PROCEDURE, SET FORMAT TO

Description
The CLOSE FORMAT command closes the format file in the currently selected workarea. Format files are
opened using the SET FORMAT TO <format file> command.

Example

use patrons index names
set format to addform
append

close format

Products
Recital Mirage Server, Recital Terminal Developer

119

CLOSE INDEX

Class
Indexing

Purpose
Close index files in the current workarea

Syntax
CLOSE INDEX

See Also
CLOSE, CLOSE ALL, CLOSE ALTERNATE, CLOSE DATABASES, CLOSE FORMAT, CLOSE
PROCEDURE, SET INDEX TO

Description

The CLOSE INDEX command closes index files in the currently selected workarea. All single indexes and
non-production multiple indexes will be closed. If the active table has a production index, that is a multiple
index with the same basename as the table, the production index will remain open. Production indexes can
be detached from their associated tables using the USE <table> NODBX command.

Example

use patrons index events, dates, names
seek “BALLET”

list while event = “BALLET”

close index

list for event = “BALLET”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

120

CLOSE PROCEDURE

Class
Applications

Purpose
Close the procedure library file

Syntax
CLOSE PROCEDURE [<filename> | (<expC>)]

See Also
CLOSE, CLOSE ALL, CLOSE ALTERNATE, CLOSE FORMAT, CLOSE DATABASES, SET
PROCEDURE TO, DO

Description

The CLOSE PROCEDURE command closes the procedure library named <filename>, or if no library is
specified, all currently open procedure libraries. The <filename> can be substituted with a <expC>,
enclosed in round brackets, which returns a valid filename. The <filename> is assumed to have a ‘.prg’
extension unless otherwise stated.

Only procedures and functions declared with the SET PROCEDURE TO command are released with the
CLOSE PROCEDURE command. Procedures and functions declared in the main program are left active.
Up to a maximum of ten procedure files can be opened at one time when the ADDITIVE keyword is used
on the SET PROCEDURE command.

Example

set procedure to yourlib
do yourproc

do yourproc2

close procedure

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

121

CLOSE TABLES

Class
Databases

Purpose
Closes the currently open tables and their associated files in the active database

Syntax
CLOSE TABLES [ALL]

See Also

ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE DATABASES, COMPILE
DATABASE, CREATE DATABASE, CREATE TABLE, CREATE INDEX, CREATE VIEW, DISPLAY
DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP INDEX, DROP
TABLE, LIST DATABASE, LIST INDEXES, LIST TABLES, OPEN DATABASE, RESTORE
DATABASE, USE, SET EXCLUSIVE, ADATABASES(), DBUSED(), GETENV()

Description

The CLOSE TABLES command closes the currently open tables and their associated files in the active
database. The database itself remains open. If no database is currently open, all tables and their associated
files are closed.

If the ALL keyword is included, all tables and their associated files will be closed.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV/() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

Example

Recital/SQL> set sql to vip

VFP/SQL> OPEN DATABASE hr EXCLUSIVE
VFP/SQL> use staff

VFP/SQL> CLOSE TABLES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

122

COMPILE

Class
Applications

Purpose
Compile one or more program files

Syntax
COMPILE <filename>| (<expC>)

See Also
DO, SET COMPILE, SET DEVELOPMENT, MODIFY COMMAND, SET PSHARE

Description

The COMPILE command translates the source code of the specified program files into object code, and
creates a file containing that object code. The object files created by the COMPILE program have the same
basename as the program file, but a file extension that ends with an “0”. In most cases, the execute-only
object code in these files runs much faster than the program files. The gain in speed is dependent on the
number and size of the DO WHILE, DO CASE and IF constructs within the program.

Unless the full filename is specified in the <filename> argument, the COMPILE program looks for a file in
the current directory and path (see SET PATH) with a .prg extension. COMPILE accepts any file or
combination of files that contain source code. You may specify an expression that returns a file name or
group of file names, as COMPILE will use all files matching the specified file pattern. The <filename> can
be substituted with a <expC>, enclosed in round brackets, which returns a valid filename.

You cannot modify or de-compile an object file, you can only modify the source file. The MODIFY
COMMAND, ED and VI commands can be used to modify the source file. If SET DEVELOPMENT is
ON, and SET COMPILE is ON, the DO command compares the time and date stamp of a source file with
the time and date stamp of its associated object file. If the object file is older than the source file, then DO
will recompile the source file before executing it.

In Recital Terminal Developer environments, program files must be compiled before they can be accessed
from a server or runtime license. Compiled programs can be run from the operating system prompt as
follows:

dbrt <compiled program name>

Example
compile *.prg

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

123

COMPILE DATABASE

Class
Databases

Purpose
Compile stored procedure files in the specified database or databases

Syntax
COMPILE DATABASE <database name> | <skeleton>

See Also

ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE DATABASES, CLOSE TABLES,
CREATE DATABASE, CREATE TABLE, CREATE INDEX, CREATE VIEW, DISPLAY DATABASE,
DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP INDEX, DROP TABLE, LIST
DATABASE, LIST INDEXES, LIST TABLES, OPEN DATABASE, RESTORE DATABASE, USE, SET
EXCLUSIVE, ADATABASES(), DBUSED(), GETENV()

Description

The COMPILE DATABASE command compiles all the stored procedure files or program source files in
the specified database or databases. The name of the target database is specified in <database name>.
Multiple databases can be specified using the skeleton and wild card characters. The database or databases
need not be open when the COMPILE DATABASE command is issued.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality.

Example
> compile database southwind

Recital/SQL> set sql to vip
VFP/SQL> COMPILE DATABASE hr

Recital/SQL> COMPILE DATABASE Mirage_*;

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

124

CONTINUE

Class
Applications

Purpose
Resume locate search

Syntax
CONTINUE

See Also
LOCATE, FIND, SEEK, SET FILTER, FOUND(), SCAN

Description

The CONTINUE command searches for the next record which meets the criteria as specified in the
LOCATE command. If the search was successful, the FOUND() function will return .T., otherwise .F..
For large searches, indexing the table and using SEEK or FIND is recommended.

Example
use patrons
locate for event = “OPERA”
do while found()
display name, event
continue
enddo

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

125

CONVERT

Class
Table Basics

Purpose
Convert tables to Recital 9 format

Syntax
CONVERT [VER90 | INDEX | DBF | FMT | FRX | MEM | PRG | TXT | FRM] <filename>| (<expC>)

See Also
Optimizing Indexes using SYNCNUM, Upgrading from Pre-9.0 Versions, USE

Description

The CONVERT command, like the DBCONVERT utility in Recital Terminal Developer, can be used to
convert Recital version 8.x tables to the Recital 9.0 format, to populate tables’ SYNCNUM values or to
convert files from other Xbase formats. If no conversion type is specified, the default is VER90, which
converts Recital version 8.x tables to the Recital 9.0 format.

VER90

Database tables (.dbf files) used by the Recital 9.0 and later product lines use a different file structure to
previous Recital versions. Therefore, before you can use your existing Recital data tables, they must be
converted to the new file structure. The CONVERT command can be used to convert a single specified
table or multiple tables. Wildcard characters can be used in the file specification.

Recital Corporation strongly recommends that you perform a full backup of your Recital applications
upgrading and converting your tables. Production tag index files are recreated by the
DBCONVERT/CONVERT process, but single index files (.ndx) will need to be rebuilt manually.

INDEX

The INDEX convert option processes the specified tables or all Recital 9 tables in the current directory if
no filenames are specified. It updates all the SYNCNUM values starting with 1 in the first row and adding
one to the value for each subsequent row. Any previous values stored in the rows are discarded.

This option will also locate any .dbx files associated with the table or tables and convert them to use
SYNCNUM at the end of each index expression to optimize the index by making all the keys unique.
Character indexes have SYNCNUM added to the end of the expression. Date indexes are converted to
DTOS() and have the SYNCNUM added to the end. Numeric indexes are not affected.

The SYS(14) and INDEXKEY/() functions will not return the SYNCNUM if it is on the index, however
DISPLAY/LIST INDEX and DISPLAY/LIST STATUS will.

Please see DB_INDEXSEQNO for optimizing .ndx files.

126

DBF | FMT | FRX | MEM | PRG | TXT | FRM
The other file formats are as follows:

File Type Description

DBF Tables and Memos

FMT Screen Format files

FRX FoxPro Report Format files
MEM Memory files

PRG Program files

TXT Text files

FRM Report Format files
Example

convert ver90 *.dbf
convert ver90 customer.rdb

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

127

COPY DICTIONARY TO

Class
Table basics

Purpose
Copy dictionary attributes to a table file

Syntax
COPY DICTIONARY TO <.xad file>
[ADDITIVE]

See Also
COPY STRUCTURE EXTENDED, COPY, CREATE FROM, CREATE DICTIONARY

Description

The copy dictionary command is used to import attributes in an Application Data Dictionary (ADD) into a
table file. This is useful for moving dictionary files between non binary-compatible hardware platforms. A
new dictionary may be created by using the CREATE DICTIONARY command.

The .xad table is created with the following structure:

Field Type Length | Description

XAD TYPE Character | 3 File Type

XAD FILE Character | 255 File Name

XAD ID Character | 32 Object ID

XAD OBJECT Character | 10 Object Type

XAD SEQNO Character | 3 Object Value Sequence #
XAD VALUE Character | 255 Object Value

The records of the tale define the ADD attributes from the source table. These may be modified using any
of the standard 4GL record editing commands (EDIT, REPLACE etc) if required.

ADDITIVE
If the <.xad file> already exists, the ADDITIVE keyword can be used to append records. If the ADDITIVE
keyword is not specified, any records in the existing <.xad file> will be overwritten.

Example
use accounts
copy dictionary to accounts

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

128

COPY FILE

Class
Disk and File Utilities

Purpose
Copy any type of file

Syntax
COPY FILE <filenamel> | (<expCl>) | &<memvar> TO <filename2> | (<expC2>) | &<memvar>

See Also
COPY, COPY STRUCTURE, COPY STRUCTURE EXTENDED, DECRYPT, ENCRYPT, RUN

Description

The COPY FILE command copies a file of any type <filenamel> to <filename2>. The file extensions for
both files must be specified. The file names can be substituted with any character expression, enclosed in
round brackets or memory variable preceded by an ampersand (&), which returns a valid filename. If
<filename2> already exists, it will be overwritten.

The COPY FILE command copies only the specified file, it does not copy associated files. For example, if
COPY FILE is used to copy a database table (.dbf), then only the .dbf file will be copied, not the associated
multiple index file (.dbx), memo file (.dbt), dictionary file (.dbd), DES3 encryption key file (.dkf). When
using COPY FILE to copy an encrypted database table, the .dkf file must also be copied or the target table
will not be accessible.

Example
close tables
copy file patrons.dbf to backup.dbf

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

129

COPY INDEXES

Class
Indexing

Purpose
Copy single indexes to a multiple index file

Syntax
COPY INDEXES <.ndx filelist>
[TO <.dbx filename>]

See Also
INDEX ON, CREATE STRUCTURE, DELETE TAG, COPY STRUCTURE TO, DELETE TAG,
MODIFY STRUCTURE, SET INDEX TO, USE, TAG(), TAGCOUNT(), TAGNO()

Description

The COPY INDEXES command creates a multiple index by copying single index files to one file. This
command is useful for converting .ndx files to .dbx files. This command requires the indexes to be active
before the copy can be performed. Use SET INDEX TO <.ndx file> to open a single index file. By default
the index tag or tags are created in the production index. If no production index exists, then a new one is
created.

TO <.dbx filename>
If the TO <.dbx filename> clause is used, the tag or tags are created in the specified .dbx file. If the .dbx
file does not exist, it will be created.

Example

use accounts

set index to ordno, invno
copy indexes ordno, invno

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

130

COPY MEMO

Class
Memos

Purpose
Copy a memo field into a file

Syntax
COPY MEMO <memo fieldname> TO <filename>
[ADDITIVE]

See Also
APPEND MEMO, MEMOREAD(), MEMOWRITE(), SET MEMOFORMAT

Description

The COPY MEMO command copies the contents of a single memo field into a file. The <memo
fieldname> of the current record in the active table is copied to the file specified by <filename>. If no file
extension is specified, “.txt’” is assumed.

ADDITIVE
The optional ADDITIVE keyword causes the memo to be appended to the end of the text file. Without the
ADDITIVE keyword, any existing text will be overwritten.

Example

seek “JimL”

do while emp_code = “JimL”
copy memo notes to comments additive
skip

enddo

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

131

COPY STRUCTURE

Class
Table basics

Purpose
Copy the structure of the active table to another table

Syntax

COPY STRUCTURE TO <filename> | (<expC>)
[FIELDS <field list>]

[[WITH] CDX | [WITH] PRODUCTION]]

See Also
COPY, COPY FILE, COPY STRUCTURE EXTENDED, MODIFY STRUCTURE, CREATE FROM

Description

The COPY STRUCTURE command creates a new empty table file with the same structure as the active
table. The dictionary is also copied if one exists. The TO <filename> can be substituted with any <expC>,
enclosed in round brackets, which returns a valid filename. This file will be created or, if it already exists,
will be overwritten. If no file extension is specified, then the target file will have an extension of ‘.dbf’.

If the active table is encrypted, the encryption information will be copied to the target table. A .dkf
encryption key file will be created for the target table and the correct three-part DES3 encryption key must
be specified before the table can be accessed. A different key can be specified for the new table by
including the new encryption key in the <filename>. The three part comma-separated key should be
enclosed in angled brackets and appended to the filename, e.g. mytable<key_1,key 2,key 3>. This syntax
can also be used to encrypt the new table when the source table itself is not encrypted.

FIELDS <field list>
If the optional FIELDS clause is specified, then the operation is restricted to those fields named in the
comma separated <field list>. Dictionary entries are only copied for the specified fields.

WITH CDX | WITH PRODUCTION
The [[WITH] CDX | [WITH] PRODUCTION]] clause causes tag expressions in the currently active
multiple index file to be copied to an empty .cdx/.dbx file with the same basename as the TO <filename>.

Example

use patrons

copy structure to namelist;
fields name, street, city, state

/l make an encrypted copy of the structure
use patrons
copy structure to enc_patrons<key 1,key 2key 3>

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

132

COPY STRUCTURE EXTENDED

Class
Table basics

Purpose
Create a table with records containing field definitions

Syntax
COPY STRUCTURE EXTENDED TO <.dbf filename> | (<expC>)
[FIELDS <field list>]

See Also
COPY, COPY FILE, COPY STRUCTURE, CREATE FROM, MODIFY STRUCTURE, REPLACE

Description
The COPY STRUCTURE EXTENDED command operates on the currently active table and creates a new
table with records containing the active table’s structure. The new table has five fields:

Field Type Length Description

FIELD NAME Character 32 Field name

FIELD TYPE Character 1 Data type

FIELD LEN Numeric 3 Width of field

FIELD DEC Numeric 3 Number of decimal places
FIELD DES Character 25 Field description

A record is created for each field from the active table, so that each record contains a complete field
definition. Once a table has been created in this manner, it can be used to build a new table structure. The
records containing the field definitions can be modified in the same way as any standard records (EDIT,
REPLACE etc). The CREATE FROM command can then use this structure table as the source for a new
table.

TO <.dbf filename>
The TO <.dbf filename> can be substituted with any <expC>, enclosed in round brackets, which returns a
valid filename.

FIELDS <field list>
If the optional FIELDS clause is specified, then the operation is restricted to those fields named in the
comma separated <field list>.

Example

use patrons

copy structure extended to patstru
select workarea()

create newpatrons from patstru

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

133

COPY TAG

Class
Indexing

Purpose
Create a single index file from an index tag

Syntax
COPY TAG <tagname> [OF <.dbx filename>] TO <.ndx filename>

See Also
INDEX ON, CREATE STRUCTURE, COPY INDEXES, COPY STRUCTURE TO, DELETE TAG,
MODIFY STRUCTURE, SET INDEX TO, USE, MDX(), TAG(), TAGCOUNT(), TAGNO()

Description

The COPY TAG command creates a single index (.ndx) file from a tag in a multiple index (.dbx) file,
copying the specified <tagname> to a single, stand-alone index file specified with <.ndx filename>. If no
file extension is specified, then ‘.ndx’ is used.

OF <.dbx filename>
If the tag does not exist in the currently open multiple index file the OF <.dbx filename> clause must be
used to specify the <tagname> source.

Example

*QOpen up dbf with a dbx file
use customer

copy tag zip to zip.ndx

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

134

COPY TO

Class
Disk and File Utilities

Purpose
Copy all or part of the active table to another table or file

Syntax

COPY TO <filename> | (<expC1>)

[<scope>]

[DECRYPT | ENCRYPT <expC2>]

[FIELDS <field list>]

[FOR <condition>]

[WHILE <condition>]

[[WITH] CDX | [WITH] PRODUCTION]]

[[TYPE] FIXED | SDF | XML | DELIMITED | DELIMITED WITH BLANK | DELIMITED WITH
<delimiter> | DELIMITED WITH TAB]

See Also
APPEND FROM, COPY FILE, COPY STRUCTURE, COPY STRUCTURE EXTENDED, CREATE
BRIDGE, DECRYPT, ENCRYPT, JOIN, SET FILTER

Description

The COPY command copies records from the active table to another table or file. The file name can be
substituted with a <expC1> enclosed in round brackets that returns a valid filename. If there is a table
dictionary or a memo file on the current table, these files will also be copied to the new Recital table. If the
current table is indexed, records will be copied in the indexed order, but the index file itself is not copied to
the new table. Format files associated with the current table will not be copied to the new table. If SET
FILTER TO is in effect, then only records that satisfy the filter condition are copied. If SET DELETED is
ON, then records marked for deletion will not be copied.

To <filename>

The TO file will be created or, if it already exists, will be overwritten. If no file extension is specified for
the TO <filename>, tables will default to *.dbf’, XML files will default to *.xml’, and all other files will
default to “.txt’. The <filename> can include an encryption key for encrypted database tables. The three
part comma-separated key should be enclosed in angled brackets and appended to the filename, e.g.
mytable<key 1,key 2,key 3>. This allows the creation of an encrypted copy of a non-encrypted table or
an encrypted copy with a different key to the encrypted source table.

<scope>
If no <scope> is specified, then the default is ALL.

135

DECRYPT | ENCRYPT <expC2>

The DECRYPT and ENCRYPT clauses can be used to specify whether the target table of a COPY TO
operation is encrypted or not. Specifying DECRYPT allows the creation of a non-encrypted copy of an
encrypted table.

The ENCRYPT <expC2> clause encrypts the target table using the three part key specified in <expC2>.
The <expC2> must contain a three part comma-separated key, each part a maximum of 8 characters, e.g.
“key_1,key 2,key 3”. Angled brackets may optionally enclose the key, e.g. “<key_1,key 2key 3>”. A
.dkf file is created with the same basename as the target table. This allows the creation of an encrypted
copy of a non-encrypted table or an encrypted copy with a different key to the encrypted source table.

By default, when copying an encrypted table, if the key is not included in the <filename> and neither clause
is specified, the target table is encrypted and has the same encryption key as the source table. A .dkf file is
created with the same basename as the target table. If the source table is not encrypted and neither clause is
specified, the target table will not be encrypted.

FIELDS <field list>

If the FIELDS clause is specified, then only those fields specified will be copied, otherwise all fields will
be copied. The <field list> is a comma-separated list of field names. The fields specified can contain alias
pointers, allowing copy to retrieve fields from multiple data files to be copied to a single data file. The
number of records copied when using alias pointers is determined by the number of records in the table in
the workarea from which the copy was initiated.

FOR <condition>

If the FOR clause is specified, then only those records which satisfy the specified <condition> are copied.
The record pointer will always be positioned at EOF at the end of the operation if SET COMPATIBLE is in
effect.

WHILE <condition>

If the WHILE option is used, the <scope> defaults to REST. The WHILE clause will copy records so long
as the <condition> is true (.T.), and is used to restrict the range of records processed. When used in
conjunction with the SEEK or LOCATE commands, it allows a quick way of copying selected records.

The record pointer will always be positioned at EOF at the end of the operation if SET COMPATIBLE is in
effect.

WITH CDX | WITH PRODUCTION

The [[WITH] CDX | [WITH] PRODUCTIONT]] clause causes the currently active multiple index file to be
copied along with the table to a .cdx/.dbx file with the same basename as the TO <filename> when the
target is a database table.

TYPE FIXED

If the target file type specified is FIXED, then the file will be created containing fixed length records
without any record terminating character. This file type is useful for exporting records into a file that can
be read by PASCAL, C, FORTRAN, etc.

TYPE SDF

If the target file type specified is SDF then the file will be created containing records as lines of text
terminated with a carriage return/linefeed sequence. On UNIX the carriage return is not present. On
OpenVMS the records are stored as variable length text records. If any of the fields being copied are binary
fields, then the records are created in FIXED format. The maximum length of the text line used with
COPY...SDF is 8192 characters.

TYPE XML

The XML clause copies the records to an Extensible Markup Language (XML) file. It also creates a
matching Document Type Definition file with a '.dtd' file extension if the XML format is set to RECITAL.
The default XML file format is Microsoft® ActiveX® Data Objects (ADO). This default can be set with
the command SET XMLFORMAT TO <RECITAL | ADO>.

136

TYPE DELIMITED

If the DELIMITED clause is specified, then the target file will be created as a text file. Each field will be
separated by a comma (,), and character fields will be enclosed in double quotes. If DELIMITED WITH
BLANK is specified, then fields will be separated by a single space character instead of a comma.
Character fields will not be enclosed. If DELIMITED WITH <delimiter> is specified, then the double
quotes used to enclose character fields will be substituted with the <delimiter> and fields will be comma
separated. If DELIMITED WITH TAB is specified, then fields will be separated by a tab character instead
of acomma. Character fields will not be enclosed. Files created with the COPY TO...DELIMITED
command can be appended into other Recital tables using the APPEND FROM...DELIMITED command.

Example
use patrons index names
copy to ballet for event = “BALLET”
seek “OPERA”
copy to opera rest;
while event = “OPERA”;
for date = date()
I/l Another example
use payroll
I/ Copy to a file with today's name
copy to (cdow(date())) for amount > 100
/l Make an encrypted copy
copy to encver<key 1,key 2 key 3>

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

137

COPY TO ARRAY

Class
Fields and Records

Purpose
Copy current table to an array

Syntax

COPY TO ARRAY <array>
[FIELDS <field list>]

[FOR <condition>]
[WHILE <condition>]

See Also

APPEND FROM ARRAY, DECLARE, DIMENSION, GATHER, PRIVATE, PUBLIC, RELEASE,
RESTORE FROM, SAVE TO, SCATTER, AAVERAGE(), ACHOICE(), ACOPY(), ADEL(), ADIR(),
AFIELDS(), AFILL(), AINS(), ALEN(), AMAX(), AMIN(), ASCAN(), ASORT(), ASUM(), AVERAGE

0

Description

The COPY TO ARRAY command allows all or part of the active table to be copied to the previously
declared two-dimensional specified array, <array>. The target array must have elements defined that match
the field list from the table.

NOTE: If SET COMPATIBLE is set to FOXPRO | FOXPLUS | FOXBASE the array need not be pre-
defined, it will be created automatically.

FIELDS <field list>
The optional FIELDS clause restricts the operation to those fields listed in <field list>. The <field list>
contains a comma-separated list of field names.

FOR <condition>
The optional FOR clause restricts the operation to those records that match the specified <condition>.

WHILE <condition>

The WHILE clause will copy records so long as the <condition> is true (.T.), and is used to restrict the
range of records processed. When used in conjunction with the SEEK or LOCATE commands, it allows a
quick way of copying selected records. When the WHILE clause is used, the <scope> will default to
REST.

Example

declare orders[10000,10]

use suppliers

copy to array orders for ord_date < date()

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

138

COUNT

Class
Fields and Records

Purpose
Count records in the active table that satisfy a specified condition

Syntax

COUNT [<scope>]
[FOR <condition>]
[TO <memvar>]
[WHILE <condition>]

See Also
SUM, AVERAGE, TOTAL, ACC(), CALC()

Description

The COUNT command counts the number of records in the active table. If no <scope> is specified, ALL
records will be counted. If SET FILTER TO is in effect, then only those records that satisfy the filter
<condition> are counted. If SET DELETED is ON, then records marked for deletion will not be included
in the COUNT.

FOR <condition>
If the for <condition> is used then only the records that satisfy the specified <condition> are counted.

TO <memvar>
Using the TO <memvar> clause causes the result of the COUNT operation to be stored in the specified
memory variable.

WHILE <condition>
The WHILE clause can be used in conjunction with the SEEK or LOCATE commands to restrict the range
of records counted. When the WHILE option is used the <scope> defaults to REST.

Example

use patrons

count to nResult for event = “CHOPIN” and;
date = date()

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

139

CREATE

Class
Terminal Developer Development Tools

Purpose
Define the structure of a new database table through a form

Syntax
CREATE <.dbf file> | (<expC>)

See Also

ALTER INDEX, ALTER TABLE, APPEND FROM, BACKUP DATABASE, CLOSE DATABASES,
CLOSE TABLES, COMPILE DATABASE, COPY TO, COPY STRUCTURE EXTENDED, CREATE
DATABASE, CREATE FROM, CREATE TABLE, CREATE INDEX, CREATE VIEW, DISPLAY
DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP INDEX, DROP
TABLE, INDEX, LIST DATABASE, LIST INDEXES, LIST TABLES, MODIFY STRUCTURE, OPEN
DATABASE, PACK, REBUILD DATABASE, RESTORE DATABASE, USE, SET AUTOCATALOG,
SET EXCLUSIVE, ADATABASES(), DBUSED(), GETENV(), DB_MAXWKA

Description

The CREATE command provides a full-screen forms-based facility used to define a new database table
structure. The filename can be substituted with an <expC> enclosed in round brackets that returns a valid
filename. If no file extension is specified, ‘.dbf” will be used. Database table filenames should not begin
with numeric characters.

The cursor keys can be used to move around the form in order to fill in the fields. Each row of the form
corresponds to a field in the table structure being created. A maximum of 256 fields may be created.

Each column in the CREATE form represents information needed to define a field. Required information
includes the field name, the field data type and the field width. Field descriptions are optional, but
recommended.

The field name can be a maximum of 32 characters long, beginning with a letter or underscore, followed by
any combination of letters (A-Z, case insensitive), digits (0-9) and underscores ().

As the cursor moves on to the data type column, the value “Character” is filled in automatically. Typing
the first letter of any of the data types listed below will complete the full value. Pressing the [HELP] key
displays a pop-up choice list of available data types. The spacebar can also be used to cycle through the

supported data types.

140

The field data type can be any one of the following:

Initial Type Description

B Byte 1 byte integer

C Character Character

D Date Date

F Float 8 byte floating point

I Integer 4 byte integer

L Logical Logical

M Memo Memo

N Numeric Numeric

) Object Binary large object

P Packed Packed Decimal (OpenVMS only)
Q Quad Quadword (OpenVVMS only)
R Real 4 byte floating point

S Short 2 byte integer

T DateTime Date and Time

V VAXdate VMS date (OpenVVMS only)
Y Currency Currency

Y4 Zoned Dibol zoned numeric

The maximum field width for each data type is:

Initial Display Width Physical Storage
B 3 (fixed, cannot be input) 1 byte

C 255 255 bytes

D 8 (fixed, cannot be input) 4 bytes

F 25* 8 bytes

I 25* 4 bytes

L 1 (fixed, cannot be input) 1 byte

M Unlimited (disk & OS permitting) | Variable length
N 25* 25 bytes

0 Unlimited (disk & OS permitting) | Variable length
P 25* 13 bytes

Q 25* 8 bytes

R 25* 4 bytes

S 25* 2 bytes

T 8 (fixed, cannot be input) 8 bytes

\Y 8 (fixed, cannot be input) 8 bytes

Y 8,4 (fixed, cannot be input) 8 bytes

Z 20* 20 bytes

*Including decimal point and up to nine decimal places.

Field types ‘F’, ‘I’, ‘P*, ‘Q’, ‘R’ and ‘S’ are stored as binary, and the field width specified is the output
display width. Fields with fixed length data types have the width filled in automatically. The number of

decimal places can only be added when the data type requires it.

141

The field description can be a maximum of 25 characters long. These field descriptions can be toggled on
and off from within the default forms for EDIT, CHANGE, APPEND, QUERY and INSERT. The MENU
FIELDS and MENU QUERY commands also display the field descriptions in the FIELDS MENU
window. The use of meaningful descriptions is highly recommended.

To create an index tag from a field, place a “Y” in the Index column. Index tags may also be created with
the INDEX ON ... TAG command. Index tags created in this way form what is called the ‘production’
index file. The production index file has the same base name as the table and a ‘.dbx’ file extension. The
production index is opened automatically whenever the table is opened. No master index tag order is set,
but all tags will be updated and can be set to be the master index order. To remove an index tag, replace the
“Y” in the Index column with an “N” or use the DELETE TAG command.

It is good practice not to overload one table with redundant fields. The SET RELATION command can be
used to join tables together. If the After Image Journal facility is being used, then seven of the maximum
number of fields must be left unused for the journal file.

The CREATE work surface provides a menu bar which is activated by pressing the [MENUBAR] key.
When the command SET MCONFIRM is OFF, the CREATE menu bar operates as pulldown menus.

The menu options <DICTIONARY>, <TRIGGERS>, <SECURITY> and <PROTECTION> all store their
information in the Applications Data Dictionary (.dbd file). The Applications Data Dictionary is called by
any commands that need to read, update, view or modify table data. This is very powerful feature allowing
the maintenance of referential integrity, help prompts, pop-up choice lists and security in one central
repository for each table.

DICTIONARY
You can specify any of the following field “attributes’ by selecting the <DICTIONARY > menu bar item.
Attribute Description
Picture An editing picture for data input and output. See @...GET...PICTURE for more
information.
Validation A logical expression for field validation. You can perform cross-table lookups with

RLOOKUP(). See @ GET...VALID for more information. This can also be used to
bypass default field objects, such as the calculator on numeric fields or the calendar
on date fields. See @...GET...VALIDATE WITH for more information.

Error An error message to display in an ALERT box if validation fails. See
@...GET...ERROR for more information.

Choices A pop-up choice list to be displayed when the [HELP] key is pressed on a character
field.
Examples

Miss,Mr,Ms,Mrs
@suppliers, name+code

The Choices attribute also allows you to customize a pop-up choice list by specifying
a User Defined Function (UDF). As an alternative to the dynamic @<alias>,<expC>
choice list, a UDF could use record selection commands, such as MENU BROWSE,
to display the data from records that match particular selection criteria rather than
from the entire table. A UDF can also display the choice list anywhere on the screen,
whereas the static and dynamic options will always display in the center. UDFs may
be entered in the <Choices> attribute by prefixing the UDF name with a question
mark. See the FUNCTION command for more information about User Defined

Functions.
Example
?helpproc(“NAME”,”names”,10,10,20,70)
Range A validity range for numerics or dates. The format is minimum, maximum. Specify

dates with the {} notation. See @...GET...RANGE for more information

142

Attribute

Description

Examples
10,100
(01/01/2000%},{01/01/2001}

Help A help message displayed in the message line when the field is selected. See
@...GET...HELP for more information.

Calculated The field is calculated by this expression, which can contain references to other
tables. See @...GET...CALCULATED BY for more information.
Example
ord_value - paid_value

Recalculate A ‘trigger’, causing all calculated fields to be recalculated and redisplayed when this
field is modified in a form. See @...GET...CALCULATE for more information.

Must enter Check that data has been entered in this field when user moves off the field in a form.
See @...GET...MUST ENTER for more information.

Default An expression specifying the ‘default’ value when APPEND [BLANK] is executed.
Example
Date()

You can move around the database structure in the <DICTIONARY> menu using the [NEXT PAGE] and
[PREV PAGE] keys. If you exit the <DICTIONARY> menu with the [EXIT/SAVE] key, changes are
saved to the Dictionary (.dbd file), You can override this by exiting the CREATE | MODIFY
STRUCTURE work surface with the [ABANDON] key. Pressing the [ABANDON] key in the
<DICTIONARY> menu discards any changes made to the dictionary.

TRIGGERS

The <TRIGGERS> menu bar option allows you to specify table level triggers. Triggers are event-driven
procedures called before an 1/O operation. You may edit a trigger procedure from within the
<TRIGGERS> menu by placing the cursor next to the procedure name and pressing the [HELP] key. A
text window pops up for editing. If the table triggers are stored in separate <.prg> files, rather than in a
procedure library, procedures need not be pre-defined (SET PROCEDURE) before using the table. The
following triggers can be selected and associated with a specified procedure name in the <TRIGGERS>

menu.

Trigger Description

UPDATE The specified procedure is called prior to an update operation on the table. If the
procedure returns .F., then the UPDATE is canceled.

DELETE The specified procedure is called prior to a delete operation on the table. If the
procedure returns .F., then the DELETE is canceled.

APPEND The specified procedure is called prior to an append operation on the table. If the
procedure returns .F., then the APPEND is canceled.

OPEN The specified procedure is called after an open operation on the table.

CLOSE The specified procedure is called prior to a close operation on the table.

ROLLBACK The specified procedure is called when a user presses the [ABANDON] key in a
forms based operation.

143

SECURITY

The <SECURITY> menu bar option pulls down a menu of table operations for which Access Control
Strings can be specified. An Access Control String (ACS) is a range of valid user identification codes, and
is used to restrict table operations to certain individuals or groups. Each user on the system is allocated a
group number and a user number. The user identification code is the combination of group and user
numbers. When constructing an Access Control String of linked user identification codes, wildcard
characters may be used.

Example ACS Description

[1,2] In group 1, user 2

[100,*] In group 100, all users
[2-7,%] In groups 2-7, all users
[*,100-200] In all groups, users 100-200

[1,*1&[2-7,1-7]

In group 1, all users, in groups 2-7, users 1-7

Please note that the maximum ACS length is 254 characters. OpenVMS group and user numbers are stored
and specified in octal. On other Operating Systems, group and user numbers are stored and specified in

decimal.

Access Control Strings may be associated with the following operations:

Operation

Description

READONLY

Users specified in the ACS have read-only access to the table.
All other users have update access.

UPDATE

Users specified in the ACS have update access to the table.
All other users are restricted to read-only access.

APPEND

Users specified in the ACS can append records into the table.
No users can append.

DELETE

Users specified in the ACS can delete records from the table.
No users can delete.

COPY

Users specified in the ACS can copy records from the table.
No users can copy.

ADMIN

Users specified in the ACS can use the following commands:

SET DICTIONARY TO

MODIFY STRUCTURE

PACK

ZAP

REINDEX

All other users cannot, except the creator of the table, who is always granted
ADMIN access.

PROTECTION

Field level security can be defined through the <PROTECTION> menu bar option. The menu will show
protection relating to the currently selected field. The [NEXT PAGE] and [PREV PAGE] keys can be used
to move between the fields in the table without exiting the menu. The format of the ACS is the same as in
<SECURITY> above. The following protection can be defined:

Operation Description

READONLY Users specified in the ACS have read-only access to the field. All other users have
update access.

UPDATE Users specified in the ACS have update access to the field. All other users are
restricted to read-only access.

HIDDEN Users specified in the ACS see the ‘hiddenfield” character rather than the data in
the field. All other users see the data.

144

Hidden fields can be accessed and viewed on a work surface, but the field contains the hiddenfield
character, *?’. If the field is referenced in an expression, it will contain the following: blanks for character
fields, ‘F’ for logical fields, 00/00/0000 for date fields and blank for memo fields.

LOAD

The <LOAD> menu bar option displays a popup dialog box prompting for an existing table name. The
structure from the existing table can be loaded into the current CREATE worksurface. If fields have
already been defined in the worksurface, these will be overwritten when the structure is loaded.

If SET CLIPPER is ON, the CREATE command can be used in programs to create empty structure tables.
Structure tables can hold information about the structure of another table and can be used to recreate the
table using the CREATE FROM command. The COPY STRUCTURE EXTENDED command can also be
used to create a complete structure table including the records that define a table structure.

If a database is open when a new table is saved via the CREATE work surface, a dialog will pop up
prompting for a file description. This file description information is stored in the table’s record in the
database catalog. Databases in Recital are implemented as directories containing files that correspond to
the tables and associated files in the database. Operating System file protection can be applied individually
to the files for added security. The directories are sub-directories of the Recital data directory. The
environment variable / symbol DB_DATADIR points to the current Recital data directory and can be
queried using the GETENV/() function. Files from other directories can be added to the database using the
ADD TABLE command or via the database catalog and SET AUTOCATALOG functionality. Databases
are opened using the OPEN DATABASE command.

Example
create patrons

Products
Recital Terminal Developer

145

CREATE BRIDGE

Class
Data Connectivity

Purpose
Create a bridge definition for connection to RMS or C-ISAM data files

Syntax
CREATE BRIDGE <.brg filename> | (<expC>)
[FROM <.ini filename>]

See Also
CREATE, CREATE BRIDGE (SQL)

Description

The CREATE BRIDGE command is used to create a bridge file to an external file. Recital clients can
access Informix compatible C-ISAM files and the following fixed length RMS File types: RMS Indexed
Sequential, RMS Relative, RMS Sequential. Data access is achieved through a bridge. This requires the
creation of a bridge file and an empty Recital table that has a structure matching that of the external file.
The empty Recital table can be created using the SQL CREATE command or the Recital Terminal
Developer CREATE Development Tool. By convention, the empty structure file is given the file extension
*.str’ rather than the default *.dbf’.

The CREATE BRIDGE worksurface provides a full screen facility for bridge creation in Recital Terminal
Developer. The <.brg filename> can be substituted with any character expression, enclosed in round
brackets, that returns a valid filename. If no file extension is specified, then .brg is used. The following
elements can be defined for the bridge:

Element Description

Bridge Type External data file type: CISAM, RMSIDX, RMSREL or RMSSEQ.
External Name Name of the external data file.

Database Name Name of the Recital structure table.

Alias The name to use to access the file.

Index keys 1-7 Optional Recital index files to use with the bridge (RMS only).

In other Recital products, the FROM <.ini filename> clause can be used to create the bridge file without the
need to access the CREATE BRIDGE worksurface. Firstly, an ‘“ini’ file should be created on the server in
the data directory where the external data file is held. The ini file has the following contents:

[bridge]

bridgetype=<bridgetype>

externalname=<name of the external data file>
databasename=<name of the Recital structure table>
alias=<the name to use to access your file>

e.g. cisamdemo.ini

[bridge]
bridgetype=CISAM
externalname=cisam.dat
databasename=cisamstru.str
alias=cisamdemo

146

NOTE: There should be no white space either side of the ‘=" signs.

The SQL CREATE BRIDGE command can also be used to create bridge files from all Recital products.
Please see the Recital/SQL documentation for full details.

Bridge files are often given a “.dbf’ file extension, instead of the default “.brg’ to allow them to appear in
table listings with standard Recital tables.

Bridges can also be used to call program files or view files:

Bridge Type External Name

APP Program file to run when the bridge is used
VIEW View file to open when bridge is used
Example

create bridge cisamdemo.dbf from cisamdemo

Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

147

CREATE DICTIONARY FROM

Class
Table basics

Purpose
Create a new applications data dictionary from an xad file

Syntax
CREATE DICTIONARY FROM <.xad file>

See Also
COPY DICTIONARY, COPY TO, COPY STRUCTURE EXTENDED, CREATE FROM, APPEND
FROM

Description

The CREATE DICTIONARY command is used to create a new dictionary file from an xad file. The <.xad
file> is created with the COPY DICTIONARY command. This command is useful for moving dictionary
files between non binary-compatible hardware platforms.

Example
use accounts
create dictionary from accounts.xad

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

148

CREATE FROM

Class
Table basics

Purpose
Create a table from the contents of another table

Syntax
CREATE <filenamel> | (<expC1>) FROM <filename2> | (<expC2>)

See Also
CREATE, COPY STRUCTURE EXTENDED

Description

The CREATE FROM command creates a new table, determined by the contents of a table created with the
COPY STRUCTURE EXTENDED command. The filenames can be substituted with a <expC1>, enclosed
in round brackets, which returns a valid filename. The FROM table consists of five fields, these are:

Field Type Width Description

FIELD NAME Character 32 Field name

FIELD TYPE Character 1 Data type of field

FIELD LEN Numeric 3 Width of field

FIELD DEC Numeric 3 Number of decimal places
FIELD DES Character 25 Field Description

Each record of the FROM table defines a field. The structure of the new table, <filenamel1>, will be
created from these field definitions.

Example

use patrons

copy structure extended to patstru
close patrons

create newpatron from patstru

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

149

CREATE GATEWAY

Class
Data Connectivity

Purpose
Create a gateway file

Syntax
CREATE GATEWAY <.gtw filename> | (<expC>)

See Also
SET GATEWAY, GATEWAY/()

Description
The CREATE GATEWAY command is used to create a gateway file to an external SQL database table.
See Supported Data Sources for the SQL Databases that can be accessed on each individual platform.

The GATEWAY method allows SQL database tables to be accessed via the Recital forms interface. This
requires the creation of a gateway file and an empty Recital table that has a structure matching that of the
external file. By convention, the empty structure file is given the file extension “.str’ rather than the default
.dbf’. SQL Databases can also be accessed directly using Passthrough SQL. For more information on
Recital/SQL capabilities, please see the Recital/SQL documentation.

The CREATE GATEWAY worksurface provides a full screen facility for gateway creation in Recital
Terminal Developer. The <.gtw filename> can be substituted with any character expression, enclosed in
round brackets, that returns a valid filename. If no file extension is specified, then .gtw is used. The
following elements can be defined for the gateway:

Server Element Description

Name The remote server name, e.g. Oracle

Network Node Name The node name or IP address of the server
Protocol Type The connection protocol, DECNET or TCP/IP
Login Username The login for the server

Login Password The login password for the server

Database Name The full name (including path if applicable) of the database
Table Name The table name from the database

Table Primary Key The primary index key for the table

Table Restriction An optional SQL SELECT...WHERE clause
Client Element Description

Structure Name The name of the matching Recital structure table
Alias Name The alias name for the client table

Default Form Name The default screen form to be used

Example

create gateway employees

Products
Recital Terminal Developer

150

CREATE LABEL

Class
Terminal Developer Development Tools

Purpose
Create a label definition file through a full screen form

Syntax
CREATE LABEL <filename> | (<expC>)

See Also
CREATE REPORT, REPORT, TREPORT, SET DEVICE TO PRINT, SET PRINT, SET PRINTER,
@...SAY

Description

The CREATE LABEL command is a full screen command used to create a label format file, which can
subsequently be processed using the LABEL command. The LABEL command is used to generate mailing
or other labels. The filename can be substituted with a <expC>, enclosed in round brackets, which returns
a valid filename. If no file extension is specified, then “.Ibl’ is used.

The CREATE LABEL command displays two screens to prompt for the label format details. The first
screen is used to define the following information:

Setting Minimum Maximum Default

Width of label 1 120 35

Height of label 1 12 5

Left margin 0 256 0

Lines between labels 0 16 1

Spaces between labels 0 120 0

Number of labels across 1 15 1

Remark N/A N/A 3" x Pg" x 1

The second screen allows you to enter the Recital/4GL expressions for each line of the label. Any valid
expression may be entered. Entering multiple expressions, separated with a comma *,’, causes each
expression to be evaluated, trimmed and output with a single space between each result. This is the
equivalent of trim(<expression>) + “ ” + trim(<expression>)

Fields in currently active tables can be selected from a popup choicelist when the [HELP] key is pressed or
the ‘Fields” menu item selected from the menu bar.

Example

use patrons index events

create label operalabels

label form operalabels for event = “OPERA”

Products
Recital Terminal Developer

151

CREATE REPORT

Class

Terminal Developer Development Tools

Purpose
Report Designer

Syntax

CREATE REPORT <filename> | (<expC>)

See Also

REPORT, TREPORT, SET DEVICE TO PRINT, SET PRINT, SET PRINTER, @...SAY

Description

The CREATE REPORT command activates the full screen Report Designer which is used to create report
format files. The filename can be substituted with a <expC>, enclosed in round brackets, which returns a
valid filename. If no file extension is specified, then *.frm’ is used.

The menu bar for the Report Designer can be activated by pressing the [MENUBAR} key. There are nine
options available in the menu bar: <OPTIONS>, <GROUPS>, <COLUMNS>, <FIELDS>, <TRIGGERS>,
<RESET>, <LOAD>, <SAVE> and <HELP>.

OPTIONS

The <OPTIONS> menu option is used to go to the Options Screen. This screen is used to define the report
layout. You can provide the following information:

Item

Description

Report heading

Specify a heading of up to four lines of text that will appear centered at
the top of each page. The optional HEADING clause of the REPORT
command can be used to provide an additional heading above this.

Page width Specify the overall width of the report in characters.
Left margin Specify the left-hand indent.

Right margin Specify the right-hand indent.

lines/page Specify the number of lines per page.

Double space report (Y/N)?

Specify whether the report should be double-spaced.

GROUPS

The < GROUPS > menu option is used to go to the first Groups screen. This screen is used to define the
report groups and subtotals. A maximum of ten group/subtotal expressions may be defined. The table
must be indexed or sorted on the group/subtotal expression. You can provide the following information:

ltem

Description

Group/Subtotal on

Specify the expression to group by. The [HELP] key will provide a
popup choicelist of fields in the active table and open related tables.

Summary report only

Specify whether the report should be a summary. The optional
SUMMARY clause of the REPORT command can also be used.

Eject after each
group/subtotal

Specify whether the page should be ejected after completion of each
group/subtotal.

Group/subtotal heading

Specify a group/subtotal heading of up to four lines of text. This must be
specified in order for the subtotal to be displayed. The value returned
from the group/subtotal expression is displayed next to this heading.

152

COLUMNS

The <COLUMNS> menu option is used to go to the first Columns screen. The Columns screen allows you
to specify Recital/AGL expressions that will be evaluated and output as the columns of the report. A
maximum of 24 columns may be defined. The ‘Columns Remaining’ field is update automatically based
on the columns defined and the specified page width. The semi-colon character is treated as a request for a
new line. If expressions contain memory variables or alias pointers, these must be active when the report is
run. The following information may be specified in the Columns screen.

Item Description

Column contents Specify the expression to be output. The [HELP] key will provide a
popup choicelist of fields in the active table and open related tables.

Decimal places Specify the number of decimal places for numeric columns.

Total Specify whether the column, if numeric, should be totaled..

Field header Specify a column heading of up to four lines of text.

Picture Specify a picture template for the column. See the
@...GET...PICTURE command for more information.

Width Specify the column width. If the specified width is less than the actual
width of the evaluated expression, the result will be word-wrapped.

FIELDS

The <FIELDS> menu option is used to display a popup choicelist of fields from the active table. The
[PAGE UP], [PAGE DOWN], [CURSOR UP] and [CURSOR DOWN] keys can be used to move to the
required field. If related tables are open in other workareas, the [CURSOR LEFT] and [CURSOR RIGHT]
keys can be used to move between the workareas. The [RETURN] key is used to select fields, the
[EXIT/SAVE] key to save the selection and the [ABANDON] key to cancel the selection. If the command
SET DESCRIPTIONS is ON, then the field descriptions are shown in the menu rather than field names. If
fields are selected from tables other than the active table, they are prefixed with the alias pointer. No alias
pointer is added to fields from the active table, so this must also be the active table when the report is run.
All fields selected are automatically converted to character data types.

TRIGGERS

The <TRIGGERS> menu option is used to display a pulldown menu to allow the definition of report level
triggers. Triggers are procedures executed when particular events take place. The name of the procedure to
be associated with the particular trigger should be entered. Once the procedure name has been entered, the
procedure itself can be created/modified by pressing the [HELP] key while the cursor is on the procedure
name. This will display a popup editor to edit the <procedure>.prg file. Procedures can be associated with
the following triggers:

Item Description

Prereport Called at the start of the report.

Postreport Called at the end of the report.

Pregroup Called at the start of a group/subtotal.

Postgroup Called at the end of a group/subtotal.

Prerecord Called after a record is read, but before it is processed.
Postrecord Called after a record has been processed.

Precolumn Called before a column is output.

Postcolumn Called after a column is output.

RESET

The <RESET> menu option reinitializes the current report format file to blank. This option deletes all
existing definitions in the current worksurface.

153

LOAD

The <LOAD> option displays a popup choicelist with the names of existing report format files. Selection
of a file causes that file’s definition to be loaded into the current report format. This option deleted all
existing definitions in the current worksurface.

SAVE

The <SAVE> menu option displays a dialog prompting for a filename. The format file will then be saved
to this file.

HELP
The <HELP> menu option accesses the on-line help system.

Example

use patrons index names, events

create report concert

report form concert for event = “CONCERT”

Products
Recital Terminal Developer

154

CREATE SCREEN

Class
Terminal Developer Development Tools

Purpose
Activate the Forms Designer

Syntax
CREATE SCREEN <filename> | (<expC>)

See Also
@...GET...MENU, MODIFY SCREEN, EDIT, CHANGE, APPEND, SET FORMAT

Description

The WYSIWYG Forms Designer is used to design the layout of forms, allowing you to create custom
forms which can be used instead of the default forms with the following Recital/4GL screen form
commands:

APPEND
EDIT
CHANGE
INSERT
QUERY

The file name can be substituted with any character expression, enclosed in round brackets, which returns a
valid filename. If no file extension is specified, then *.scr’ is used.

The Forms Designer work surface can be navigated with the cursor keys. It also has a full menu driven
interface, allowing the following objects to be added to the form and configured. Each object has a
corresponding Recital/4GL command that will be generated automatically by the Forms Designer when the
screen form is saved.

Object Description

Text Simply type the text onto the work surface where you would like the text to
appear. Text can be inserted before other text or overwrite existing text. Cut
and paste facilities are also available.

The corresponding command is @...SAY.

Lines and boxes Lines (horizontal and vertical) and boxes can be added to the form using the
<OPTIONS> menu item. A plus character marks the start and end of the object
coordinates. Lines and boxes may be expanded and moved.

The corresponding command is @...TO.

Fields The <SELECT> and <MODIFY> menu items allow fields from multiple tables
to be loaded onto the work surface. Each field inherits the attributes from the
Application Data Dictionary.

The corresponding command is @...GET.

Memory Variables Memory variables can be added using the <MODIFY> menu item. The
memory variables must be declared and initialized before the form is activated.
The corresponding command is @...GET.

Menus The <MODIFY> menu item provides facilities for placing menu options on the
work surface and defining the commands to execute when they are selected.
Pull down menus can be attached to a menu option.

The corresponding command is @...MENU.

155

Table fields The <TABLES> menu item is used to define multiple record child table fields.
Before using this option, relevant tables, indexes, and relations must be created.
The <MODIFY> menu is used to specify the source of fields contained in the

Table Field.
The corresponding commands are DEFINE TABLE and @...GET.
Check boxes Check boxes are used for logical fields or memory variables. Each check box

can be checked (true) or not (false). There is no interdependency between
individual check boxes. In the Forms Designer, Check Boxes are defined using
the <MODIFY> menu item.

The corresponding command is @...GET...BUTTON

Radio buttons Radio buttons form groups. Only one radio button can be selected from the
group at a time and this selected button contains the value of a character field or
memory variable. In the Forms Designer, Radio Buttons are defined using the
<MODIFY> menu item.

The corresponding command is @...GET...BUTTON...GROUP

The menu bar for the Forms Designer worksurface can be activated by pressing the [MENUBAR} key.
When the command MCONFIRM is set ON, the Forms Designer menu bar operates as pulldown menus.
There are eight options available in the menu bar: <SETUP>, <MODIFY>, <OPTIONS>, <TRIGGERS>,
<COLORS>, <WINDOW>, <DICTIONARY> and <HELP>.

SETUP

The <SETUP> menu bar option displays a pop-up menu containing the following options:

Option Description

Select database Select a table for further use. Tables can be selected from the dialog menu box
displayed to the right of the < Select database...> menu.

Load fields Select fields to load onto the form. Fields can be selected from the dialog menu

box displayed to the right of the < Load fields...> menu. The cursor keys,
[PAGE UP] and [PAGE DOWN] are used to highlight each field in turn, the
[RETURN] key to select the highlighted field and the [EXIT/SAVE] key to save
the selections. The selected fields will be displayed on the form on consecutive
rows starting at the current row/column position. The <Aspect is
horizontal/vertical> menu option on the <Options> menu will change the way
fields are loaded onto the form. The field name or description (SET
DESCRIPTIONS ON) is displayed, and an edit region the length of the field is
displayed in reverse video, one space to the right.

Create database Allows you to create a new table while in the Forms Designer.

Quick form Select all the fields from the current table and place them onto the form.
Select next Selects the next workarea.

Current workarea Displays the name of the table open in the current workarea.

Select previous Selects the previous workarea.

MODIFY

The <MODIFY> option of the menu bar is used to add or change any of the following:-

Constant SAY text on the form.

GET fields on the form.

MENU options on the form.

Validations and triggers for GET fields on the form.
Check boxes and radio buttons.

When selected, <MODIFY> displays a menu. The menu items displayed depend on the current cursor
position. If the cursor is currently positioned at the start of a field edit region, the menu will contain a list

156

of field validation criteria and ‘triggers’. If the cursor is positioned on a menu option, then the menu
contains a list of attributes for the menu option. Otherwise, <MODIFY> displays a blank menu for a GET
action. The action can also be changed to SAY, MENU, or BUTTON. You need only enter the first
character to display the appropriate menu (G, S, M, or B).

The validation and triggers that can be specified for a GET action are as follows:-

Item Description

Action; Get (can be Get/Say/Menu/Button)

Source: Table alias name (or ‘m’ for memory variables). If an existing <Source> table is not
currently open, it will be opened automatically.

Content: Name of field or memory variable. Fields will be searched for in the currently selected
table, and if found, the ‘Type’ and ‘Width’ fields will be filled in automatically.

Type: Data type

Width: Width of field

Decimal: Number of decimal places

Picture: Picture validation string. If @s <expN> is specified for a character field, then the field

will be scrollable. The <expN> specifies the display width. The field will be scrollable
up to the field width.

Range: For numeric and date fields, a range in the form <low>,<high>. This item may also be
used to specify a pop-up choicelist for a character field by preceding the choicelist
definition with an “@” character. Use two “@?” characters to specify a “dynamic”
browse menu. To specify a UDF to return a value to place in a field, precede the UDF
name with an “@” character and a question mark: @?UDF()

Help: Help message to be displayed when the field has focus.

Relation: Defines this field as a key field for a related table. The alias name is specified to indicate
the target of the relation. Changing the field value causes the pointer in the related table
to move to that value.

Lookup: Defines a validity check using a cross-table lookup. The alias name of the lookup table
must be specified. Changing the field value causes the lookup table to be scanned for the
new value. If the value does not exist in the lookup table, a validation failed error
message is displayed.

Validation: | Any of the following validation clauses can be specified: an input validation procedure
name, an @ sign followed by a boolean condition, or a validation string prefixed with a

‘$1.

Error: The error message to be displayed if validation fails..

Calculated: | An expression that will be evaluated to provide the field’s value. The field will be read
only.

Recalculate: | Sets a flag so that if the field value changes, all CALCULATED expressions will be
reevaluated and the form will be refreshed.

Must enter: | Force data to be input in this field.

Read when: | Specify a boolean condition. The field will be read only unless the condition evaluates
to true (.T.).

PreTrigger: | Specify a procedure name for the PreField trigger. The PreField trigger procedure is
called as the field is entered. Once a procedure name has been entered, pressing the
[HELP] key with the cursor on the procedure name pops up a notepad to allow the
procedure to be edited.

PostTrigger: | Specify a procedure name for the PostField trigger. The PostField trigger procedure is
called as the field is exited. Once a procedure name has been entered, pressing the
[HELP] key with the cursor on the procedure name pops up a notepad to allow the
procedure to be edited.

If the <Action> item isan @...SAY, this field will not be refreshed as you page up and down through the
form. The command SET PCSAYS must be set ON for @...SAY to be refreshed.

157

When in the <MODIFY> menu, you can move between the fields on the form using the [PAGE DOWN]
and the [PAGE UP] keys. When you have completed the field definition, you should commit the changes
to the form by exiting from the modify menu using the [EXIT/SAVE] key. Pressing the [ABANDON] key
discards the changes made to the definition, and exits the menu.

When you specify a MENU <Action>, then the following menu items will be displayed.

Item Description

Action: Menu

Item: The menu option to be displayed on the form.

Command: | A list of commands to be executed when the menu is selected. Multiple commands can
be specified, by separating each command with a semicolon.

Help: A help message to be displayed in the message line when the cursor is positioned on the
menu option

Pulldown: A pulldown menu definition which consists of a list of pulldown options separated by
commas, or @<procedure-name>. See @...MENU for details

When you specify a BUTTON <Action>, the following menu items will be requested:

Item Description

Source Table name (or ‘m’ for memory variables)

Content Name of field or memory variable

Name The name of the button which will be passed to the User Defined Function (UDF).

Label Enter a descriptive label for button. This will be displayed next to the button when SET
DESCRIPTIONS is ON.

Group If you are creating a radio button, enter a group name. Each radio button in a list of
choices must be given the same group name.

Help A help message to be displayed in the message line when the cursor moves on to this
button.

Trigger The name of a trigger procedure to execute when this button is selected.

Check boxes and radio buttons are selection objects that can help end users enter data quickly and without
error. Selected with the [SPACEBAR] key, check boxes and radio buttons display an asterisk (*) in their
entry fields when selected. Check boxes are represented by square brackets: []. Radio buttons are
represented by round brackets (). Check boxes are used when you have a list of choices from which any
combination of those choices can be selected. The user can select one, all or none of these options
depending on their selection needs. Each check box corresponds to an individual logical field or memory

variable. Radio buttons are used when only one choice out of a group of choices may be selected at a time.

Each radio button corresponds to a possible value for the same character field or memory variable.

OPTIONS

The <OPTIONS> menu contains items to add lines and boxes to the form, create or edit triggers and
programs, change current settings for the Forms Designer, and access table, environment, and memory
variable information.

Item Description

Box/Line Boxes and lines can be added to the form using this option. Select the option,
then position the cursor to the top left corner and press [RETURN], finally,
position the cursor to the lower right corner and press [RETURN] again.

Program The <Program...> menu item allows you to create or modify program files. It

prompts for a filename then calls the default editor.

Descriptions are

ON/OFF

The <Descriptions are ON/OFF> menu item allows you to toggle between
names and descriptions as your field labels. When you select this item, the
setting will change from ON to OFF or vice versa.

158

Labels are ON/OFF

Toggle field labels display on or off. Labels must be off for table fields.

Aspect is
vertical/horizontal

Toggle between and vertical or horizontal field loading. Horizontal field
loading is required for table fields

Mconfirm is ON/OFF

Toggle the SET MCONFIRM ON | OFF command. When MCONFIRM is
OFF, the menu bar operates as pulldown menus. When MCONFIRM is ON,
menus must be selected with the [RETURN] key.

Display database Displays a screen containing information on the currently active table.
structure (DISPLAY STRUCTURE)

Print database Prints the above information.

structure

Display Environment
Status

Displays information regarding the environment. (DISPLAY STATUS).

Print environment
status

Prints the above information.

Display memory

Displays a screen containing information on current memory variables.

variables (DISPLAY MEMORY)
Print memory Prints the above information.
variables

TRIGGERS

The <TRIGGERS> option allows you to specify or remove triggers for your form. Selecting the
<TRIGGERS> option displays a pulldown menu of the following triggers:

Trigger Description

Preform Execute a procedure before the form is displayed
Postform Execute a procedure as the format file is exited
Prerecord Execute a procedure prior to the first @...GET
Postrecord Execute a procedure as a record is updated
PreMenu Execute a procedure before a menu is entered.
PostMenu Execute a procedure after a menu is exited.

If the [HELP] key is pressed when on a name of trigger program, the program can be edited in a popup
notepad. For more information on triggers see the SET PREFORM, SET POSTFORM, SET
PRERECORD, SET POSTCORD, SET PREMENU and SET POSTMENU commands.

COLORS

The <COLORS> option displays a menu for setting colors on individual @...GET, @...MENU and

@...SAY objects. If the cursor is currently positioned at the start of a field edit region or menu item, then
this object will be displayed, otherwise the first object from position 0,0 will be displayed. If there are no

objects on the Forms Designer., the <COLORS> menu will not display. The [PAGEUP] and [PAGE
DOWN] keys are used to move between all the objects on the work surface. Both the foreground and
background colors can be set from this menu. The following colors may be defined:-

Color Attribute Code
BLACK N or blank
BLUE B
GREEN G

CYAN BG
BLANK X

GREY N+

RED R
MAGENTA RB
BROWN GR
YELLOW GR+
WHITE W

159

If the [HELP] key is pressed, then a pop-up choice list of available colors will be displayed.

TABLES

The <TABLES> option is for defining a table field. Table fields are used for browsing and updating
multiple “child’ records related to a ‘parent’ table. Before using this option, the relevant tables, indexes and
relations should be set up. The number of table fields you may define for one form is limited only by the
number of available workareas and the screen space. After the <TABLES> menu option is selected, a form
appears prompting for the following information:

Item Description

Table name: Enter in a unique name for the table. Names must start with a letter (a-z) or
underscore and can include letters, digits and underscores. Names must be a
maximum of ten characters long.

Database: Enter the alias name of the source database table. Pressing the [HELP] key
will display a choice list of database tables in the current directory.

#of rows: Enter the number of rows the table will occupy.

Related field: Enter the key field for records in the child table. The table must be indexed on
this field and this must be the master index order.

Related by: Enter the key expression from the parent table including the alias name and
alias pointer, e.g. parent->linkfield or parent.linkfield.

Column titles: Enter in a title for each column in the table. Individual titles should be comma
separated. This is optional and if used, a box will be drawn around the table.

Foreground: Used to specify the foreground color for the table. Pressing the [HELP] key
will display a choice list of colors. If a color is not specified, the foreground
color of FIELDS will be used.

Background: Used to specify the background color for the table. Pressing the [HELP] key
will display a choice list of colors. If a color is not specified, the background
color of FIELDS will be used

BoxForeground: Used to specify the foreground color of the box. Pressing the [HELP] key
will display a choice list of colors. If a color is not specified, the foreground
color of BOX will be used. Column titles must be specified for the box to be
drawn.

BoxBackground: Used to specify the background color of the box. Pressing the [HELP] key
will display a choice list of colors. If a color is not specified, the background
color of BOX will be used. Column titles must be specified for the box to be
drawn.

Shadow: If titles have been specified you may give the box a shadow on the right hand
side and the bottom edge by specifying “Yes”.

PreTrigger: Used to specify the name of a trigger procedure that will execute as the cursor
enters the table field.

PostTrigger: Used to specify the name of a trigger procedure that will execute as the cursor

exits the table field.

The [EXIT/SAVE] key should be used to exit the <TABLES> menu and save the definition. Pressing the
[ABANDON] key will discard the definition. To define a second or further table field, press the [PAGE
DOWN] key and this will redisplay a blank form.

The <Aspect is horizontal> and <Labels are OFF> options should be selected before loading fields to go
into the table field, so that the fields form a horizontal row with a space between each edit region. The
<Source> of the @...GETS fields that belong to the table field must be updated. To do this, move the
cursor to the first field edit region that belongs to the table field and choose the <MODIFY> option from
the menu. The alias name for each @...GET is displayed in the <Source> field. Prefix the alias name for
each @...GET in the table field with the table name followed by a “!1”. This identifies the @...GETS as
belonging to the specified table.

160

For example, if the table name for the table field is HW and the alias hame of HARDWARE, the SOURCE
field for each @...GET should read HW!HARDWARE.

Child tables that relate to a parent record on the same form must be positioned below the first accessible
parent record field.

DICTONARY

The <DICTIONARY> menu contains two options: <Display> and <Print>. The <Display> option displays
the Application Data Dictionary for the currently active database in read-only mode. If there is no
dictionary for the currently active, there will be no display. You may scroll through the fields by pressing
the [PAGE DOWN] and [PAGE UP] keys. The data values for each field are displayed beneath the field
values. The <Print> option prints the currently active Application Data Dictionary.

HELP
The <HELP> menu contains two options: <Help...>and <Keys help...>. The <Help...> option accesses
the on-line Help system. The <Key help...> option displays the Function key usage chart.

The following keys are active in CREATE SCREEN:

Key Action

EXIT SAVE Save the changes and exit the Forms Designer
ABANDON Abandon changes and exit the Forms Designer
CURSOR UP Move up one line

CURSOR DOWN Move down one line

CURSOR LEFT Move one column to the left

CURSOR RIGHT | Move one column to the right

HELP Display a popup key usage help page

RETURN When the cursor is positioned on the start of a field, allows repositioning of the
field on the form; when positioned on a menu option, allows repositioning on the
menu option; when positioning on a box or line, allows them to be dragged

DELETE CHAR Delete the character under the cursor

BACKSPACE Delete the character before the cursor

MENUBAR Activate the menu bar

4 Move to the start of the line

"B Move to the end of the line

T Delete from the cursor to the next word

Y Delete the current line

AU If the cursor is positioned on an object - field, menu option, box or table field —
the object will be removed from the form

N Insert a blank line

v Toggle between insert and overwrite mode

"K Insert a blank column from the current cursor position to the end of the form

AL Delete the column from the current cursor position to the end of the form

When the [EXIT/SAVE] key is pressed, the following three operations are performed:

The screen image is saved in a file with a “.scr” extension
A screen format is generated to a file with a “.fmt” extension.
The Forms Designer is exited.

The screen format file can be viewed or edited using a text editor. Care must be taken, however if changes

are made to the format file. These changes will not be reflected in the <.scr filename> and any subsequent
use of the MODIFY SCREEN command will use the original “.scr’ file not the updated “.fmt’ file.

161

Example
create screen myform

Products
Recital Terminal Developer

162

CREATE VIEW

Class

Terminal Developer Development Tools

Purpose

Activate the View Designer

Syntax

CREATE VIEW <filename> | (<expC>)
[FROM ENVIRONMENT]

See Also

SET VIEW TO, USE

Description

The CREATE VIEW command activates the full screen View Designer which is used to create a view file,

which can be processed using the SET VIEW TO command. View files allow you to treat multiple

databases and their associated files as a single object. Views are very useful for performing ad-hoc queries

on data that is in multiple related databases.

<filename> | (<expC>)
The file name can be substituted with a <expC>, enclosed in round brackets, which returns a valid
filename. If no file extension is specified, then ".vue' is used.

FROM ENVIRONMENT
If the optional FROM ENVIRONMENT clause is specified, a view file is automatically created for the
established environment.

Without the FROM ENVIRONMENT clause, the CREATE VIEW command displays a screen for each
workarea (1-10), prompting for the following details:

Field Description

Database The name of the table to be opened in this workarea

Alias The alias name for the table. By default this is the workarea letter A-J
Format The screen format file to be used. (CREATE SCREEN, SET FORMAT TO)
Index (1-7) The names of up to seven single index files (.ndx)

Filter The filter expression for the table

Relation to The name of a field in the current table used to link to another table

Into The name of the table that is the target of the relation

The menubar for the View Designer can be activated by pressing the [MENUBAR] key. The following

options are available:

Menu Description

Workarea Displays a DIALOG GET to specify the workarea number (1-10) to select
Databases Displays a popup choicelist of tables in the current directory

Formats Displays a popup choicelist of screen format files in the current directory
Indexes Displays a popup choicelist of single index files in the current directory

Query Displays a popup query builder. This is used for constructing a filter expression
Help Displays the on-line help system

163

A specific view file can be opened directly using the SET VIEW TO <filename> command, or by creating
a VIEW BRIDGE with the CREATE BRIDGE command then issuing the USE <view bridge> command.

All Recital products support the SQL CREATE VIEW command. This creates a logical view of one or
more tables based on a SELECT statement. Please see the SQL documentation for further information.

Example
create view patrons
set view to patrons

Products
Recital Terminal Developer

164

DEACTIVATE MENU

Class
Menus

Purpose
Deactivate the currently activated Xbase style menu

Syntax
DEACTIVATE MENU

See Also
ACTIVATE MENU, CLEAR MENUS, DEFINE MENU, SET COMPATIBLE

Description

The DEACTIVATE MENU command deactivates the currently activated Xbase style menu. All related
pop-ups and menus as defined in the ON PAD commands are deactivated as well. The menu is removed
from the screen but not released from memory, so that it can be displayed again using the ACTIVATE
MENU command. The command SET COMPATIBLE should be set ON when using Xbase style menus.

Example
on selection pad endit of sort_men;
deactivate menu

Products
Recital Mirage Server, Recital Terminal Developer

165

DEACTIVATE POPUP

Class
Menus

Purpose
Remove an Xbase style pop-up menu from the screen

Syntax
DEACTIVATE POPUP

See Also
ACTIVATE POPUP, CLEAR POPUPS, DEFINE POPUP, ON SELECTION, RELEASE POPUPS, SET
COMPATIBLE

Description

The DEACTIVATE POPUP command removes the currently activated Xbase style pop-up menu from the
screen. The affected pop-up menu is not released from memory when deactivated, and may be activated
again using the ACTIVATE POPUP command. The command SET COMPATIBLE should be set ON
when using the Xbase style menus.

Example
on selection pad endit of popup_4;
deactivate popup

Products
Recital Mirage Server, Recital Terminal Developer

166

DEACTIVATE WINDOW

Class
Screen Windows

Purpose
Deactivate and erase a window from the screen

Syntax
DEACTIVATE WINDOW <window-name | window-name list> | ALL

See Also
ACTIVATE WINDOW, DEFINE WINDOW, RELEASE WINDOWS

Description

The DEACTIVATE WINDOW command deactivates a window that has been defined with the DEFINE
WINDOW command, and activated with the ACTIVATE WINDOW command. A window is an area of
the screen designated for output and input. There is no limit to the number of defined windows.

A defined window is displayed to the screen with the ACTIVATE WINDOW or SHOW WINDOW
commands. The SHOW WINDOW command displays a window without activating it. The ACTIVATE
WINDOW command displays a window and activates it. When a window is activated, all subsequent
output is displayed in that window. Only one window may be activated at a time. The DEACTIVATE
WINDOW command clears the display of activated windows, but leaves the window definition in memory.
Once a window has been deactivated, all subsequent output is directed to the last activated screen, or to the
full screen if there are no active windows.

The DEACTIVATE WINDOW command can be used to deactivate a single window, a list of windows, or
all currently defined windows. To deactivate a single window, specify the name of the window that you
wish to deactivate. The <window-name> is the name in the window definition created with the DEFINE
WINDOW command. The <window-name list> is a list of window names, each separated by a comma.
When deactivating a list of windows, the DEACTIVATE WINDOW command deactivates the windows in
the order that they are listed. To deactivate all currently defined windows, use the keyword ALL.

If you wish to clear all windows from the screen and from memory, use the CLEAR WINDOWS or
RELEASE WINDOWS command. The SAVE and RESTORE WINDOW commands may be used to keep
window definitions in a file that can be reused at any time.

Example

@ 17,1 menu “Quit Inventory”;
help “Exit from Inventory System”;
command “deactivate window inv_win”

Products
Recital Mirage Server, Recital Terminal Developer

167

DEBUG

Class
Error Handling and Debugging

Purpose
Monitor programs during execution

Syntax
DEBUG <program | procedure> [WITH <parameter-list>]

See Also
CANCEL, DISPLAY MEMORY, DISPLAY STATUS, DO, QUIT, RESUME, SET COMPILE, SET
DEVELOPMENT, SET HISTORY, SET STEP, SUSPEND

Description
The DEBUG command displays a pop-up debugger allowing the specified program to be monitored during
execution.

The debugger consists of four lines of information about the current program and eighteen push buttons.
Program information consists of the following lines:

OPERATION Displays one of the following DEBUG operations: STEP, BREAKPOINT or

WATCHPOINT.
PROGRAM Displays the name of the current procedure or program.
LINE# Displays the current line number.

COMMAND Displays the next program line to be executed.

The eighteen push buttons are used to access information about the current environment and to specify
memory variables and conditions to monitor during program execution. The pop-up debugger provides the
following push buttons:

BUTTON EFFECT

Step Step through a line at a time.

Suspend Suspend the program to go to the interactive prompt, RESUME to restart.

Cancel Cancel program execution and create error.mem.

Memory Display currently declared memory variables.

Status Display currently open tables (and their indexes, current record, etc.).

Calls Show program/procedure call stack.

Watch Set a watch point. When Executing the program, execution will stop when the specified
memory variable’s value changes.

Break Set a break point. When Executing the program, execution will stop when the specified
condition becomes true.

History Show command history trace.

Execute Run program without stepping until watch point or break point reached.

Whpclear Clear all watch points.

Bpclear Clear all break points.

Bpmark Mark the current line as a break point.

Bpdrop Clear a particular break point.

Wpdrop Clear a particular watch point.

Bpshow Show all break points.

Wpshow Show all watch points.

168

| Quit | Exit the program and debugger. |

Use the [UP], [DOWN], [LEFT], and [RIGHT] arrow keys to navigate the push buttons, and press the
[RETURN] key to select a button. You may also type the accelerator key to select a button. The
accelerator keys are the highlighted letters in the label of each push button.

Debugger directives can also be hard-coded into program files. These are ignored in normal program
execution but activated when the program runs in debug mode Debug mode is in effect when the program
is called with the DEBUG command or when SET STEP is ON. Directives start with a *//” comment prefix
followed by a space, the DEBUG command, a colon (“:”), and the condition. The following debugger
directives are available:

DIRECTIVE EFFECT

// DEBUG:BREAKPOINT Acts as if a break point has been hit when it is encountered.

/| DEBUG:BREAKPOINT:<expL> Acts as if a break point has been hit when <expL> evaluates
to.T. (True).

/l DEBUG:WATCHPOINT:<memvar> | Sets a watch point on the specified memory variable.

Debugger directives can also be used when programs are run via the Recital Database and Mirage Servers.

Example
debug main

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

169

DECLARE

Class
Array Processing

Purpose
Declare an array

Syntax

DECLARE <memvar>

DECLARE <array>[<expN>] | (<expN>)

DECLARE <array>[<expN1>,<expN2>] | (<expN1>,<expN2>)

See Also

APPEND FROM ARRAY, COPY TO ARRAY, DIMENSION, GATHER, PRIVATE, PUBLIC,
RELEASE, RESTORE FROM, SAVE TO, SCATTER, AAVERAGE(), ACHOICE(), ACOPY/(), ADEL(),
ADIR(), AFIELDS(), AFILL(), AINS(), ALEN(), AMAX(), AMIN(), ASORT(), ASUM()

Description

The DECLARE command is used to declare memory variables and fixed one or two-dimensional arrays.
Memory variables declared using the DECLARE command are initialized to .F. and are private to the
declaring procedure.

The size of an array is fixed at its declaration. Both one and two dimensional arrays subscripts can be
referenced using square brackets or round brackets.

[<expN>] | (<expN>)
For one-dimensional arrays, [<expN>] specifies the total number of elements in the array. Elements are
subsequently referenced using the notation <array>[<expN>] or <array>(<expN>).

[<expN1>,<expN2>] | (<expN1>,<expN2>)

For two-dimensional arrays, <expN1> represents the number of rows and <expN2> represents the number
of columns in the array. Elements are subsequently referenced by <array>[<expN1>,<expN2>] or
<array>(<expN1>,<expN2>). The elements of a two dimensional array can also be referenced, as if the
array were one dimensional, using <array>[<expN1>] or <array>(<expN>).

Arrays can be declared as any size. Values are assigned into arrays using the '=' operator. Arrays can then
be used in a similar way to memory variables. Complete arrays can be initialized with one assignment.
Array references start at 1,1 for two-dimensional arrays, and 1 for one-dimensional arrays. They can also
be declared as private or public by using the PRIVATE and PUBLIC commands. Arrays can be saved to
memory files with the SAVE TO command and then later restored with the RESTORE FROM command.

Notes: The brackets shown for this command do not indicate optional expressions but are a necessary part
of the syntax.

Example

I/ Declare one-dimensional array of 4000 elements
declare aTable[4000]

I/ Assign 0 to all elements

aTable=0

/I Insert individual element values into array
aTable[1] =10

aTable[2] = “Hello”

aTable[3] = “World”

170

aTable[4] = date()

[Print value of element 2
? aTable[2]

Hello

I/l Another example

declare twodim[3,3]
twodim[2,3] = “hello world”
? twodim[6]

hello world

/I Another example

use payroll

declare aPayroll[reccount(), fcount()]

copy to array aPayroll for city = “LONDON”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

171

DECRYPT

Class
DES3 Encryption

Purpose
Decrypt the specified table or tables

Syntax
DECRYPT <.dbf> | <skeleton> KEY <expC1>

See Also
APPEND FROM, COPY FILE, COPY STRUCTURE, COPY TO, DIR, ENCRYPT, USE, SET
ENCRYPTION

Description

The DECRYPT command is used to decrypt the data in the specified table, <.dbf> or tables matching the
<skeleton>. The <expC1> must contain the three part comma-separated key used to previously encrypt the
table. The key may optionally be enclosed in angled brackets. The <skeleton> syntax can only be used if
all tables matching the <skeleton> have the same key.

The DECRYPT command decrypts the data and removes the table’s .dkf file. After decryption, the key
need no longer be specified to gain access to the table.

Example
decrypt accounts key “keyl,key?2, key3”
decrypt salaries key “<key 1,key 2,key 3>”

/I decrypt all .dbf files in the directory
decrypt *.dbf key “key1,key2,key3”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

172

#DEFINE

Class
Memory Variables

Purpose
Defines a constant

Syntax
#DEFINE <memvar> <exp>

See Also
#IFDEF..ENDIF, LOCAL, PRIVATE, PUBLIC

Description

The #DEFINE command is used to define FoxPro compatible constants. Constants declared using
#DEFINE can be overridden by a memory variable of the same name, but cannot be modified or manually
released after their initial declaration. Constants are automatically updated if the value of <exp> changes
and are released on exit from the session.

Example

#DEFINE NEXT_LOOP

fori=1to NEXT_LOOP
?i

next

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

173

DEFINE BAR

Class
Menus

Purpose
Defines an option for an Xbase style pop-up menu

Syntax

DEFINE BAR <expN> OF <expCl1> PROMPT <expC2>
[KEY <key>, [<expC3>]]

[MESSAGE <expC4>]

[SKIP [FOR <expL>]]

See Also

ACTIVATE POPUP, BAR(), DEFINE POPUP, DIALOG FIELDS, DIALOG FILES LIKE, DIALOG
QUERY, DIALOG SCOPE, MENU FIELDS, MENU FILES LIKE, MENU QUERY, MENU SCOPE, ON
SELECTION POPUP, POPUP(), PRMBAR(), PROMPT(), SET COMPATIBLE

Description

The DEFINE BAR <expN> defines a single option in a pre-defined Xbase style pop-up <expC1> menu. If
you have used the PROMPT FIELD, PROMPT FILES, or the PROMPT STRUCTURE options in your
pop-up menu definition, the DEFINE BAR command is unnecessary. The command SET COMPATIBLE
should be set ON when using Xbase style menus. The PROMPT <expC2> defines the text that will appear
in the menu item.

KEY <key>, [<expC3>]

The KEY <key>, [<expC3>] is provided for Xbase language compatibility only. The value <key> is the
key combination defined to access the particular option. The <expC> defines the label displayed on the
option bar.

MESSAGE <expC4>
The optional MESSAGE <expC4> displays a message centered on the last line of the screen when the bar
is selected by the user.

SKIP FOR [<expL>]
The optional SKIP command allows the display of a defined bar but does not allow selection of that bar.
The optional SKIP FOR <expL> allows selection of a defined bar only when the specified condition is true.

Example

define popup popup_4;
from 1,26

define bar 1 of popup_4;
prompt “\<Bar 1”

define bar 2 of popup_4;
prompt “B\<ar 2”

define bar 3 of popup_4;
prompt “Ba\<r 3”

activate popup popup_4

Products
Recital Mirage Server, Recital Terminal Developer

174

DEFINE CLASS

Class
Objects

Purpose
Create a user-defined class

Syntax
DEFINE CLASS <class name> [AS <base class> | CUSTOM [OLEPUBLIC]]
[[PROTECTED | HIDDEN PropertyName1, PropertyName2 ...]
[<object>.]<property> = <exp> ...]
[ADD OBJECT [PROTECTED] <object name> AS <base class> [NOINIT]
[WITH <property-list>]]...
[[PROTECTED | HIDDEN] FUNCTION | PROCEDURE <proc-name>[ACCESS|_ASSIGN]
| THIS_ACCESS [NODEFAULT]
<command statements>
[ENDFUNC | ENDPROC]]...
ENDDEFINE

See Also
CLASS, PUBLIC, PRIVATE, LOCAL, STATIC, METHOD, SET COMPATIBLE

Description

The DEFINE CLASS command is the Visual FoxPro class definition command. Within the DEFINE
CLASS...ENDDEFINE block all aspects of the class — its name, events, methods and properties can be
specified. The CREATEOBJECT() function is used to create an object based on a defined class.

The <class name> defines the reference for the class.

AS <base class> | CUSTOM [OLEPUBLIC]

The AS <base class> clause is used to specify the parent system class for the current class being defined.
To specify a user-defined class, use CUSTOM. If the OLEPUBLIC keyword is included, this means that
the class in an Automation server can be accessed by an Automation client.

PROTECTED
This affects subsequent property declarations and ensures that PROTECTED properties cannot be accessed
or changed outside the scope of the current class or subclasses based on this class.

HIDDEN
This affects subsequent property declarations and ensures that HIDDEN properties cannot be accessed or
changed outside the scope of the current class, not even by sub-classes.

Member Declaration <property> = <exp>
Properties can be assigned values when an object based on this class is instantiated by including the
assignments in the class definition.

ADD OBJECT <object name>
This adds the specified object to the class definition from a Visual FoxPro base class, a user-defined class
or an ActiveX custom control.

PROTECTED

This affects the properties of the object and ensures that they cannot be accessed or changed outside the
scope of the current class or subclasses based on this class.

175

AS <base class>
The AS <base class> clause is used to specify the class on which the object is based.

NOINIT
If the NOINIT keyword is specified, the init method of the object will not be called when the object is
added.

WITH <property-list>
The WITH <property-list> clause specifies the object’s properties and their values. The <property-list>
consists of comma separated property=value pairs.

FUNCTION | PROCEDURE <proc-name>

<command statements>
ENDFUNC | ENDPROC
The FUNCTION or PROCEDURE clause is used to define the class’s events and methods. The
<command statements> are the operations to be performed. The FUNCTION or PROCEDURE can
optionally be terminated with the appropriate ENDFUNC or ENDPROC command. Events and methods
are called using the object.method | object.event syntax.

_ACCESS | _ASSIGN

If the _ACCESS or the _ASSIGN suffix is added to the name of a procedure or function, this will create an
ACCESS method or an ASSIGN method for the property with the same name. ACCESS methods are
called whenever the property value is requested and ASSIGN methods are called whenever the property
value is changed.

THIS_ACCESS
If THIS_ACCESS is specified the procedure or function will be called whenever an attempt is made to
change the value of a member of an object and whenever a member of an object is queried.

NODEFAULT
Including the NODEFAULT keyword prevents the default event or method being performed.

ENDDEFINE
The class definition is terminated with the ENDDEFINE command.

Example

define class myClass as custom
productname = “Recital Mirage”
version = “2.0”

enddefine

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

176

DEFINE MENU

Class
Menus

Purpose
Define an Xbase style main menu bar

Syntax

DEFINE MENU <expC1>

[COLOR SCHEME <expN>]

[IN [WINDOW!] <window name> | IN SCREEN]
[MESSAGE <expC2>]

See Also

DEFINE PAD, ON PAD, ON SELECTION PAD, ACTIVATE MENU, DEACTIVATE MENU, HIDE
MENU, RELEASE MENUS, SHOW MENU, DEFINE POPUP, DEFINE BAR, ON SELECTION
POPUP, ACTIVATE POPUP, DEACTIVATE POPUP, RELEASE POPUPS, CLEAR POPUPS, SHOW
POPUP, SET COMPATIBLE

Description

The DEFINE MENU command defines the menu name <expC1> of the main menu bar for Xbase style
menus. The command does not create a menu bar on its own, but serves as the first step in the process.
The next steps include creating options along the menu bar with the DEFINE PAD command and
associating actions with the options with the ON PAD and ON SELECTION PAD commands. The
command SET COMPATIBLE should be set ON when using Xbase style menus.

COLOR SCHEME <expN>
The optional COLOR SCHEME command will display the menu items in the colors defined in
scheme<expN>. Color schemes are defined by the command SET COLOR OF SCHEME command.

IN [WINDOW] <window> | IN SCREEN

The optional IN [WINDOW] <window> | IN SCREEN clause allows the menu to be defined for display in
a specified window, IN [WINDOW!] <window name> or to be defined for display in the main screen when
a window is currently active, IN SCREEN.

MESSAGE <expC2>
The optional MESSAGE command will display <expC2> in the message line.

Example
define menu sort_men message “Main Menu”

Products
Recital Mirage Server, Recital Terminal Developer

177

DEFINE PAD

Class
Menus

Purpose
Define pad locations for the main menu bar of an Xbase style menu

Syntax

DEFINE PAD <expC1> OF <expC2> PROMPT <expC3>
[AT <expN1><expN2>]

[COLOR <color code> | COLOR SCHEME <color scheme>]
[KEY <key label> [,<expC4>]

[MESSAGE <expC5>]

[SKIP [FOR <expL>]]

See Also

DEFINE MENU, ON PAD, ON SELECTION PAD, ACTIVATE MENU, DEACTIVATE MENU,
RELEASE MENUS, SHOW MENU, DEFINE POPUP, DEFINE BAR, ON SELECTION POPUP,
ACTIVATE POPUP, DEACTIVATE POPUP, RELEASE POPUPS, CLEAR POPUPS, SHOW POPUP,
SET COMPATIBLE

Description

The DEFINE PAD command defines the pad hame <expC1> for the menu name <expC2> for Xbase style
menus. The command SET COMPATIBLE should be set ON when using Xbase style menus. The menu
name must first be defined with the DEFINE MENU command.

PROMPT <expC3>
The PROMPT <expC3> is displayed inside the menu option, placing a blank space to each side of the
prompt when it is displayed.

AT <expN1><expN2>

The optional AT coordinates position the pad at row <expN1> and column <expN2> on the screen. If the
AT coordinates are not supplied, the pads start in the upper left corner of the screen and place one space in
between each prompt.

COLOR <color code> | COLOR SCHEME <color scheme>

The optional COLOR or COLOR SCHEME clause will display the pad in the colors defined by the <color
code> foreground/background color pair or the numeric <color scheme>. For more information about color
settings, please see the SET COLOR and SET COLOR OF SCHEME commands.

KEY <key label> [,<expC4>]

The optional KEY clause allows the pad to be chosen using the specified <key label>. For more
information on key labels, please see the ON KEY LABEL command. If <expC4> is included, this
character expression will be displayed instead of the default key label.

MESSAGE <expC5>
The optional MESSAGE clause displays <expC4> in the message line when the cursor is placed on the pad.

SKIP [FOR <expL>]]

The SKIP clause allows a particular pad or to be disabled. If the optional FOR <expL> clause is included,
the <expL> is evaluated. If the evaluation results in .T. (true) the pad is disabled, if .F. (false), the pad is
enabled. If the FOR <expL> clause is not included, the pad is enabled.

178

Example
define pad file_nm of sort_men;

prompt “Files”;

at 0,0;

message “Use <- and -> keys to navigate menus”
define pad srt_type of sort_men;

prompt “Structure”;

at0,7;

message “Use <- and -> keys to navigate menus”
define pad key_nm of sort_men;

prompt “Fields”;

at 0,18;

message “Use <- and -> keys to navigate menus”
define pad prfrm of sort_men;

prompt “User-defined”;

at 0,26;

message “Use <- and -> keys to navigate menus”
define pad endit of sort_men;

prompt “Quit”;

at 0,40;

message “Press ENTER to exit”

Products
Recital Mirage Server, Recital Terminal Developer

179

DEFINE POPUP

Class
Menus

Purpose
Define an Xbase style pop-up menu.

Syntax

DEFINE POPUP <expC1> FROM <expN1>, <expN2> [TO <expN3>, <expN4>]
[COLOR SCHEME <expN5>]

[FOOTER <expC2>

[MESSAGE <expC3>]

[PROMPT FIELD <expC4>]

[PROMPT FILES [LIKE <skeleton>]]

[PROMPT QUERY]

[PROMPT SCOPE]

[PROMPT STRUCTURE]

See Also

ACTIVATE POPUP, BAR(), DEFINE BAR, DIALOG FIELDS, DIALOG FILES LIKE, DIALOG
QUERY, DIALOG SCOPE, MENU FIELDS, MENU FILES LIKE, MENU QUERY, MENU SCOPE, ON
SELECTION POPUP, POPUP(), PRMBAR(), PROMPT(), SET COMPATIBLE

Description

The DEFINE POPUP command names, shapes and defines an Xbase style pop-up menu. The name of the
popup is specified using <expC1>. The FROM <expN1>, <expN2> coordinates are used to align the pop-
up menu beneath the appropriate pad of the menu bar. The <expN1> specifies the top left row coordinate,
the <expN2> the top left column coordinate. The bottom right row and column coordinates can be
specified using the optional TO <expN3>,<expN4>. If these coordinates are not supplied, the pop-up menu
will adjust to the longest field and will include the maximum number of lines.

COLOR SCHEME <expN5>
The optional COLOR SCHEME command will display the menu items in the colors defined in
scheme<expN>. Color schemes are defined by the command SET COLOR OF SCHEME command.

FOOTER <expC2>
The FOOTER <expC2> option causes the specified text, <expC2> to be displayed centered at the bottom of
the popup.

MESSAGE <expC3>
The MESSAGE option centers the character expression, <expC3>, on the screen message line.

PROMPT FIELD <expC4>
The PROMPT FIELD <expC4> fills the pop-up window with the contents of the specified field for every
record in the table.

PROMPT FILES
The PROMPT FILES option displays a list of filenames. Specifying the optional LIKE <skeleton> clause,
restricts the files to those that match the skeleton.

PROMPT STRUCTURE
The PROMPT STRUCTURE option fills the pop-up window with fields from the current table

180

PROMPT QUERY
The PROMPT QUERY option displays the query menu from the current table on the screen

PROMPT SCOPE
The PROMPT SCOPE option displays the scope menu on the screen

Example

define popup popup_1;
from 1,0;
prompt files

define popup popup_2;
from 1,7,

define popup popup_3;
from 1,18;
prompt field name

Products
Recital Mirage Server, Recital Terminal Developer

181

DEFINE TABLE

Class
Screen Forms

Purpose
Define a table field in a format or program file for multiple record display

Syntax

DEFINE TABLE <table name> FOR <.dbf filename> AS <expN> ROWS
RELATING <field> BY <key expression>

[BOXCOLOR <color>]

[COLOR <color>]

[PRETABLE <procedure name> |[<expC1>]

[POSTTABLE <procedure name> [<expC2>]

[SHADOW]

[TITLE <expC3>]

See Also
CREATE BRIDGE, CREATE SCREEN, CREATE VIEW, SET RELATION @...GET

Description

The DEFINE TABLE command designates a table of multiple record based “child’ table information to be
viewed on the same form with other related “‘child’ information and, if desired, the “parent’ table
information. One to many relationships are represented and maintained in a form. As users page through
records in a parent table, records in the related table fields refresh accordingly.

The tables, indexes and relational links should be created prior to issuing the DEFINE TABLE command.
This may be accomplished by creating a VIEW, an APPLICATION BRIDGE, or a program file.

The number of TABLES that may be defined is limited only by the number of available workareas. The
parent table for the form may have several one-to-many relationships and each table may have one-to-many
relationships to other table fields. Parent records do not need to be included in the form, therefore you may
build forms which contain only table fields. If a screen is to contain a parent record and a child table, the
child table must be placed below the first accessible parent field.

Once you have defined all the necessary information in the DEFINE TABLES command, you need to
identify the @...GET statements that belong to each table. The syntax for each @...GET belonging to a
table field is:

TABLE_NAME!ALIAS->FIELDNAME

Fields included in table fields bring with them the rules defined in their respective Applications Data
Dictionary settings. For example, a choice list defined for a field in the Applications Data Dictionary is
still accessible from within a table field. Fields belonging to the same table are all placed on the same row.

Users may move to any of the TABLES on the screen by pressing the [NAVIGATE TABLE] key and
paging through the records which are displayed. Records may be appended to any of the tables by pressing
the [APPEND TABLE RECORD] key. The [TABLE AUTO APPEND] toggles automatic APPEND mode
each time the [RETURN] key is pressed on the last record of the table field. The [FREEZE TABLE
COLUMN] key freezes the cursor within a specific column. A key usage pop-up window displays when
the user presses the [TAB] key. The [ABANDON] key backs the user out of the table fields. When used
with a manual READ, table fields are read-only, and can not be navigated as described above.

182

Table fields may also be created in the Forms Designer. See the CREATE SCREEN command for full
details.

<table name>

Each table field is distinguished by a unique <table name> qualifier. The <table name> must start with a
letter or underscore and can consist of letters, underscores and digits (0-9). The <table name> must not
exceed ten characters.

FOR <.dbf filename>
The FOR clause specifies the name of the ‘child’ table, <.dbf filename>, from which the records should be
displayed.

AS <expN> ROWS
The numeric expression <expN> states the number of rows, or records, to display in the TABLE.

RELATING <field> BY <key expression>

The RELATING clause specifies the relationship between the “‘parent’ and the “child’ tables. This is in
addition to the SET RELATION command, not instead of it. The <field> is the name of the field in the
‘child’ table. The “child’ table must be indexed on this field and this must be the master index order. This
field must also exist in the “parent’ table and is the basis of the relationship between the two tables. The
<key expression> consists of the name of the ‘parent’ table, plus the alias pointer (-> or .), plus the name of
the matching <field> in the “‘parent’ table.

BOXCOLOR <color>

COLOR <color>

By default, the table will be the color of FIELDS and the box will be the color of BOXES. The optional
COLOR and BOXCOLOR commands specify alternate colors for the table and the box, respectively. A
TITLE <expC> must be specified for the box to be displayed. Assigned colors take the form:
foreground/background, and are set using the following letter codes:

Color Attribute Code

BLACK N or blank

BLUE B

GREEN G

CYAN BG

BLANK X

GREY N+

RED R

MAGENTA RB

BROWN GR

YELLOW GR+

WHITE W
PRETABLE <expC1>

POSTTABLE <expC2>

The optional PRETABLE and POSTTABLE keywords associate trigger procedures with the entry and exit
of the table field. The READVAR() function is useful within trigger procedures as it returns a blank when
the table is displayed, and the table name when the table is activated.. The procedure names may be
specified with character expressions <expC> that return the names of valid trigger procedures.

SHADOW
The SHADOW keyword causes a shadow to display along the right and bottom edges of the box. A TITLE
<expC> must be specified for the box to be displayed.

TITLE <expC3>

183

The TITLE option is used to specify field or column headings for the table. If the TITLE option is used, a
box will be drawn around the fields and the headings. The TITLE character expression must contain
column headings, separated by commas, for every field in the table.

Example
*kk*k

**** [Screen format file 'customer.fmt' created by Recital Version 8.0]
**k*k%k
define table acc;
for accounts;
as 7 rows;
title 'Pd#,0Ord#,Date,Price,Received,Paid,Payment,Balance’;
posttable order_posttrig;
relating account_no by customer->account_no
set preform to orderspreform
set postform to orderspostform
set prerecord to orders_prerec
@01,00 to 06,79
@02,01 say [Account code]
@02,18 get customer->account_no
@02,25 say [Start Date]
@02,36 get customer->start_date
@03,01 say [Customer's Name]
@03,18 get customer->title
@03,22 get customer->first_name
@03,33 get customer->initial
@03,36 get customer->last_name
@04,01 say [Street]
@04,18 get customer->street
@05,01 say [City]
@05,18 get customer->city
@05,30 say [,]
@05,31 get customer->state
@05,34 get customer->zip
@10,01 get acclaccounts->product_no
@10,06 get acc!accounts->ord_no;
picture [@S4X]
@10,11 get acclaccounts->ord_date
@10,22 get acclaccounts->ord_value
@10,34 get acclaccounts->rec_date
@10,45 get acclaccounts->paid_date
@10,56 get acclaccounts->paid_value
@10,68 get acclaccounts->balance
@18,00 to 20,79
@19,01 say [Total:]
@19,13 get m->m_orders;
picture [99999999];
when .f.
@19,22 get m->m_ord_val;
picture [$$$$,$$9.99];
when .f.
@19,56 get m->m_paid_val;
picture [$$$$,$$9.99];
when .f.
@19,68 get m->m_bhalance;
picture [$$$$,$$9.99];

184

when .f.
AAKAAKAAAAAAAAAAAAAAAA A AAAhdhhhdhhiiik
// Open demo.dbf bridge.

I/ This opens the four demo tables and sets up
/I indexes, relations and format files

use demo

edit

Products
Recital Terminal Developer

185

DEFINE WINDOW

Class
Screen Windows

Purpose
Define the coordinates and attributes of a window

Syntax

DEFINE WINDOW <window-name>

FROM <expN1>, <expN2> TO <expN3>, <expN4>
[CLOSE | NOCLOSE]

[COLOR <color code> | COLOR SCHEME <color scheme>]
[COMMAND | ERROR | SYSTEM | TRACE]
[DOUBLE | NONE | PANEL]

[FILL <expC1>]

[FLOAT | NOFLOAT]

[FOOTER <expC2>]

[GROW | NOGROW]

[MINIMIZE | NOMINIMIZE]

[PROPERTIES <expC3>]

[SHADOW]

[TITLE <expC4>]

[ZOOM | NOZOOM]

See Also

ACTIVATE SCREEN, ACTIVATE WINDOW, CLEAR WINDOWS, DEACTIVATE WINDOW, HIDE
WINDOW, MOVE WINDOW, MODIFY MEMO, RELEASE WINDOWS, RESIZE WINDOW,
RESTORE WINDOW, SAVE WINDOW, SHOW WINDOW, SET COLOR, SET
COMMANDWINDOW, SET ERRORWINDOW, SET STATUS, SET TRACEWINDOW, SET
WINDOW OF EDIT, SET WINDOW OF MEMO, WROWS(), WCOLS(), WEXIST(), WVISIBLE(),
WONTOP(), WOUTPUT()

Description

The DEFINE WINDOW command is used to specify the coordinates, and attributes for a window. A
window is an area of the screen designated for output and input. There is no limit to the number of defined
windows. The <window-name> is the name that will be used to identify the window when using the other
WINDOW commands.

FROM <expN>,<expN> TO <expN>,<expN>

Initial display of the window is positioned with the numeric expressions <expN1-expN4>. These numeric
expressions define the coordinates by row and column number for the top left and bottom right corners of
the window.

CLOSE | NOCLOSE
The CLOSE | NOCLOSE keywords are included for FoxPro compatibility only.

COLOR <color code> | COLOR SCHEME <color scheme number>

The COLOR <color code> can define colors for standard characters, enhanced characters, and the frame of
the window. Each of the three definitions consists of “/”” separated color codes. The definitions are comma
separated. Colors are assigned using the following letter codes:

186

Color Attribute Letter
BLACK N or blank
BLUE B

GREEN G

CYAN BG
BLANK X

GREY N+

RED R
MAGENTA RB
BROWN GR
YELLOW GR+
WHITE W

The first set of letter codes, <foregroundl,backgroundl1>, assigns the standard colors. The standard colors
are used for @...SAYs that display when the window is activated. The second set of letter codes,
<foreground2,background2> , assigns the enhanced colors that are used for the @...GETs in the activated
window. The third set of letter codes, <foreground3,background3> , assigns colors for the frame, or border
of the window. The default colors for window frames, @...SAYs, and @...GETS, are assigned with the
SET COLOR command. When assigning color codes to the window, you may omit any of the three sets of
codes by putting a comma in its place.

COMMAND | ERROR | SYSTEM | TRACE

The COMMAND keyword designates the window as a command window. Command windows contain the
interactive command prompt, and when active, allow the input of commands. If the TITLE <expC> clause
is not specified, command windows are labeled “Recital - command window.” The SET
COMMANDWINDOW command must be ON in order for command windows to operate.

The ERROR keyword designates the window as an error window. Error windows are automatically
activated when an error occurs. Error windows display the appropriate error message, and a button labeled
“Confirm.” Pressing the [RETURN] key deactivates the error window. If the TITLE <expC> clause is not
specified, error windows are labeled “Recital - error window.” The SET ERRORWINDOW command
must be ON in order for error windows to operate.

The SYSTEM clause will define a window with the same characteristics as the Application Workbench
system window.

The TRACE keyword designates the window as a trace window. Trace windows display each executing
line of a currently running program. If the TITLE <expC> clause is not specified, trace windows are
labeled with “Recital - trace window.” The SET TRACEWINDOW command must be ON in order for
trace windows to operate.

DOUBLE | NONE| PANEL

The DOUBLE keyword is used to border the window with a double rather than a single line. The PANEL
keyword is used to draw the window border in reverse video. The NONE keyword is used to display the
window without a border.

FILL <expC1>
The FILL clause will fill the background of the window with the <expC1>.

FLOAT | NOFLOAT

The FLOAT keyword enables the window to move on the screen. The MOVE WINDOW command
specifies coordinates for moving a window. Windows may be moved to different coordinates, or moved
from their current position by specified ordinates. Windows defined with the NOFLOAT keyword cannot
be moved.

187

FOOTER <expC2>
The FOOTER <expC2> clause is included for langauge compatibility only.

GROW | NOGROW

The GROW keyword enables the window size to be changed. Windows many be resized to different
coordinates, or resized based on specified ordinates using the RESIZE WINDOW command. A window
defined with the NOGROW keyword cannot be resized.

MINIMIZE | NOMINIMIZE
The CLOSE | NOCLOSE keywords are included for FoxPro compatibility only.

PROPERTIES <expC3>
The DEFINE WINDOW command can include the optional PROPERTIES clause to configure the
following properties of the window:

Property Description

backColor A valid color name

foreColor A valid color name

borderStyle Raised, Recessed, EtchedOut, EtchedIn, GroupBox,
Solid

text Title text for a groupBox

pixelX Pixel X position of window

pixelY Pixel Y position of window

pixelWidth Pixel Width of window

pixelHeight Pixel Height of window

The <expC3> consists of a character string containing semi-colon (;) separated property=value pairs, e.g.
“backcolor=black;forecolor=red;borderStyle=GroupBox;text="Window'"
The PROPERTIES clause only has effect when running under Recital Mirage.

SHADOW
The SHADOW keyword causes a shadow to appear along the right and bottom edges of the window. The
color of the shadow can be specified with the SET COLOR command.

TITLE <expC4>
The TITLE <expC4> clause centers and highlights the specified character expression on the top line of the
window. If the character expression is longer than the specified width of the window, the title is truncated
on the right side.

ZOOM | NOZOOM
The ZOOM | NOZOOM keywords are included for language compatibility only.

A defined window is displayed to the screen with the ACTIVATE WINDOW or SHOW WINDOW
commands. The SHOW WINDOW command displays a window without activating it. The ACTIVATE
WINDOW command displays a window and activates it. When a window is activated, all subsequent
output is displayed in that window. Only one window may be activated at a time. Activating additional
windows does not clear the display of previously activated windows. The DEACTIVATE WINDOW
command clears the display of activated windows, but leaves the window definition in memory. The
RELEASE WINDOW command clears both the display and the definition of windows from memory. The
SAVE and RESTORE WINDOW commands may be used to keep window definitions in a file that can be
reused at any time.

188

Example

define window browse;
from 2,2 to 12,43;
title “BROWSE”;
color n/bg;
float;
grow;
shadow

Products
Recital Mirage Server, Recital Terminal Developer

189

DELETE

Class
Fields and Records

Purpose
Mark records in the active table for deletion

Syntax

DELETE [<scope>]
[FOR <condition>]
[WHILE <condition>]

See Also
ERASE, RECALL, PACK, ZAP, SET FILTER, SET DELETED

Description

The DELETE command marks records in the active table for deletion. The default <scope> deletes the
current record. If the FOR clause is specified, the default scope is ALL. If the WHILE clause is specified,
the default scope is REST.

If SET FILTER TO <condition> is in effect, then only those records that satisfy the filter are deleted. If a
record is already marked for deletion then the <scope> will be extended. Any records which have been
marked for deletion with the DELETE command can be reinstated using the RECALL command.

Records that are marked for deletion are only physically removed from the table after the PACK command
has been issued. If the table is indexed, then the Recital/4GL will process the records in the table in the
order of the master index file. If the active table is shareable, then the Recital/4GL will automatically lock
each record in turn, mark it for deletion if required, then unlock the record.

At the end of a DELETE operation with a FOR or WHILE condition, the record pointer is positioned to
EOF() if SET COMPATIBLE TO <XBASE> is in effect.

FOR <condition>
If the FOR clause is specified, then only those records which satisfy the <condition> are deleted. If FOR
and WHILE clauses are used at the same time, the default <scope> is ALL.

WHILE <condition>
The WHILE clause can be used to restrict the number of records checked against a particular FOR
<condition>, therefore optimizing the deletion process.

Example
use patrons index names, events
delete all for event = “HAMLET”

use patrons index events, names
seek “OPERA”
delete rest;

for date<date();

while event = “OPERA”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

190

DELETE FILE

Class
Disk and File Utilities

Purpose
Delete specified file

Syntax
DELETE FILE <filename>

See Also
SET SAFETY, ERASE

Description

The DELETE FILE command deletes the specified file, <filename> . If no directory specification is
present in the <filename>, then the file is deleted from the current directory. The filename can be
substituted with a <expC>, enclosed in round brackets, which returns a valid filename. The DELETE FILE
command does not follow the directory search path specified with the SET PATH command. On
OpenVMS, all versions of the file will be deleted.

Example
delete file orders.dbf

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

191

DELETE TAG

Class
Indexing

Purpose
Delete an index tag

Syntax

DELETE TAG <tagname>

[OF <.dbx filename>]

[, <tagname2 [OF <.dbx filename>]...]

See Also
INDEX ON, CREATE STRUCTURE, COPY INDEXES, COPY STRUCTURE TO, MODIFY
STRUCTURE, SET INDEX, USE, TAGNO(), TAGNAME()

Description

The DELETE TAG removes an index tag from a multiple index file. More than one tag may be deleted by
separating each <tagname> with a comma. If the production index file contains only one tag, the file will
be deleted after the tag has been removed. The table file that is associated with the <.dbx filename> file
must be opened exclusively in order to delete a tag.

OF <.dbx filename>

The OF <.dbx filename> clause is used to specify the name of the .dbx file from which the tag should be
deleted. By default, the production index file is searched for <tagname>. If no <.dbx filename> is
specified and the tag does not exist in the production index file, the following message is displayed: “Tag
not found.”.

Example
use accounts exclusive
delete tag zip

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

192

DESIGN

Class
Information Center

Purpose
Initiate the Recital Information Center in Design mode

Syntax
DESIGN

See Also
CATALOG(), SET CATALOG, SET TITLE

Description
The DESIGN command initiates the Recital Information Center in Design mode. The INFO command
initiates the Recital Information Center with Design mode off.

The Recital Information Center is a powerful worksurface, from which any type of data may be accessed,
viewed, modified and organized. Within the Recital Information Center, you can organize files into
catalogs that represent a single application, an application interface or development project. The rich
functionality of the Recital Information Center includes a graphical-like user interface with CUA compliant
components, access to Recital worksurfaces, object oriented design tools and connectivity to foreign
databases.

Design mode allows access to CREATE and MODIFY worksurfaces as well as the complete range of
design tools. Design mode may also be enabled with the SET DESIGN command. When in Desigh mode,
the Recital Information Center displays a [DESIGN] key that is used to access the development
worksurfaces. Design mode also displays the names of program and application files. When Design mode
is disabled, files with “.app’ or “.prg’ extensions are only displayed in catalogs to which they have been
added.

The SET CATALOG TO <expC> command allows the specified catalog file to be used when the Recital
Information Center is activated. If a catalog with the name specified in <expC> does not exist, it will be
created. SET CATALOG ON causes all newly created files to be added automatically to the currently open
catalog. When SET CATALOG is OFF, the currently open catalog is closed and automatic file adding is
disabled. Catalogs may also be opened from within the Recital Information Center and files added to a
catalog using the appropriate menu items.

The Recital Information Center menu bar provides access to a wide range of decision support tools,
application objects and work surfaces. The menu bar contains the following options:

Menu Description

File Catalog file tasks

Edit Database table record options

Options Catalog file options

Tools Popup Calculator, Time Manager and Notepad
Customize Environment customization toggles

Summary Financial and statistical calculations

Organize Database table operations

Report Quick and Custom Report and Label options
Help Help System, Key Help and Technical Support

193

The Recital Information Center contains six file panels providing vertical listings of filenames without
extensions. Each panel represents a different category or file type and contains a <create> button giving
access to the appropriate create worksurface.

Panel File Types

Data Table (.dbf), gateway (.gtw), bridge (.brg), view (.vue).
Text Text (.txt)

Form Screen format (.fmt)

Report Report format (.frm) Treport (.trf)
Label Label format (.Ibl)

Program Application (.app), program (.prg)
Example

set catalog to customer

design

Products

Recital Terminal Developer

194

DIALOG BOX

Class
Screen Dialogs

Purpose
Display a text message in a dialog box

Syntax
DIALOG BOX <expC>
[LABEL <expC>]

See Also
DIALOG MESSAGE, DIALOG QUERY, DIALOG FIELDS, DIALOG SCOPE, DIALOG GET, SET
MESSAGE, MESSAGE,SET COLOR, SET COLOR OF DIALOGFRAME

Description

This dialog is used to display the specified text message <expC>. A “Confirm” button will also be
displayed for you to acknowledge the displayed message. If SET DIALOG is OFF, the message will be
displayed in the message line.

LABEL <expC>
The default title of “MESSAGE” can be replaced with an optional title <expC>, using the LABEL clause.

Example
dialog box “Transaction Completed”

Products
Recital Mirage Server, Recital Terminal Developer

195

DIALOG FIELDS

Class
Screen Dialogs

Purpose
Display a dialog for selecting fields from a table

Syntax
DIALOG FIELDS
[LABEL <expC>]

See Also
DIALOG MESSAGE, DIALOG QUERY, DIALOG FILES LIKE, DIALOG SCOPE, DIALOG GET,
MENU FIELDS, SET COLOR, SET COLOR OF DIALOGFRAME

Description
This dialog displays a menu of field names of fields from the current table. Field descriptions rather than
field names are displayed if SET DESCRIPTION is ON.

The SET COLOR and SET COLOR OF DIALOGFRAME commands may be used to specify the colors for
the dialog box and frame.

The cursor and [PAGE UP], [PAGE DOWN] keys are used to navigate the menu, the [RETURN] key to
select a filename. Once a filename is selected, the ‘OK’ and ‘Cancel’ buttons or the [EXIT SAVE] and
[ABANDON] keys can be used to exit the dialog with or without saving.

On exit from DIALOG FIELDS, the MENUITEM() function can be used to return the selected field name
as a character string. If the user pressed the ‘Cancel’ button or the [ABANDON] key, MENUITEM() will
return a null string.

LABEL <expC>
The LABEL clause is used to change the default dialog title to the text specified in <expC>.

Example
use demo
dialog fields
? menuitem()

Products
Recital Terminal Developer

196

DIALOG FILES LIKE

Class
Screen Dialogs

Purpose
Display a menu of filenames in a dialog

Syntax

DIALOG FILES LIKE <skeleton>
[LABEL <expC>]

[TRIM]

See Also
DIALOG MESSAGE, DIALOG QUERY, DIALOG FIELDS, DIALOG SCOPE, DIALOG GET, MENU
FILES, ADIR(), DIR, SET COLOR, SET COLOR OF DIALOGFRAME

Description

The DIALOG FILES LIKE command displays a menu listing the files matching the pattern <skeleton>.
The menu is centered on the screen and the screen is automatically saved and restored. The following ‘wild
card’ characters may be used

Character Description

? Matches any one character.

% Matches any one character.

* Matches zero or more characters.

The default title of “Files” can be replaced with the specified <expC>, using the LABEL clause. If the
optional TRIM clause is used, the filenames are displayed without file extensions. The SET COLOR and
SET COLOR OF DIALOGFRAME commands may be used to specify the colors for the dialog box and
frame.

The cursor and [PAGE UP], [PAGE DOWN] keys are used to navigate the menu, the [RETURN] key to
select a filename. Once a filename is selected, the ‘OK’ and ‘Cancel’ buttons or the [EXIT SAVE] and
[ABANDON] keys can be used to exit the dialog with or without saving.

On exit from DIALOG FILES LIKE, the MENUITEMY() function can be used to return the selected
filename as a character string. If the user pressed the ‘Cancel’ button or the [ABANDON] key,
MENUITEM() will return a null string.

Example
dialog files like *.frm trim label “Reports”
if not empty(menuitem())
store menuitem() to rpt
report form &rpt to print
else
dialog box “No Report chosen”
endif

Products
Recital Terminal Developer

197

DIALOG GET

Class
Screen Dialogs

Purpose
Display a dialog prompting for user input

Syntax

DIALOG GET <character memvar>
[HELP <expC1>]

[LABEL <expC2>]

[PICTURE <expC3>]

[TITLE <expC4>]

See Also
@...GET, DIALOG MESSAGE, DIALOG QUERY, DIALOG FIELDS, DIALOG SCOPE, SET COLOR,
SET COLOR OF DIALOGFRAME

Description

The DIALOG GET command prompts for user input using a dialog box. The box contains confirmation
buttons labeled “OK” and “CANCEL”. The screen is automatically saved and restored when the DIALOG
GET command is used.

The SET COLOR and SET COLOR OF DIALOGFRAME commands may be used to specify the colors for
the dialog box and frame.

If the <character memvar> does not exist, DIALOG GET will initialize it as a character string. If the
memory variable does exist and is of character data type, its value will be retained. If it does exist, but is of
any other data type, it will be changed to an empty character string with a length of 80 characters. The user
enters the required value in the editing region then presses the [RETURN] key. Confirmation buttons,
“OK” and “Cancel” are then highlighted. The [EXIT/SAVE] and [ABANDON] keys can also be used to
save and exit or cancel and exit. The [CURSOR UP] key can be used to return to the editing region.

On exit from the DIALOG GET, the <character memvar> will contain the new value. If the [ABANDON]
key or the “Cancel” button was pressed, <character memvar> will return an empty string.

HELP <expC1>
The HELP clause will display the text message <expC1> in the system message line.

LABEL <exp2C>
The LABEL clause specifies the input prompt <expC2> for the dialog. The character expression can be up
to 15 characters long and replaces the default prompt, “Enter Value”.

PICTURE <expC>
The optional PICTURE clause is used to create a picture-editing template, see @...GET for more details.

TITLE <expC>
The TITLE clause will replace the default title, “INPUT DATA” in the GET dialog with <expC4>. The
<expC4> should be no longer than 30 characters, or it will display outside the boundaries of the box.

Example
dialog get m_var

198

Products
Recital Mirage Server, Recital Terminal Developer

199

DIALOG MESSAGE

Class
Screen Dialogs

Purpose
Display a text message in a dialog box

Syntax
DIALOG MESSAGE <expC>
[DEFAULT <expN>]

See Also
@...SAY, DIALOG QUERY, DIALOG FIELDS, DIALOG SCOPE, DIALOG GET, SET COLOR, SET
COLOR OF DIALOGFRAME, SET MESSAGE, MESSAGE, LASTKEY/()

Description

This DIALOG MESSAGE command is used to display the specified text message <expC> in a dialog box
centered on the screen. The screen is automatically saved and restored when using the DIALOG
MESSAGE command. The SET COLOR and SET COLOR OF DIALOGFRAME commands may be used
to specify the colors for the dialog box and frame.

The maximum width of <expC> is 79 characters.

“Yes” and “No” buttons will also be displayed for the user to respond the displayed message. The
LASTKEY/() function will return 89, which is the ASCII character “Y” if the “Y” or “y” keys were pressed
or if the [RETURN] key was pressed on the “Yes” button.

If SET DIALOG is OFF, the message will be displayed in the message line.

DEFAULT <expN>

The DEFAULT clause can be used to set the default button. The default button will be activated when the
user hits the [RETURN] key. If DEFAULT 1 is included, or if no DEFAULT clause is included, the ‘No’
button will be the default. If DEFAULT 2 is included, the “Yes’ button will be the default.

Example
dialog message “Do you want to continue?” default 2
if lastkey() = 89
/l... continue
else
return
endif

Products
Recital Mirage Server, Recital Terminal Developer

200

DIALOG QUERY

Class
Screen Dialogs

Purpose
Display a query dialog for interactive query creation

Syntax
DIALOG QUERY [LOCK]

See Also

MENU QUERY, DIALOG FIELDS, DIALOG SCOPE, DIALOG GET, SET COLOR, SET COLOR OF
DIALOGFRAME, MENU FIELDS, MENU SCOPE, MENUITEM(), SEEK, FIND, FOUND(),
LASTKEY()

Description

The DIALOG QUERY command displays a dialog used for performing queries on the active table. If the
active table is indexes, the dialog will contain two prompts, one labeled KEY and the other labeled
WHERE. If the table is not indexed, on the WHERE prompt is displayed. The screen is automatically
saved and restored when DIALOG QUERY is used.

The SET COLOR and SET COLOR OF DIALOGFRAME commands may be used to specify the colors for
the dialog box and frame.

LOCK
If the LOCK clause is present, the located record will be placed into update mode if a lock can be placed.

To specify a search key for the master index, place the cursor on the KEY field and enter in the value
followed by the [RETURN] key.

To specify a WHERE condition, place the cursor on the WHERE field and enter in the boolean condition.
The [HELP] key can be pressed for popup query menus allowing the query to be constructed through menu
selections (see MENU QUERY for more information). The menus contain choice lists of fields, operators
and connectors. If an invalid query condition is entered in the WHERE field, and error message will be
displayed on exit from the DIALOG QUERY.

There are four dialog buttons in the DIALOG QUERY: “OK”, “CANCEL”, “LOAD” and “SAVE”. A
dialog button can be selected by moving the cursor onto the desired button and pressing the [RETURN]
key. The [CURSOR UP] key moves the cursor back into the DIALOG QUERY to change the existing
query. The [ABANDON] and [EXIT/SAVE] keys many also be used to exit from the DIALOG QUERY.

If the “SAVE” button is selected, then the SAVE QUERY dialog is displayed, containing two input fields.
The file name for the query to be saved must be entered into the FILE field. A descriptive name for the file
can be entered into the TITLE field. If the [EXIT/SAVE] key is pressed or the “OK” button is selected,
then the query will be saved with a “.qry’ extension.

If the “LOAD” button is selected, the LOAD QUERY dialog is displayed, containing a list of available
queries. The previously saved query files are displayed along with their titles. The [PAGE UP], [PAGE
DOWN] and cursor keys can be used to navigate the list. The [RETURN] key is used to select the
highlighted query. The “OK” and “CANCEL” buttons are then selectable. If “OK” is selected, the query is
loaded into the main dialog for selection or modification.

201

On exit from the DIALOG QUERY, the query will be performed and the record pointer moved to the
located record if the query is successful. If the query fails, the record pointer remains at its original
position. If the query is successful, the LASTKEY/() function will return 89 (ASCII “Y”).

Example
use patrons index names, events
dialog query
if lastkey() = 89
edit
endif

Products
Recital Terminal Developer

202

DIALOG SCOPE

Class
Screen Dialogs

Purpose
Display a dialog for selecting a transaction scope

Syntax
DIALOG SCOPE

See Also
MENU SCOPE, MENU QUERY, DIALOG FIELDS, DIALOG GET, SET COLOR, SET COLOR OF
DIALOGFRAME, MENU FIELDS, MENUITEM()

Description
The DIALOG SCOPE command displays a menu containing possible record selection scopes. The menu is
framed and labeled “Scope” and has “OK” and “CANCEL” confirmation buttons.

The SET COLOR and SET COLOR OF DIALOGFRAME commands may be used to specify the colors for
the dialog box and frame.

The user selects the scope by moving the highlight bar with the [PAGE UP], [PAGE DOWN] and cursor
keys to the desired record scope, then pressing the [RETURN] key.. Confirmation buttons, “OK” and
“Cancel” are then highlighted. The [EXIT/SAVE] and [ABANDON] keys can also be used to save and
exit or cancel and exit. The [CURSOR UP] key can be used to return to the scope menu.

On exit from DIALOG SCOPE, the MENUITEM() function will return the selected record scope as a
character string. If the [ABANDON] key was pressed or the “CANCEL” button selected, MENUITEM()
will return a null string.

Example

dialog scope

store menuitem() to m_scope

report form patrons &m_scope to print

Products
Recital Terminal Developer

203

DIMENSION

Class
Array Processing

Purpose
Declare an array

Syntax

DIMENSION <memvar>

DIMENSION <array>[<expN>] | (<expN>)

DIMENSION <array>[<expN1>,<expN2>] | (<expN1>,<expN2>)

See Also

APPEND FROM ARRAY, COPY TO ARRAY, DECLARE, GATHER, PRIVATE, PUBLIC, RELEASE,
RESTORE FROM, SAVE TO, SCATTER, AAVERAGE(), ACHOICE(), ACOPY(), ADEL(), ADIR(),
AFIELDS(), AFILL(), AINS(), ALEN(), AMAX(), AMIN(), ASORT(), ASUM()

Description

The DIMENSION command is synonymous with the DECLARE command and is used to declare memory
variables and fixed one or two-dimensional arrays. Memory variables declared using the DIMENSION
command are initialized to .F. and are private to the declaring procedure.

The size of an array is fixed at its declaration. Both one and two dimensional arrays subscripts can be
referenced using square brackets or round brackets.

[<expN>] | (<expN>)
For one-dimensional arrays, [<expN>] specifies the total number of elements in the array. Elements are
subsequently referenced using the notation <array>[<expN>] or <array>(<expN>).

[<expN1>,<expN2>] | (<expN1>,<expN2>)

For two-dimensional arrays, <expN1> represents the number of rows and <expN2> represents the number
of columns in the array. Elements are subsequently referenced by <array>[<expN1>,<expN2>] or
<array>(<expN1>,<expN2>). The elements of a two dimensional array can also be referenced, as if the
array were one dimensional, using <array>[<expN1>] or <array>(<expN>).

Arrays can be declared as any size. Values are assigned into arrays using the '=' operator. Arrays can then
be used in a similar way to memory variables. Complete arrays can be initialized with one assignment.
Array references start at 1,1 for two-dimensional arrays, and 1 for one-dimensional arrays. They can also
be declared as private or public by using the PRIVATE and PUBLIC commands. Arrays can be saved to
memory files with the SAVE TO command and then later restored with the RESTORE FROM command.

Notes: The brackets shown for this command do not indicate optional expressions but are a necessary part
of the syntax.

Example

I/ Declare one-dimensional array of 4000 elements
dimension aTable[4000]

I/ Assign 0 to all elements

aTable=0

/I Insert individual element values into array
aTable[1] =10

aTable[2] = “Hello”

aTable[3] = “World”

204

aTable[4] = date()

[Print value of element 2
? aTable[2]

Hello

I/l Another example
dimension twodim[3,3]
twodim[2,3] = “hello world”
? twodim[6]

hello world

/I Another example

use payroll

dimension aPayroll[reccount(), fcount()]
copy to array aPayroll for city = “LONDON”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

205

DIR

Class
Disk and File Utilities

Purpose
Display a directory of files

Syntax
DIR [<skeleton>]

See Also
I, DECRYPT, DISPLAY FILES, ENCRYPT, LIST FILES, RUN, ADIR(), DIR(), SET FILETYPE

Description

The DIR command displays filenames in the current directory and path (see SET PATH) matching the
specified <skeleton>. The total number of files matching the <skeleton>, their total size and the remaining
drive space in Megabytes are also displayed.

If DIR is issued with no <skeleton> specified, then it will list details of the table files only. The table file
listing includes the following information:

File type if not Recital, e.g. (FP2) for FoxPro table
DES3 Encryption status, i.e. (DES3) if table is encrypted
Number of Records

Last Update date

Size in bytes

Dictionary status, i.e. Yes or None
Triggers status, i.e. Yes or None
Security status, i.e. Yes or None
Total size of tables in Megabytes
Number of tables

Drive space remaining in Megabytes

Please see the CREATE command for information on the Dictionary, Triggers and Security.

The DIR command is a synonym of the DISPLAY FILES command. The DIR | DISPLAY FILES
commands will pause at each page display, waiting for a key press. For listings without user intervention,
please use the LIST FILES command.

Example
dir
dir *.prg

Products
Recital Terminal Developer

206

DISPLAY

Class
Input/Output

Purpose
Display the contents of the active table and any related tables

Syntax

DISPLAY [<scope>]

[FIELDS <field list>|<exp list>]
[FOR <condition>]

[HEADING]

[OFF]

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

[WHILE <condition>]

See Also
DISPLAY STATUS, DISPLAY MEMORY, DISPLAY STRUCTURE, LIST, DIR

Description

The DISPLAY command is a general purpose Recital/4GL query command that retrieves and displays the
contents of table files on the screen. The DISPLAY command pauses every 17 lines until a key is pressed
to continue displaying, or the [ABANDON] key to cancel. When displaying a record that is longer than the
screen width, the contents to the right of the display normally will not be displayed unless you have set
your terminal to wrap. Consult the relevant manual for your terminal regarding this feature. Where the
output is sent to a file or printer, the pause is disabled.

DISPLAY is more powerful than it looks initially. The expressions that you specify can be any valid
Recital/4GL expression, including the use of alias pointers into other workareas. If you have SET
RELATION TO another table, for each record that is read from the active table, the related table will have
its record pointer positioned, and the appropriate record read into its workarea.

If SET FILTER TO <condition> is in effect, only those records that satisfy the filter <condition> will be
displayed. If SET DESCRIPTIONS and SET HEADING are ON and the FIELDS clause is specified, the
table field descriptions will be used as the headings to each of the display columns, rather than the field
names. The command SET HEADING TO SINGLE | DOUBLE | NONE controls the underlining of the
column headings.

Keyword Description

<scope> If the <scope> is not specified, only the current record will be displayed, unless
the WHILE clause is used, in which case the <scope> will default to REST..

FOR <condition> Only those records that satisfy the <condition> are displayed.

OFF Disables the display of the record number in the first column of the results.

FIELDS <exp list> Restricts the fields displayed to those specified.

HEADING A heading corresponding to either the field names or the expression will be
displayed above each column even if SET HEADING is OFF.

TO <file> The display output will be sent to the specified file. The filename can be
substituted with a <expC>, enclosed in round brackets, which returns a valid
filename. If no file extension is specified, then “.txt” will be used. The
command SET PAGELENGTH governs the output file pagination and SET
PAGEWIDTH defines the width of each page. Page numbers are centered on
the bottom of the page according to width.

207

TO PRINT The display output will be sent to a printer. The TO PRINT option will default
to a local printer unless the command SET PRINTER TO WSPOOLER is issued.
The print request will then be spooled to the system printer, which is defined by
the environment variable DB_PRINT.

WHILE <condition> | The <scope> defaults to REST and records are displayed until the <condition>
becomes false.

Example

use patrons index events, names

display all fields name, event for event = “BALLET”

seek “OPERA”

display rest name, event, seats, price, seats * price while event = “OPERA”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

208

DISPLAY DATABASE

Class
Databases

Purpose
Display information about the active database

Syntax

DISPLAY DATABASE

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT[ER]]

See Also

ALTER TABLE, ALTER INDEX, CLOSE DATABASES, CLOSE TABLES, COMPILE DATABASE,
CREATE DATABASE, CREATE INDEX, CREATE TABLE, CREATE VIEW, DISPLAY INDEXES,
DISPLAY TABLES, DROP DATABASE, DROP INDEX, DROP TABLE, LIST DATABASE, LIST
INDEXES, LIST TABLES, OPEN DATABASE, USE, SET EXCLUSIVE, SET SQL, ADATABASES(),
DBUSED(), GETENV()

Description

The DISPLAY DATABASE command is used to display information about the currently active database.
Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the OPEN DATABASE command.

The DISPLAY DATABASE command displays the following information:

e Database Name, e.g. southwind
e Database Path, e.g. /usr/recital/data/southwind

and for each table in the database the equivalent of DISPLAY STRUCTURE INDEX followed by
DISPLAY DICTIONARY:

Table file name

Number of records

Date of creation

Date of last update

Encryption status

Field names, types, sizes and description
Total record length

Production DBX file name

Index tag names, keys, types and lengths
Dictionary information

DISPLAY commands differ from LIST commands in that they pause every 17 lines until a key is pressed.
You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent
to a file or printer, the pause is disabled.

209

Keyword

Description

TO <file>

The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT

The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example

set sql to vfp

open database southwind
display database to file sw_info

Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

210

DISPLAY DICTIONARY

Class

Environment

Purpose

Display the currently active dictionary

Syntax

DISPLAY DICTIONARY
[TO FILE <.txt filename> | (<expC>)]

[TO PRINT]

See Also

CREATE, LIST DICTIONARY, SET PRINTER

Description

The DISPLAY DICTIONARY command displays the currently active dictionary. DISPLAY commands
differ from LIST commands in that they pause every 17 lines until a key is pressed. You can cancel any
further output at this point by pressing the [ABANDON] key. Where the output is sent to a file or printer,
the pause is disabled.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example

use demo

display dictionary

Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

211

DISPLAY FILES

Class
Disk and File Utilities

Purpose
Display a directory of files

Syntax

DISPLAY FILES [<skeleton>]

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also
DIR

Description
The DISPLAY FILES command displays filenames in the current directory and path (see SET PATH)
matching the specified <skeleton>. The following ‘wild card’ characters may be used

Character | Description

? Matches any one character.

% Matches any one character.

* Matches zero or more characters.

If DISPLAY FILES is issued with no <skeleton> specified, then it will list details of table files only.

DISPLAY commands differ from LIST commands in that they pause every 17 lines until a key is pressed.
You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent
to a file or printer, the pause is disabled.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example

set printer to \\spooler
display files *.prg to print
set printer to

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

212

DISPLAY HISTORY

Class
Error Handling and Debugging

Purpose
Display a list of previously entered commands

Syntax

DISPLAY HISTORY

[LAST <expN>]

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also
I, ALIAS, LIST HISTORY, SET HISTORY

Description

The DISPLAY HISTORY command displays a list of commands currently held in the command history.
When SET HISTORY is ON, all commands entered in interactive command mode are stored in a command
history list. The SET HISTORY TO <expN> command can be used to specify the size of the history list.

If SET DOHISTORY is also ON, then commands executed in program files are also stored in the command
history. DISPLAY differs from the LIST command in that it pauses every 17 lines until a key is pressed.
You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent
to a file or printer, the pause is disabled.

Keyword Description
LAST <expN> | Displays the last <expN> of previously entered commands
TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT The display output will be sent to a printer. The TO PRINT option will default to a
local printer unless the command SET PRINTER TO WSPOOLER is issued. The
print request will then be spooled to the system printer, which is defined by the
environment variable DB_PRINT.

Example

set history on

dir

use payroll index events, names
display history

1 dir

2 use payroll index events, names

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

213

DISPLAY INDEXES

Class
Indexing

Purpose
Display index information about the current table

Syntax

DISPLAY INDEXES

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also

FIND, CLOSE INDEX, COPY INDEXES, COPY TAG, CREATE VIEW, DELETE TAG,
DBXDESCEND(), DESCEND(), DTOS(), LOOKUP(), MDX(), LTOS(), REINDEX, RLOOKUP(),
SEEK(), SEEK, SET INDEX, SET ORDER TO, STR(), STRZERO(), SYS(), TAG(), TAGCOUNT(),
TAGNO(), USE

Description
The DISPLAY INDEXES command is used to display index information about the currently active table.
Information is displayed for both production and single index files.
The DISPLAY INDEXES command displays the following information:
e Production DBX file name

and for each tag:

Tag name
Key
Type
Length

and for each open single index:
e Index file name
o Key
e Index cache size
The master index tag is flagged as such.
DISPLAY commands differ from LIST commands in that they pause every 17 lines until a key is pressed.

You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent
to a file or printer, the pause is disabled.

214

Keyword

Description

TO <file>

The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT

The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example

/I Recital/4GL
use example

display indexes to file ind_info

Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

215

DISPLAY MEMORY

Class
Environment

Purpose

Display the contents of the current memory variables

Syntax

DISPLAY MEMORY

[LIKE <skeleton>]

[TO FILE <.txt filename> | (<expC>)]

[TO PRINT]

See Also

ALIAS, DISPLAY STATUS, RELEASE, SAVE, RESTORE, PUBLIC, PRIVATE, DECLARE

Description

The DISPLAY MEMORY command displays the contents of the memory variables and array elements
currently defined. Subject to the available system memory, there is no limit to the number of memory
variables that can be declared in the Recital/4GL or to the amount of memory that can be used for memory

variables. DISPLAY differs from the LIST command in that it pauses every 17 lines until a key is pressed.
You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent

to a file or printer, the pause is disabled.

Keyword

Description

LIKE <skeleton>

Displays all the current memory variables that match the wildcard <skeleton>
specification.

TO <file>

The display output will be sent to the specified file. The filename can be
substituted with a <expC>, enclosed in round brackets, which returns a valid
filename. If no file extension is specified, then “.txt” will be used. The command
SET PAGELENGTH governs the output file pagination and SET PAGEWIDTH
defines the width of each page. Page numbers are centered on the bottom of the
page according to width.

TO PRINT

The display output will be sent to a printer. The TO PRINT option will default to a
local printer unless the command SET PRINTER TO WSPOOLER is issued. The
print request will then be spooled to the system printer, which is defined by the
environment variable DB_PRINT.

Example
display memory

Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

216

DISPLAY PROCEDURE

Class
Applications

Purpose
Display the currently active procedures and functions

Syntax

DISPLAY PROCEDURE

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also
SET PROCEDURE TO, DISPLAY STATUS

Description

The DISPLAY PROCEDURE command displays on screen the currently active procedures and functions.
DISPLAY commands differ from LIST commands in that they pause every 17 lines until a key is pressed.
You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent
to a file or printer, the pause is disabled.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example

set procedure to yourlib
display procedure
display procedure to print

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

217

DISPLAY PROTECTION

Class
Table Basics

Purpose
Display current protection and security settings

Syntax

DISPLAY PROTECTION

[TO FILE <.txt filename> | <expC>]
[TO PRINT]

See Also
CREATE, LIST PROTECTION, STR(), GETGID(), GETPID(), GETUID()

Description

The DISPLAY PROTECTION command is used to display to the screen protection and security access
control strings (ACS) for the currently active table. An access control string is a range of user identification
codes used to allow groups or individuals to perform certain table operations. Access control strings are
specified in the CREATE or MODIFY STRUCTURE work surface under the <SECURITY> and
<PROTECTION> menu options.

DISPLAY commands differ from LIST commands in that they pause every 17 lines until a key is pressed.
You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent
to a file or printer, the pause is disabled.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example
display protection

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

218

DISPLAY REPORT

Class
Reports

Purpose
Display the contents of a report format file

Syntax

DISPLAY REPORT <.frm filename> | (<expC>)
[TO FILE <.txt filename> | (<expC>)]

[TO PRINT]

See Also
SET PRINTER, CREATE REPORT, REPORT

Description

The DISPLAY REPORT command provides a listing of the contents of the specified report <.frm
filename>. The filename can be substituted with a <expC>, enclosed in round brackets, which returns a
valid filename. If no file extension is specified, then “.frm” is assumed. This command is primarily used in
preparing system documentation.

DISPLAY commands differ from LIST commands in that they pause every 17 lines until a key is pressed.
You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent
to a file or printer, the pause is disabled.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example

create report creditlist

set printer to \\spooler

display report creditlist to print
set printer to

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

219

DISPLAY STATUS

Class
Environment

Purpose
Display the complete status of the session

Syntax

DISPLAY STATUS

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also
DISPLAY DICTIONARY, DISPLAY MEMORY, DISPLAY STRUCTURE, DISPLAY USERS, LIST
STATUS

Description
The DISPLAY STATUS command displays detailed information about the status of the session, including
the following:

e Active status of workareas, including indexes, locks, journals, relations, current record, number of
records

Language setting

Printer setting

Path setting

Programmable function keys

DISPLAY commands differ from LIST commands in that they pause every 17 lines until a key is pressed.
You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent
to a file or printer, the pause is disabled.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example

set view to patrons
set printer to \\spooler
display status to print
set printer to

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

220

DISPLAY STRUCTURE

Class
Table Basics

Purpose
Display the structure of the active table

Syntax

DISPLAY STRUCTURE

[IN <alias>]

[INDEX]

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also
DISPLAY STATUS, DISPLAY MEMORY, CREATE, MODIFY STRUCTURE, DISPLAY
DICTIONARY, DISPLAY USERS

Description

The DISPLAY STRUCTURE command displays the structure of the active table. DISPLAY commands
differ from LIST commands in that they pause every 17 lines until a key is pressed. You can cancel any
further output at this point by pressing the [ABANDON] key. Where the output is sent to a file or printer,
the pause is disabled.

Keyword Description

IN <alias> The IN <alias> clause is used to display the structure of an open table in a workarea that
is not currently selected. Alias names may be assigned to tables with the USE command,
or default to the table basename.

INDEX The INDEX keyword is used to display index tag information along with the structure
details.

TO <file> The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example
use patrons
display structure

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

221

DISPLAY TABLES

Class
Databases

Purpose
Display table information about the active database

Syntax

DISPLAY TABLES

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT[ER]]

See Also

ALTER TABLE, ALTER INDEX, CLOSE DATABASES, CLOSE TABLES, COMPILE DATABASE,
CREATE DATABASE, CREATE INDEX, CREATE TABLE, CREATE VIEW, DISPLAY DATABASE,
DISPLAY INDEXES, DROP DATABASE, DROP INDEX, DROP TABLE, LIST DATABASE, LIST
INDEXES, LIST TABLES, OPEN DATABASE, USE, SET EXCLUSIVE, SET SQL, ADATABASES(),
DBUSED(), GETENV()

Description
The DISPLAY TABLES command displays the base name and file name including the full path for each
table in the currently active database.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the OPEN DATABASE command.

DISPLAY commands differ from LIST commands in that they pause every 17 lines until a key is pressed.
You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent
to a file or printer, the pause is disabled.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example
VFP/SQL > OPEN DATABASE southwind
VFP/SQL > DISPLAY TABLES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

222

DISPLAY TRIGGERS

Class
Table Basics

Purpose
Display triggers associated with current table

Syntax

DISPLAY TRIGGERS
[TO FILE <filename>]
[TO FILE <expC>]
[TO PRINT]

See Also

CREATE, MODIFY STRUCTURE, CREATE SCREEN, MODIFY SCREEN, CREATE REPORT,
MODIFY REPORT SET PREFORM TO, SET PRERECORD TO, SET POSTFORM TO, SET
POSTRECORD TO, @...GET PREFIELD, @...GET POSTFIELD, LIST TRIGGERS

Description

The DISPLAY TRIGGERS command is used to display to the screen all triggers that are associated with
the currently active table. A trigger is used to call a procedure written in the Recital/4GL. Accessible
through the CREATE | MODIFY work surfaces, and through SET commands, triggers may be inserted at
table, field, record, form, and report levels.

DISPLAY commands differ from LIST commands in that they pause every 17 lines until a key is pressed.
You can cancel any further output at this point by pressing the [ABANDON] key. Where the output is sent
to a file or printer, the pause is disabled.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example
display triggers

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

223

DISPLAY USERS

Class
Environment

Purpose
Display all the active users

Syntax

DISPLAY USERS

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also
DISPLAY STATUS, DISPLAY MEMORY, DISPLAY DICTIONARY, DISPLAY STRUCTURE, LIST
USERS

Description

The DISPLAY USERS command displays all the active systems users. DISPLAY commands differ from
LIST commands in that they pause every 17 lines until a key is pressed. You can cancel any further output
at this point by pressing the [ABANDON] key. Where the output is sent to a file or printer, the pause is
disabled.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example
display users

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

224

DO

Class
Applications

Purpose
Execute a Recital procedure, program or stored procedure

Syntax

DO <.prg filename> | <procedure-name> | (<expC>)
[WITH <parameter> [,<parameter>]...]

[WITH <array> [,<array>]...]

See Also
ALIAS, COMPILE, DEBUG, DO CASE, DO WHILE, LINK, MODIFY COMMAND, PARAMETERS,
PROCEDURE, SET COMPATIBLE, SET MAXDBO, SET PSHARE

Description

The DO command is used to execute the Recital/4GL program <.prg filename> or procedure <procedure-
name>. The filename or procedure name can be substituted with a <expC>, enclosed in round brackets,
which returns a valid filename. If no file extension is specified then ".prg' is used. If the full path is not
given, the file is assumed to be in the current directory. The path (SET PATH) will also be searched it the
file is not found in the current directory. When a program encounters an end of file or a RETURN
statement, control returns back to the calling program. Control returns back to the keyboard if the <.prg
filename> was called from interactive command mode.

The Recital/4GL supports 20 DO levels unless the environment symbol DB_MAXLEV (maximum 40) is
set higher. This is also dependent on Operating System limits controlling the number of open files.
Program files can be linked together if required, using the LINK command or the ‘dbl’ Recital linker utility
(Recital Terminal Developer).

WITH <parameter> | <array>

You may optionally pass parameters including arrays to the called program. Parameters passed using the
DO WITH <parameters> syntax are passed by reference and can be changed by the called procedure.
Procedures can also be called using function syntax procedure(parameterl,parameter2...), in which case the
parameters are passed by value and cannot be changed by the called procedure. Procedures expecting
parameters should have a PARAMETERS statement as the first executable statement after the procedure
declaration. The number of parameters passed to a procedure can be checked using the PCOUNT)()
function. If CLIPPER is set ON and not all parameters are passed, the variables in the PARAMETER
command not passed will be defined as undefined, type “U” instead of logical .F..

Example

procedure name
parameter a,b,c
a=Db*c

return

*

name(a,10,20)

* is equivalent to

do name with a,10,20

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

225

DO CASE

Class
Applications

Purpose
Multiple choice selection command

Syntax

DO CASE

CASE <condition>
[<commands>]

[CASE <condition>
[<commands>]]...

[OTHERWISE

[<commands>]]
ENDCASE

See Also
@...MENU COMMAND, DO WHILE, IF, ICASE(), IF(), I1F()

Description

The DO CASE command selects one course of action out of many alternatives. The Recital/4GL evaluates
each CASE <condition> in turn. As soon as one of the conditions evaluates to true (.T.) the <commands>
for that CASE are executed and any further case statements are ignored. Following execution of the
<commands>, the program continues after the ENDCASE statement.

OTHERWISE
If an OTHERWISE statement is present and no CASE <condition> evaluates to .T., the OTHERWISE
<commands> are executed.

ENDCASE
If no CASE <condition> is .T., and there is no OTHERWISE statement specified, then control skips to the
next command following the ENDCASE.

CASE statements, as with all of the other Recital/4GL statements can be nested. In other words, a CASE
statement can contain further DO CASE commands.

Example
accept “Enter a command: “ to command
do case
case command = “BROWSE”
browse
case command = “DIR”
dir
otherwise
set message to “Unknown command.”
endcase
Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

226

DO WHILE

Class
Applications

Purpose
Repeat a block of commands while a specified condition is true

Syntax

DO WHILE <condition>
[EXIT]

[LOOP]

ENDDO

See Also
DO CASE, IF, DO, LOOP, EXIT, FOR...NEXT

Description

The DO WHILE command repeats the commands between the DO WHILE and the ENDDO statement,
until the specified <condition> becomes .F. The maximum number of nested DO WHILE loops allowed is
16.

If the specified <condition> result is .T., then all commands within the DO WHILE loop will be executed.
If the specified condition returns an .F., the Recital/4GL will skip down to the first statement following the
ENDDO to continue execution.

Note: Use of redefined macros in the body of the loop is not supported.

EXIT
If an EXIT statement is encountered then the DO WHILE loop is exited.

LOOP
If a LOOP statement is encountered, then control returns to the head of the DO WHILE loop.

ENDDO
The ENDDO statement terminates the DO WHILE loop. Commands within the DO WHILE must be
properly nested.

Example

use patrons index events, names

seek “OPERA”

do while event = “OPERA”
display name, event, seats*price off
skip

enddo

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

227

ED

Class
Terminal Developer Development Tools

Purpose
Execute a text editor to edit program files

Syntax
ED <prg filename> | (<expC>)

See Also
MODIFY COMMAND, TEXTEDIT(), VI

Description

ED provides the facility to create or modify program files and other text files. The filename can be
substituted with a <expC>, enclosed in round brackets, which returns a valid filename. If no file extension
is present in the file name, then *.prg’ is used.

The default editors are: the “vi’ editor under UNIX and Linux; the “‘edt’ editor under VAX/VMS. You may
override these defaults using the SET TEDIT TO command.

ED is a synonym of the MODIFY COMMAND and VI commands.
Example

modify command myprogram

ed myprogram

vi myprogram

Products
Recital Terminal Developer

228

EDIT

Class
Screen Forms

Purpose
Full screen editing of records through a form

Syntax

EDIT

[<scope>]

[FIELDS <field list>
[FOR <condition>]
[KEY <exp>]
[NOAPPEND]
[NOCLEAR]
[NODELETE]
[NOEDIT]
[NOFOLLOW]
[NOINIT]
[NOMENU]
[NOORGANIZE]
[NOWAIT]
[WHILE <condition>]

See Also
APPEND, BROWSE, CHANGE, READ, SET FORMAT, SET UPDATE

Description

The EDIT command provides the facility to edit records in the active table that match specified record
selection criteria. The EDIT command uses a default form to display and allow updating of the specified
records.

When memo fields are displayed, the memo field label is in lower case if the field is empty, and upper case
if the field contains text. If a memo window (SET WINDOW OF MEMO) is active, the memo can be
displayed and edited in the specified window. Otherwise, pressing the [INSERT] key or the [HELP] key on
the memo field will popup a notepad editor. Pressing the [HELP] key within the notepad editor displays
the memo editing keys available. These keys include facilities for reading from and writing to external files
and printing on the system printer.

You can design your own forms using the Forms Designer (CREATE SCREEN). The Form Designer will
automatically generate a format file that can contain @...GET, @...SAY, @...MENU and other display
objects. This form will be used by the EDIT command if it has been activated using the SET FORMAT
command.

If the active table is shared, then automatic record locking will take place for each of the tables referenced
on the form. The records are automatically unlocked when you skip to another record, or exit from the
EDIT command. If UPDATE is ON then ‘Upd’ appears in the 3rd box of the status bar at the bottom of the
screen. When UPDATE is ON records are automatically locked before they are read from the database.
When UPDATE is OFF, no record locking is performed. It is recommended that you toggle UPDATE
mode ON when you have a record displayed on the form which you want to update, and leave UPDATE
OFF while you are browsing through your records. If SET LOCKWAIT is OFF, then whenever an attempt
is made to lock a record that is already locked by another user, you are given the choice of waiting for the
lock or continuing in query mode.

229

When UPDATE is toggled ON, the form is refreshed with the most current information from the table. As
only one user at a time can be in UPDATE mode on a particular record, the information displayed on the
form is always current at the time of editing. The changed data on the form is written to the table and the
lock released when the [EXIT/SAVE], [NEXT SCREEN], [PREVIOUS SCREEN] or [MENUBAR] keys
are pressed. If the [ABANDON] key is pressed and changes have been made to the data, SET VERIFY ON
causes a dialog box to be displayed asking for confirmation.

Keyword

Description

<scope>

If no <scope> is specified, EDIT is activated on the current record and all
records are accessible using the [NEXT RECORD] and [PREVIOUS
RECORD] keys.

FIELDS <field list>

The active fields can be restricted to those specified in the comma separated
<field list>.

FOR <condition>

Record navigation is restricted to those records that match the <condition>.

KEY <exp> The active records can be restricted to those that match the specified <exp>.
The <exp> must be based on the index key of the current master index.

NOAPPEND The ability to append records is disabled.

NOCLEAR Erasing of the screen on entry and exit from EDIT is disabled.

NODELETE The ability to delete records is disabled.

NOEDIT The ability to edit the record is disabled. Access is read only.

NOFOLLOW The NOFOLLOW key word determines whether the record pointer follows a
record whose position has changed. A record's position may change when
fields that are part of the master index expression are modified. Normally, upon
update, the record pointer will be moved to the new position, NOFOLLOW
disables this.

NOINIT The work surface retains the keywords and specifications from the last EDIT
session.

NOMENU The menu bar is disabled in the default EDIT form.

NOORGANIZE Language compatibility only

NOWAIT Control is returned to the executing program without waiting for the user to exit

the EDIT worksurface.

WHILE <condition>

Record navigation is restricted to those records that match the specified
<condition>. Navigation cannot continue beyond a record that does not match
the <condition>.

The following keys are active in EDIT:

Key

Action

ABANDON

Discard current changes then exit from the form

CURSOR DOWN

Skip to next field

CURSOR LEFT

Skip to previous field

CURSOR RIGHT

Skip to next field

CURSOR UP

Skip to previous field

DELETE FIELD

Initialize field

DELETE RECORD

Delete / Recall the record

EDIT FIELD Enter field edit mode

EXIT/SAVE Write current changes then exit from the form

FIND Find record by key or condition

FIND NEXT Find next record matching specified key or condition
HELP Activate pop-up help

MENUBAR Activate the EDIT menu bar

NEXT RECORD Write current changes then skip to next record

PREVIOUS RECORD

Write current changes then skip to next record

230

REFRESH Redraw the form

TAB Toggle function key menu on and off

UPDATE MODE Toggle update mode on and off

If SET MOUSE is ON, cursor keys will move the cursor anywhere on the screen rather than just from field
to field. If SET NAVIGATE is ON, the cursor moves to fields following the direction specified by the key
being pressed, rather than following the order of the GETS on the form. When the RETURN key is
pressed, the cursor moves to the nearest field when SET NAVIGATE is ON.

The following keys are active in field edit mode:

Key

Action

BACKSPACE

Delete character before cursor

CURSOR LEFT

Skip to previous character

CURSOR RIGHT

Skip to next character

DELETE CHAR

Delete character under cursor

DELETE FIELD

Delete from cursor to end of field

DELETE WORD Delete current word

INSERT MODE Toggle insert / overwrite mode
WORD LEFT Skip left a word

WORD RIGHT Skip right a word

The following menu options are available from the EDIT menu bar in the default form:

Menu Item Action

Descriptions Toggle the field descriptions on and off

Top Position to the top of the table or selected records
Bottom Position to the bottom of the table or selected records
Order Select index order

Query Query the table for selected records

Help Activate on-line help system

Example

use demo

edit

Products

Recital Mirage Server, Recital Terminal Developer

231

EJECT

Class
Printing

Purpose
Advance to the top of the next page on the printer

Syntax
EJECT

See Also
SET PRINT, SET PRINTER, SETPRC()

Description

The EJECT command causes the printer to advance a page. You must have initially set the print head
correctly at the head of the paper. The EJECT command works by sending a form feed character to the
printer. If SET PRINT is OFF, the EJECT command causes SET PRINT to be temporarily set ON in order
to output the form feed.

Example

eject

list status to print
eject

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

232

ENCRYPT

Class
DES3 Encryption

Purpose
Encrypt the specified table or tables

Syntax
ENCRYPT <.dbf> | <skeleton> KEY <expC1>

See Also
APPEND FROM, COPY FILE, COPY STRUCTURE, COPY TO, DECRYPT, DIR, USE, SET
ENCRYPTION

Description

The ENCRYPT command is used to encrypt the data in the specified table, <.dbf> or tables matching the
<skeleton>. If the <skeleton> syntax is used, then all matching tables will be given the same encryption
key. The <expC1> must contain a three part comma-separated key. The key may optionally be enclosed in
angled brackets. Each part of the key can be a maximum of 8 characters. The key is DES3 encrypted and
stored in a .dkf file with the same basename as the table. After encryption, the three parts of the key must
be specified correctly before the table can be accessed.

Example
encrypt accounts key “keyl,key?2, key3”
encrypt salaries key “<key 1,key 2,key 3>”

I encrypt all .dbf files in the directory
encrypt *.dbf key “key1,key2,key3”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

233

END TRANSACTION

Class
Transaction Processing

Purpose
End transaction Before Image Journaling

Syntax

BEGIN TRANSACTION [<path name>]
<commands>

END TRANSACTION

See Also
SET ROLLBACK, ISMARKED(), RESET IN, ROLLBACK, ROLLBACK(), COMPLETED()

Description

The END TRANSACTION command is used to flag the end of a transaction for Before Image Journaling
(B1J). A “transaction’ consists of all file modifications that occur within the commands BEGIN
TRANSACTION and END TRANSACTION.

When BEGIN TRANSACTION is issued all currently open files and all files opened between BEGIN and
END TRANSACTION will have BIJ invoked automatically. If BIJ is not required on a particular table
then the RESET IN command should be issued for the relevant workarea so that journaling will no longer
occur in that workarea. The journals are stored in a log file (with a file extension of “.log") which the
Recital/AGL generates automatically. You can optionally specify the disk and directory <path name>
where the log file will be stored when the BEGIN TRANSACTION command is issued.

A “rollback” causes record contents to be restored to their value before modification (i.e. at the time
BEGIN TRANSACTION was issued). This is particularly useful if an error occurs during a program that
modifies files.

If SET ROLLBACK is ON, the Recital/4GL will automatically execute the ROLLBACK command if an
error occurs during the transaction process. Otherwise, error trapping should be handled manually using
the ON ERROR command.

The COMPLETED() function can be used after the END TRANSACTION command to determine if any
errors occurred during processing of the commands between BEGIN and END TRANSACTION.

Please note that the following commands are not allowed during a transaction:
CLEAR ALL

CLOSE ALL

CLOSE DATABASE

CLOSE INDEX

MODIFY STRUCTURE

PACK

ZAP

Example
procedure recovery
rollback
if rollback()
dialog box “Rollback was ok.”
else

234

dialog box “Rollback not completed.”
endif
return

use accounts
on error do recovery
begin transaction
delete first 15
insert
replace all t1 with (t2*t3)/100
list
end transaction
if completed()
dialog box “Transaction completed”
else
dialog box “Errors occurred during transaction”
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

235

ENDFUNC

Class
Applications

Purpose
Return from a function

Syntax
ENDFUNC

See Also
FUNCTION, RETURN, SET COMPATIBLE

Description

The ENDFUNC statement closes the active function, releases memory variables and arrays defined as
private, and passes control back to the calling program assuming no RETURN statement has already been
called.

If the function is exited using the ENDFUNC command or other implicit RETURN, the function will return
.T. (true). The command SET COMPATIBLE TO VFP must be in effect to ensure Visual FoxPro
compatibility.

Example

function example_1

dialog box [has return statement]
return .t.

/lalready exited function
endfunc

function example_2
dialog box [has no return statement]
endfunc

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

236

ENDPROC

Class
Applications

Purpose
Return from a procedure or program

Syntax
ENDPROC

See Also
LINK, PROCEDURE, RETURN

Description

The ENDPROC statement closes the active program file, releases memory variables and arrays defined as
private, and passes control back to the calling program assuming no RETURN statement has already been
called.

If the procedure is exited using the ENDPROC command or other implicit RETURN, the procedure will
have a return value of .T. (true). The command SET COMPATIBLE TO VFP must be in effect to ensure
Visual FoxPro compatibility.

Example

procedure example 1

dialog box [has return statement]
return

/lalready exited function
endproc

procedure example_2
dialog box [has no return statement]
endproc

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

237

ERASE

Class
Disk and File Utilities

Purpose
Delete a file or files

Syntax
ERASE <filename> | (<expC>) | <file list>

See Also
DELETE, RUN, ALIAS, SET SAFETY

Description

The ERASE command deletes the specified file or comma-separated file list. If no directory specification
is present in the filename, then the file is deleted from the current directory. The filename can be
substituted with a <expC>, enclosed in round brackets, which returns a valid filename. When deleting a
file, ERASE does not follow the directory search path specified with the SET PATH command. On
OpenVMS, all versions of the file will be deleted.

Example

if file(“backup.old™)
erase backup.old

endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

238

ERROR

Class
Error Handling and Debugging

Purpose
Create a user defined error message

Syntax
ERROR <expN>, <expC>

See Also
ON ERROR, ERROR(), MESSAGE()

Description

The ERROR command is used to define and signal a user-defined error. When the ERROR command is
executed, a run-time error occurs and if no ON ERROR procedure is present, an error.mem file will be
generated. If an ON ERROR procedure is present the error procedure will be called. The ERROR()
function returns the number of the last error encountered. The MESSAGE () function returns the message
of the last error encountered. The ON ERROR command may be used to execute specified commands
when an error occurs.

<expN>
The numeric expression <expN> is the user defined error number.

<expC>
The character expression <expC> is the error message to be associated with the error number.

Example
mfile = “customer”
/...

if mfile <> “customer”
error 6000, “Wrong file”
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

239

EXIT

Class
Applications

Purpose
Force exit from a DO WHILE loop

Syntax
EXIT

See Also
DO WHILE, LOOP

Description
The EXIT command causes control to drop out of a DO ... WHILE or FOR ... NEXT loop.

Example
use patrons index events
seek “BALLET”
do while .not. eof()
if event<>“BALLET”
exit
endif
display name, event, seats, seats * price off
skip
enddo

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

240

EXTERNAL

Class
Xbase Compatibility

Purpose
External procedure list

Syntax
EXTERNAL <procedure list>

See Also
SET COMPATIBLE

Description
The EXTERNAL command is provided for language compatibility with Xbase product only and is ignored.

Example
external myproc

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

241

FIND

Class
Indexing

Purpose
Search for a key in the master index file

Syntax
FIND <key expression>

See Also
INDEX ON, LOCATE, SEEK, SET EXACT, SET TALK, DBXDESCEND(), DESCEND(),
DESCENDING(), DTOS(), EOF(), FOUND(), LTOS(), STR()

Description

The FIND command searches for the specified <key expression> in the master index file. If the <key
expression> is found, then the FOUND() function will return .T., and the EOF() function will return .F.. If
the <key expression> is not found, then the FOUND() function will return .F., and the EOF() function will
return .T.. Character expressions used as <key expressions> may include blanks.

The & macro function must be used to substitute the required <key expression> into the quoted string when
the <key expression> is contained in a field or variable.

If the DESCEND() function is used to create the index key, it must also be used in the search <key
expression>. Tag indexes built with the DESCENDING keyword require the use of the DBXDESCEND()
function in the <key expression>. The DESCENDING() function can be used to determine whether a
particular tag was built with the DESCENDING keyword.

Example
use patrons index events, name
m_find = “OPERA”
find &m_find
if found()
edit
else
dialog message “Record not found.”
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

242

FLUSH

Class
Screen Forms

Purpose
Flushes the terminal buffer

Syntax
FLUSH

See Also
SET TBUFSIZE

Description

The flush command flushes all the characters in the terminal buffer to the terminal. To optimize terminal
1/0, the Recital/AGL will buffer terminal 1/0 until a command that requires user input is issued, or the
terminal buffer fills up. The terminal buffer size is determined by the SET TBUFSIZE command.

Example

fori=11to 5000
@13,1 say "Loop " + Itrim(str(i))
flush

next

Products
Recital Mirage Server, Recital Terminal Developer

243

FOR ... NEXT

Class
Applications

Purpose
Processes a list of commands in a loop for a specified number of times

Syntax

FOR <memvar> = <expl> TO <exp2>
[STEP <expN1>]

[EXIT]

[LOOP]

NEXT

See Also
DO WHILE

Description

The FOR ... NEXT command repeats the commands between the FOR and the NEXT statement. The
<expl> specifies the loop start point and <exp2> the loop end point. <expl> and <exp2> may be integer or
date values. The FOR...NEXT command is equivalent to a counter based DO WHILE ... ENDDO set of
commands but FOR ... NEXT is faster.

STEP <expN>

If the optional STEP <expN1>, is specified, then the FOR ... NEXT loop will increment by <expN1>. This
value can be a positive or negative number. If <expN1> is not specified then the FOR ... NEXT loop will
increment by 1.

EXIT
The looping will continue until either <expN2> is reached or an EXIT command is encountered.

LOOP
If a LOOP command is encountered, then control returns to the start of the FOR ... NEXT loop.

Example

fori=1to 10 step 2
?i*2

next

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

244

FUNCTION

Class
Applications

Purpose
Declare a User Defined Function (UDF)

Syntax
FUNCTION <expC>[(<parameter-list>)]

See Also
ALIAS, DO, ENDFUNC, KEYWORD, LINK, PARAMETERS, PRIVATE, PROCEDURE, PUBLIC,
RETURN, SET PROCEDURE

Description

A FUNCTION <expC> command is used to declare a User Defined Function (UDF). Recital/4GL UDFs
can be used not only in programs, but also in the Applications Data Dictionary, the Report Writer and
wherever a standard Recital/4GL function can be used.

A UDF can have a variable number of parameters passed to it. These are assigned to private variables in
the optional PARAMETERS statement, which if used, must appear following the FUNCTION statement
and before any other executable statement. 1f a PARAMETERS statement is present, then at least one
parameter must be specified with the UDF call. The PCOUNT() function can be used to determine how
many actual parameters were specified.

The functions in a procedure library file are made known to the Recital/4GL by using the SET
PROCEDURE TO command. Functions can be included in program files, as well as in procedure library
files. If a function is included in a program file, then it must be defined before it is used.

The FUNCTION command is terminated with a RETURN statement. The RETURN statement can
optionally have an expression specified. If none is specified then .F. is returned. Other RETURN
statements may be included in the syntax following a FUNCTION command, provided that they are
properly nested between IF...ENDIF, DO WHILE...ENDDO, or DO CASE...ENDCASE. The Recital/4AGL
function names can be a maximum of 32 characters in length, and must begin with a letter or underscore,
followed by any combination of letters (A-Z), digits (0-9), and underscores ().

To execute a UDF, name it in an expression, followed by parameters in round brackets. It will behave just
like any standard Recital/4GL function.

There is no limit to the number of functions that can be declared in the Recital/4AGL. The commands LIST
PROCEDURE or DISPLAY PROCEDURE will let you see all currently active functions and procedures.

If SET COMPATIBLE is set to VFP or CLIPPERS, the FUNCTION command can also include the
parameter list declaration, instead of requiring a separate PARAMETERS statement. The parameters
should be listed in comma-separated format within parentheses after the function name, e.g.

function myfunc(paral, para2, para3)

If SET COMPATIBLE is set to VFP, the FUNCTION declaration can be terminated with an ENDFUNC

command rather than a RETURN. It will also be terminated when another PROCEDURE or FUNCTION
command is reached.

245

Example
I/ Function to return product of two numbers
function atimesb
parameters a, b
result=a*b
return result
? atimesh(5,10)
50

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

246

GATHER

Class
Array Processing

Purpose
Replace fields with elements from an array or series of memory variables

Syntax

GATHER FROM <array> | MEMVAR
[FIELDS <field list>]

[MEMO]

See Also
SCATTER, COPY TO ARRAY, PRIVATE, PUBLIC, AFILL(), ADIR(), ASORT(), ALEN(), AFIELDS(),
AINS(), ADEL(), ACHOICE(), ASCAN()

Description

The GATHER command replaces fields in the current record with elements from the specified array
<array> or, if the MEMVAR keyword is used, from a series of memory variables with the same names as
the fields. If the current table is shared, then automatic record locking is performed for the update
operation. The data types of the array elements or memory variables and corresponding fields must be
compatible. If the array has fewer elements than the number of fields in the record, then fields are modified
only up to the number of elements specified. If no matching memaory variable is found for a field, the field
is unchanged.

FIELDS <field list>
The optional FIELDS <field list> can be used to restrict the fields updated to those in the comma separated
<field list>.

MEMO
By default, memo fields are ignored by the GATHER command. If the MEMO keyword is specified,
memo fields will be included.

If SET LOCKTYPE TO OPTIMISTIC is active, an attempt to use the GATHER command on a record that
has been modified since it was last read will generate an error.

Example

use demo

goto 45

scatter fields last_name, first_name to table 1
append blank

gather fields last_name, first_name from table_1

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

247

GENERATE

Class
Table basics

Purpose
Add new records and fill them with random information.

Syntax
GENERATE <expN>

See Also
APPEND, APPEND FROM

Description
The GENERATE command will append <expN> number of records into the currently selected table. The
fields in the new records will contain random data.

Example
use newtable
generate 10

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

248

GOTO

Class
Fields and Records

Purpose
Position to a specific record in a table

Syntax
GOTO [RECORD] <expN> | BOTTOM | TOP [IN <alias>]
GO [RECORD] <expN> | BOTTOM | TOP [IN <alias>]

See Also
FIND, SEEK, LOCATE, SET RELATION, SET CLIPPER, SET PCFILTER

Description

The GOTO command is used to position the record pointer to the specified record in a table. The pointer is
moved to the record whose humber matches that specified in <expN>. By default, the GOTO command
operates in the currently selected workarea. If the number specified in <expN> is not a valid record
number, a ‘Record is out of range’ error message will be given.

BOTTOM
If the BOTTOM keyword is specified, then the record pointer is positioned to the last record in the table.

TOP
If the TOP keyword is specified, then the record pointer is positioned to the first record in the table.

IN <alias>
The IN <alias> clause is used to move the record pointer of an open table in another workarea.

If the command SET PCFILTER is ON, then the use of GOTO <expN> bypasses any FILTER <condition>
that may be in effect with the SET FILTER TO command. The record pointer may be positioned to records
that are marked for deletion, even if SET DELETED is ON. If SET CLIPPER is set ON, and GOTO
RECORD <expN> is greater than the number of records in the table, the Recital/4GL does not report an
error. Rather than reporting an error, the Recital/4GL sets EOF() to .T., and FOUND() to .F.. If SET
RELATION TO is in effect for the active table, then defined relationships are maintained after the record
pointer is positioned.

Example
goto top
browse
goto 10

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

249

HELP

Class
Menus

Purpose
On-line help menu

Syntax
HELP

See Also
SET HELP, SET HELPFILE, SET HELPWINDOW

Description

The command SET HELPFILE TO <.hlm filename> can be used to create an application specific help
system. This can then be accessed using the HELP command or from the [HELP] menu bar option in
worksurfaces such as APPEND, CHANGE, CREATE and EDIT.

NOTE: Recital 4GL Help is not longer provided in HELPFILE format. It is available in PDF and CHM
format included in the software distributions or from the Recital web site http://www.recital.com.

Example
help

Products
Recital Terminal Developer

250

HIDE MENU

Class
Menus

Purpose
Remove a menu from the display

Syntax
HIDE MENU <expC1>[,<expC2>,...] | ALL
[SAVE]

See Also

DEFINE PAD, ON PAD, ON SELECTION PAD, ACTIVATE MENU, DEACTIVATE MENU,
RELEASE MENUS, SHOW MENU, DEFINE POPUP, DEFINE BAR, ON SELECTION POPUP,
ACTIVATE POPUP, DEACTIVATE POPUP, RELEASE POPUPS, CLEAR POPUPS, SHOW POPUP,
SET COMPATIBLE

Description
The HIDE MENU command is included for language compatibility only.

Example
hide menu main

Products
Recital Mirage Server, Recital Terminal Developer

251

HIDE POPUP

Class
Menus

Purpose
Remove a popup or popups from the display

Syntax
HIDE POPUP <expC1l>[,<expC2>,...]

See Also
DEACTIVATE POPUP

Description

The HIDE POPUP command removes the specified activated Xbase style popup menu(s) from the screen.
The popup name or names are specified in <expC1>, <expC2>The affected pop-up menu is not
released from memory when hidden and may be activated again using the ACTIVATE POPUP command.
The command SET COMPATIBLE should be set ON when using the Xbase style menus.

Example
hide popup popupl

Products
Recital Mirage Server, Recital Terminal Developer

252

HIDE WINDOW

Class
Screen Windows

Purpose
Remove a window or group of windows from view

Syntax
HIDE WINDOW <window-name> | <window-name list> | ALL

See Also

ACTIVATE SCREEN, ACTIVATE WINDOW, CLEAR WINDOWS, DEACTIVATE WINDOW,
DEFINE WINDOW, MOVE WINDOW, MODIFY MEMO, RELEASE WINDOWS, RESIZE WINDOW,
RESTORE WINDOW, SAVE WINDOW, SHOW WINDOW, SET COMMANDWINDOW, SET
ERRORWINDOW, SET STATUS, SET TRACEWINDOW, SET WINDOW OF EDIT, SET WINDOW
OF MEMO, WROWS(), WCOLS(), WEXIST(), WVISIBLE(), WONTOP(), WOUTPUT()

Description

The HIDE WINDOW command is used to temporarily remove, or ‘hide’, a window or group of windows
from the screen. A window is an area of the screen designated for output and input. There is no limit to the
number of defined windows. Windows are defined with the DEFINE WINDOW command, and are
activated with the ACTIVATE WINDOW command.

The <window-name> is the name of the window as previously specified with the DEFINE WINDOW
command. A <window-name list> is a list of window names, each separated by a comma. To hide all
currently defined windows, use the ALL keyword.

The HIDE WINDOW command does not deactivate windows. Output may be directed to a hidden
window, as long as that window is active. Output to a hidden window remains hidden until the window is
revealed with either the SHOW WINDOW or ACTIVATE WINDOW commands.

The HIDE WINDOW command may be used in a hot key procedure to switch the screen display from
windows to full screen. Full screen display is enabled with the ACTIVATE SCREEN command. Hot keys
enable users, while running an application that is waiting for keyboard input, to press a key to execute a
specified procedure.

Example
Il winproc.prg

procedure hide_win

activate screen

display all fields name, event
hide window browse

return

procedure show_win
show windows

activate window command
return

set procedure to winproc

set key -1 to hide_win
set key -2 to show_win

253

set status off

clear

define window browse;
from 2,2 to 12,43;
title “BROWSE”;
color n/bg;
float;
grow;
shadow

activate window browse

Products
Recital Mirage Server, Recital Terminal Developer

254

IF

Class
Applications

Purpose
Conditional command execution

Syntax

IF <condition>
[ELSEIF<condition>]
[ELSE]

ENDIF

See Also
DO CASE, DO WHILE, I1F()

Description

The IF command provides a conditional selection of commands to execute based upon a logical
<condition>. If the result of the <condition> is .T., then the commands following the IF, up to an ENDIF
statement or an ELSE statement are executed. IF statements may be nested, i.e. IF statements may contain
other IF statements, provided that the ELSE and ENDIF statements correspond with a valid IF.

ELSEIF

The ELSEIF clause can be added to the IF control structure allowing for the testing of more than one
condition in the IF...ENDIF block. The IF block is now essentially the same as the DO CASE structure.
ELSEIF is analogous with the CASE statement.

ELSE

The ELSE statement is analogous with the OTHERWISE statement. If no previous IF <condition> or
ELSEIF <condition> is true, the commands following the ELSE statement up to the ENDIF statement are
executed.

Example
use patrons index events, names
seek “BALLET”
if found()
edit
else
dialog message “Record not found.”
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

255

#IF... #ENDIF

Class
Applications

Purpose
Compiler directives to allow inclusion or exclusion of source code based on a condition

Syntax

#IF <expN1> | <expL1>
<statements1>

[#ELIF <expN2> | <expL2>
<statements2>...

#ELIF <expNN> | <expLN>
<statementsN>]

[#ELSE

<statements_else>]

#ENDIF

See Also
COMPILE, #DEFINE, DO, DO CASE, IF, #IFDEF...ENDIF, #INCLUDE, #UNDEF, SET COMPILE,
SET DEVELOPMENT

Description

The #IF compiler directive can be used to allow inclusion or exclusion of source code based on a condition.
The condition can be a numeric expression, <expN1> or any valid expression evaluating to a logical true
(.T.) or false (.F.), <expL1>, and is evaluated at compile time. If the <expL1> evaluates to true or the
<expN1> evaluates to a nonzero value, the <statements1> that follow are included in the compiled program
file and the compilation continues after the #ENDIF. The <statements1> can be any valid Recital 4GL
commands. If the <expL1> evaluates to false or the <expN1> evaluates to zero, the <statements1> are
excluded and any included #ELIF directives are evaluated in turn in a similar way. If a #ELIF condition
evaluates to a non-zero value or to true, the statements that immediately follow are included in the
compiled program file and the compilation continues after the #ENDIF. If no #ELIF directives are
specified, or if they all evaluate to zero or to false, a check is made for a #ELSE directive and its
<statements_else> included in the compiled file if it exists.

This directive can only be used in compiled programs.

Example

#IF OS() = “Windows Servers”
dirterm = “\”

#ELIF OS() = “Linux Servers”
dirterm =/

set filecase on
#ELIF OS() = “OpenVMS Servers”
dirterm = “]”
#ELSE
dirterm = “/”
set filecase on
#ENDIF

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

256

#IFDEF.. . #ENDIF

Class
Applications

Purpose
Compiler directives to allow inclusion or exclusion of source code based on a compile-time constant

Syntax

#IFDEF <constant>
[<statements1>]
[#ELSE]
[<statements2>]
#ENDIF

See Also
COMPILE, #DEFINE, DO, DO CASE, IF, SET COMPILE, SET DEVELOPMENT

Description

The #IFDEF compiler directive can be used to allow inclusion or exclusion of source code based on the
existence of a compile-time constant. The constant, <constant>, is defined using the #DEFINE directive.
At compile time, the compiler checks if the <constant> is defined. If it is defined, the <statements1> that
follow are included in the compiled program file. The <statements1> can be any valid Recital 4GL
commands. If the <constant> is not defined, the <statements1> are excluded. If the <constant> is not
defined and there is a #ELSE directive specified, the <statements2> following the #ELSE directive are
included in the compiled program file.

This directive can only be used in compiled programs.

Example
#DEFINE RECITAL 1
#IFDEF RECITAL
set compatible to recital
set filetype to recital
#ELSE
set compatible to vfp
set filetype to vip
#ENDIF

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

257

#INCLUDE

Class
Applications

Purpose
Include another source file in the current program

Syntax
#INCLUDE “<filename>"

See Also
COMPILE, DEBUG, DO, LINK, MODIFY COMMAND, PARAMETERS, PROCEDURE, SET
CLIPPER, SET CLIPPERS5, SET COMPATIBLE, SET MAXDBO, SET PSHARE

Description

The #INCLUDE directive is used to include another source file in the current program. This is the
equivalent of issuing a DO <filename>. As with the DO command, the file extension must be specified if it
is not the default “.prg’.

To make functions or procedures from a function library available to another program, the SET
PROCEDURE command should be used.

Example
//ICheck user details before proceeding
public validuser
#include “checklogin.ch”
if not validuser
return
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

258

INDEX ON

Class
Indexing

Purpose
Create an index for a table on a specified key

Syntax
INDEX ON <key expression> TO <.ndx filename>
[FOR <condition>] [UNIQUE]

INDEX ON <key expression> TAG <tagname> [OF <.dbx filename>]
[FOR <condition>] [UNIQUE] [DESCENDING]

See Also

FIND, CLOSE INDEX, COPY INDEXES, COPY TAG, CREATE VIEW, DELETE TAG,
DBXDESCEND(), DESCEND(), DTOS(), LOOKUP(), MDX(), LTOS(), REINDEX, RLOOKUP(),
SEEK(), SEEK, SET INDEX, SET ORDER TO, STR(), STRZERO(), TAG(), TAGCOUNT(), TAGNO(),
USE

Description

Indexing provides the means of ordering the way in which records are viewed in a table without actually
physically rearranging them. Indexing is far more efficient than sorting, and provides the same logical
ordering of the table.

The INDEX command creates an index file based upon the evaluation of the specified <key expression>.
The Recital/4AGL allows you to index on any valid character, date or numeric expression. You can
construct an index on mixed data types using the conversion functions STR(), DTOS() and LTOS(). If the
STR() function is used on a numeric field in the index expression, the index key storage sequence is
unaffected.

Two types of index exist within Recital, single indexes and multiple indexes. The INDEX ON...TO <ndx
filename> command creates single index files with a default file extension of *.ndx’. With single indexes,
each different sort order is stored in a separate file and each single index must be opened whenever the
table is opened to ensure that the indexes are kept up to date. A table can have up to 20 open single index
files. If data is modified when the index file is not opened, the index file will have to be reindexed using
the REINDEX command. Once an index file has been created, you can use it at any time with your table
by specifying the INDEX option with the USE command when you open the table, or using the SET
INDEX TO command.

The INDEX ON...TAG <tagname> command creates multiple, or tagged, index files. A multiple index
file may contain up to 128 index tags, each with a unique tagname. Each index tag represents a separate
key expression. Multiple index filenames have .dbx as the file extension. Tagnames must be a maximum
of 32 characters long. They must start with a letter or underscore and can include letters, underscores and
digits 0-9.

There are two types of .dbx files. One type, known as the production index, is associated with a DBF file
and is opened automatically when the .dbf file is opened. A production index file will always have the
same basename as its table. The second type of .dbx file can be created with the OF <.dbx filename>
qualifier. This creates a .dbx file that has a different name than the .dbf file, and may be opened separately.
This type of multiple index file must be opened with the SET INDEX command, or the INDEX clause of
the USE command.

259

The chief benefit of multiple index files is that many tags representing many <key expressions> are
contained in one file. Each tag is updated as the table is updated, providing quick access to alternate ways
of ordering records. The master order may be set to any of the index tags using the SET ORDER TO TAG,
SET INDEX TO ...ORDER <tagname> commands, or the ORDER clause of the USE ... INDEX command.

If for any reason an index is not consistent with the table file, the Recital/4GL will display an appropriate
error message. You can rebuild the index file using the REINDEX command.

To look up indexed records by their key fields, use the FIND or SEEK commands or the RLOOKUP(),
LOOKUP() or SEEK() functions. The Recital/4GL performs partial key searches unless SET EXACT ON
is in effect.

The key expression that you specify is stored inside the index file in an area known as the index file
prologue. If you have used memory variables or alias pointers (->) inside the key expression, you must
make sure that these are available any time the index is open. If User Defined Functions (UDFs) are
present in the index expression, they must be activated before the index is opened and be available while
the index is open. The expression that the UDF returns must be of fixed length. The RPAD() function can
be used to make sure of this.

The default file extensions for single and tagged indexes can be changed using the SET COMPATIBLE
and SET INDEXEXT commands.

DESCENDING

Indexing is always performed in ascending order, but if an index is created using the DESCENDING
keyword, records are ordered in descending sequence. The DESCENDING option is only available for
multiple index file tags, for single indexes, the DESCEND() function can be used within character key
expressions. The DESCENDING keyword can be used on character string, numeric, date or logical index
keys. The DESCENDING() function can be used to determine whether an index tag was created using the
DESCENDING keyword. The DBXDESCENDY() function must be used when searching in indexes created
using the DESCENDING keyword.

FOR <condition>

The optional FOR clause is used to create an index that will contain those records that match the specified
<condition>. The <condition> is saved with the index <key expression>, so further updates to the table
will add only those records matching the <condition> to the index. When an index is created with a FOR
<condition>, all currently open single indexes are closed. The SET INDEX TO command may be used to
reopen the original index list. Conditional indexes are useful for taking a ‘snapshot’ of tables. Subsequent
processing of files that are “filtered’ in this manner is dramatically accelerated. The FOR() function can be
used to return the FOR <condition> of the active index.

UNIQUE

If SET UNIQUE ON is in effect or the UNIQUE keyword is specified, then only the first key of a given
key expression will be added to the index. Duplicates will be discarded. The uniqueness of the records that
you subsequently add to the table is checked, and an appropriate message displayed if the record cannot be
added or updated because of a pre-existing key in the index file. If SET UNIQUE OFF is in effect and the
UNIQUE option is not specified when the index is created, then duplicate keys are allowed. With SET
PCUNIQUE ON, duplicate records will be hidden but can be added to unique indexes.

Example
use patrons
index on event tag event

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

260

INFO

Class
Information Center

Purpose
Initiate the Recital Information Center

Syntax
INFO [TITLE <expC>]

See Also
CATALOG(), SET CATALOG, SET TITLE, DESIGN

Description
The INFO command initiates the Recital Information Center in the current directory.

The Recital Information Center is a powerful worksurface, from which any type of data may be accessed,
viewed, modified and organized. Within the Recital Information Center, you can organize files into
catalogs that represent a single application, an application interface or development project. The rich
functionality of the Recital Information Center includes a graphical-like user interface with CUA compliant
components, access to Recital worksurfaces, object oriented design tools and connectivity to foreign
databases.

TITLE <expC>
The TITLE keyword is used to specify a title for the Information Center. When not specified, the default
title is “Recital Executive Information Center”.

IF SET DESIGN is ON, the Information Center initializes in Design mode allows, which allows access to
CREATE and MODIFY worksurfaces as well as the complete range of design tools. Design mode may
also be enabled with the DESIGN command. When in Design mode, the Recital Information Center
displays a [DESIGN] key that is used to access the development worksurfaces.

The SET CATALOG TO <expC> command allows the specified catalog file to be used when the Recital
Information Center is activated. If a catalog with the name specified in <expC> does not exist, it will be
created. SET CATALOG ON causes all newly created files to be added automatically to the currently open
catalog. When SET CATALOG is OFF, the currently open catalog is closed and automatic file adding is
disabled. Catalogs may also be opened from within the Recital Information Center and files added to a
catalog using the appropriate menu items.

The Recital Information Center menu bar provides access to a wide range of decision support tools,
application objects and work surfaces. The menu bar contains the following options:

Menu Description

File Catalog file tasks

Edit Database table record options

Options Catalog file options

Tools Popup Calculator, Time Manager and Notepad
Customize Environment customization toggles

Summary Financial and statistical calculations

Organize Database table operations

Report Quick and Custom Report and Label options
Help Help System, Key Help and Technical Support

261

The Recital Information Center contains six file panels providing vertical listings of filenames without
extensions. Each panel represents a different category or file type and contains a <create> button giving
access to the appropriate create worksurface.

Panel File Types

Data Table (.dbf), gateway (.gtw), bridge (.brg), view (.vue)
Text Text (.txt)

Form Screen format (.fmt)

Report Report format (.frm) Treport (.trf)
Label Label format (.Ibl)

Program Application (.app), program (.prg)
Example

set design on

info

Products

Recital Terminal Developer

262

INPUT

Class
Input/Output

Purpose
Read an expression from the keyboard

Syntax
INPUT [<expC>] TO <memvar>

See Also
ACCEPT, WAIT, STORE

Description

The INPUT command displays the prompt <expC> on the screen, or a “:” if none is specified, and then
reads any valid expression from the keyboard. The expression is evaluated, and the result is stored in the
specified <memvar>. If you want to INPUT a character string, then you must enclose the string in quotes,

ie .., “.7 or[...]. Ifyou enter an invalid expression then the following message will be displayed:
Syntax error, try again

You must then re-input an answer to the prompt.

Example

input “Replace with what? ” to value

Replace with what? PRICE*1.2

Products
Recital Terminal Developer

263

INSERT

Class
Screen Forms

Purpose
Insert a record into the active table at the current position

Syntax

INSERT
[BEFORE]
[BLANK]
[NOCLEAR]
[NOORGANIZE]

See Also
@...GET, APPEND, APPEND BLANK, APPEND FROM, CREATE, CREATE SCREEN, CHANGE,
SET CARRY, FMT()

Description

The INSERT command is a full screen command used to insert records into the active table. A default
form with blank fields will be activated on the screen. If the active table is indexed or if you are currently
at the bottom of the table, then INSERT works just like APPEND.

You can design your own forms for inserting records with the Forms Designer (CREATE SCREEN). Once
the form has been activated with SET FORMAT TO, it will be used instead of the default form when the
INSERT command is issued.

Normally, all of the fields are initialized to blank. This behavior can be overridden with the SET CARRY
ON command or the [CARRY MODE] key from within the append form. If SET CARRY is ON, data
from the previous record will be carried over as the default for the next append operation. Default
information may also be automatically inserted into the form via the Applications Data Dictionary.

Using INSERT on a non-indexed table is not recommended, since each time a record is inserted existing
records have to be physically moved in the table. The APPEND command is the preferred solution.

BEFORE
The BEFORE keyword has been added solely for language compatibility with Xbase products.

BLANK
If the BLANK option is specified, then a blank record is inserted after the current record and the INSERT
form is not activated.

NOCLEAR
The NOCLEAR keyword disables the erasing of the screen on entry and exit from APPEND.

NOORGANIZE
The NOORGANIZE keyword has been added solely for language compatibility with Xbase products.

The following keys are active within an INSERT form.

Key Action
ABANDON Discard current record then exit from the form
CARRY MODE Toggle CARRY on and off

264

CURSOR DOWN

Skip to next field

CURSOR LEFT

Skip to previous field

CURSOR RIGHT

Skip to next field

CURSOR UP Skip to previous field

DELETE FIELD Initialize field

EDIT FIELD Enter field edit mode

EXIT/SAVE Write current record then exit from the form
HELP Activate pop-up help

MENUBAR Activate the APPEND menu bar

NEXT RECORD Write current record then exit from the form
REFRESH Redraw the form

TAB Toggle function key menu on and off

If SET MOUSE is ON, cursor keys will move the cursor anywhere on the screen rather than just from field
to field. If SET NAVIGATE is ON, the cursor moves to fields following the direction specified by the key
being pressed, rather than following the order of the GETS on the form. When the RETURN key is
pressed, the cursor moves to the nearest field when SET NAVIGATE is ON.

The following keys are active in field edit mode:

Key

Action

BACKSPACE

Delete character before cursor

CURSOR LEFT

Skip to previous character

CURSOR RIGHT

Skip to next character

DELETE CHAR Delete character under cursor
DELETE FIELD Delete from cursor to end of field
DELETE WORD Delete current word

INSERT MODE Toggle insert / overwrite mode
WORD LEFT Skip left a word

WORD RIGHT Skip right a word

The following menu options are available from the INSERT menu bar in the default form:

Menu Item

Action

Descriptions

Toggle the field descriptions on and off

Help

Activate on-line help system

Example

use patrons index names

insert

Products

Recital Mirage Server, Recital Terminal Developer

265

INSTALL

Class
Table Basics

Purpose
Imports bridge files and tables and their associated files in ASCII format to allow them to be transferred
from a binary incompatible platform

Syntax
INSTALL <filename> [FROM <directory>]

See Also
BUILD, SET FILETYPE

Description

The INSTALL command imports Recital bridge files and tables and their associated structure, data, memo,
dictionary and multiple index files from ASCII format to allow them to be transferred from a binary
incompatible format. The export on the source machine requires the use of the BUILD command.

<filename>
The <filename> is the name of a “.xat’ file. This is a text created by the BUILD command on the source
machine.

FROM <directory>
If the optional FROM <directory> clause is used, the .xat files and exported files from <directory> will be
used to create the table or tables and their associated files in the specified directory.

Example

On Source machine demo.xaf contains the following lines:
dbf,customer.rdb

dbf,accounts.rdb

dbf,state.rdb

dbf,product.rdb

brg,cisamdemo.dbf

> build demo into ./transfer

On Target Machine, once files have been transferred
» install demo from ./transfer

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

266

JOIN

Class
Table Basics

Purpose
Create a new table by merging two existing ones together

Syntax
JOIN WITH <workarea | alias> TO < .dbf filename> | (<expC>) FOR <condition>
[FIELDS <field list>]

See Also
SET FILTER, SET RELATION

Description

The JOIN command creates the new table <.dbf filename>, by merging records from the active table, and
another table selected in another workarea. The filename can be substituted with a <expC>, enclosed in
round brackets, which returns a valid filename. If no file extension is specified, then “.dbf” will be used.

The JOIN is accomplished by reading through the active table, one record at a time, and for each of the
records, evaluating the specified FOR <condition> against every record in the WITH table. If the
<condition> is .T., all of the specified fields are constructed into a record, and this record is written to the
new table.

It should be noted that if SET FILTER TO is in effect, then any records from the active table which do not
satisfy the filter condition, will be discarded, and not included in the join. Also, if SET DELETED ON is
in effect, any records that are marked for deletion, will be discarded, and not included in the join.

If no FIELDS clause is specified the new table will consist of both sets of fields from both tables. If two
field names are the same in both tables, the first one will be used, and the second one discarded. The fields
will be combined up to the maximum field limit of 256.

FIELDS <field list>

The FIELDS clause allows you to specify which fields you want the new table to consist of. You may
reference fields from both of the tables. If a field exists by the same name in both tables, then the field
from the active table will be used unless you reference the field name with an alias (->) pointer.

Example

selecta

use patrons index events

select b

use addresses index names

select a

join with b to operalist for name = b->name

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

267

KEYBOARD

Class
Keyboard Events

Purpose
Put characters into the terminal input buffer

Syntax
KEYBOARD <expC>
[CLEAR]

See Also
SET PCKEYS ON, LASTKEY(), INKEY(), CTRL(), CHR()

Description

The KEYBOARD command can be used to ‘stuff’ characters, <expC>, into the terminal input buffer.
Execution of the KEYBOARD command clears the typeahead buffer. This command is useful for
automatically stuffing the keyboard if more key presses are needed than entered. Used in conjunction with
the MENU() function or the SET KEY command, multiple selections can be automatically entered by
pressing one key. For user defined keyboard macros, see the REPLAY and SET CAPTURE commands.

CLEAR
If the CLEAR keyword is used without a character expression, the keyboard buffer will be emptied. If the
CLEAR keyword is used with a character expression, it is processed for Xbase language compatibility.

When PCKEYS is ON, the keys specified with the KEYBOARD command are automatically converted to
their logical counterparts according to the current terminal definition.

Example
keyboard chr(ctrl('g"))+chr(ctrl(g"))+'e'

Products
Recital Mirage Server, Recital Terminal Developer

268

KEYWORD

Class
Applications

Purpose
Specify user-defined keywords (UDK)

Syntax
KEYWORD [<expC1l> [<expC2>]]

See Also
ALIAS, DISPLAY STATUS, FUNCTION, LIST PROCEDURE

Description

User Defined Keywords (UDKSs) can be specified with the KEYWORD <expC1> <expC2> command. The
<expC1> refers to the new keyword name and the <expC2> refers to the keyword with which <expC1> is
synonymous. If no <expC2> is specified, the keyword setting for <expC1> is removed. UDKSs can be
combined with User Defined Commands (UDCs). Used on its own, the KEYWORD command displays
the current UDKSs. In a similar way, the ALIAS command displays the current UDCs and the LIST
PROCEDURE command displays the current User Defined Functions and procedures.

Example

keyword layout structure
list layout

alias retrieve “list”
retrieve layout

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

269

LABEL

Class
Input/Output

Purpose
Generate mailing labels from a specified label format definition

Syntax

LABEL FORM <.lbl filename> | (<expC>)
[<scope>]

[FOR <condition>]

[FRAME]

[SAMPLE]

[SEPARATE]

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

[TO TERMINAL]

[WHILE <condition>]

[WIDTH <expN>]

See Also
CREATE LABEL, MODIFY LABEL, SET PRINTER, TREPORT

Description

The LABEL command is used to generate and print mailing and other labels. It operates by reading the
format/layout of the labels from the <.Ibl filename>. If no file extension is specified in the form file name,
“.Ibl” is assumed. The filename can be substituted with a <expC>, enclosed in round brackets, which
returns a valid filename.

Keyword Description

<scope> If no <scope> is specified, the default is ALL, unless the WHILE clause is used,
in which case the <scope> will default to REST.

FOR <condition> If the FOR clause is specified, only those records which satisfy the <condition>
are selected.

FRAME The FRAME keyword puts a box around each label.

SAMPLE The SAMPLE option may be used to print sample labels, allowing you to line
up the labels in the printer.

SEPARATE The SEPARATE keyword causes each row of labels to be separated by a line.

TO <file> The display output will be sent to the specified file. The filename can be

substituted with a <expC>, enclosed in round brackets, which returns a valid
filename. If no file extension is specified, then “.txt” will be used. The
command SET PAGELENGTH governs the output file pagination and SET
PAGEWIDTH defines the width of each page. Page numbers are centered on
the bottom of the page according to width.

TO PRINT The display output will be sent to a printer. The TO PRINT option will default
to a local printer unless the command SET PRINTER TO WSPOOLER is issued.
The print request will then be spooled to the system printer, which is defined by
the environment variable DB_PRINT.

TO TERMINAL The TO TERMINAL keyword outputs labels in pages to the issuing terminal.
The user will be prompted to press a key between pages.

WHILE <condition> | The WHILE <condition> can be used to restrict the range of records which are
scanned in a table, and should be used to optimize the execution of the

270

command. If the WHILE <condition> is used, then the <scope> will default to
REST.

WIDTH <expN> The WIDTH clause specifies the number of labels to print across the page. The
numeric expression <expN> denotes the number of labels.

Example

use patrons index events, names

label form mail to print for event = “DANCE”
set printer to \\spooler

seek “BALLET”

label form mail to print while event = “BALLET”
set printer to

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

271

LINK

Class
Applications

Purpose
Link multiple source program files into a single file

Syntax

LINK FROM <.dbl file> | <skeleton> TO <.src file>
[MESSAGE <.map file>]

[COMMAND <expC>]

[COMMENTS]

See Also
COMPILE, DO, FUNCTION, PROCEDURE, SET MAXDBO, SET PROCEDURE, SET PSHARE,
Recital Linker

Description

The LINK command is used to invoke the Recital linker to link multiple source program files into a single
file that can then be compiled. This limits the number of files that need to be open at one time, thus using
less Operating System file handles and making more efficient use of shared memory when running
applications with SET PSHARE ON.

With SET PSHARE ON, compiled programs are loaded into shared memory when called. All users
accessing a particular program can access the same area of shared memory rather than loading the program
into private memory. The program is removed from shared memory when it no longer has any attached
users. A single compiled program therefore, need only be loaded once and accessed by all users. Multiple
smaller compiled programs cause an increased amount of loading and unloading activity in shared memory.

Keyword Description

<.dbl file> A text file containing a list of program files to link. These should be listed
one to a line and must be unique. If no file extension is given, a .dbl
extension is assumed.

<skeleton> A skeleton pattern for the program files to link. This must include the “*”
as a wildcard, e.g. “appl*.prg” or “*.prg”
<.src file> The name of the output file to be created. If no file extension is specified,

the file will be given a .src extension. By convention the .src extension is
used to differentiate linked source files from individual .prg files. The
output file will be created if it does not exist and overwritten if it does.

MESSAGE <.map file> The optional MESSAGE clause allows linker message output to be sent to
the specified <.map file>. If no file extension is specified, the file will be
given a .map extension. This text file will be created if it does not exist
and overwritten if it does.

COMMAND <expC> If the optional COMMAND clause is specified, a ‘do <expC>’ line will be
included in the output file as the first executable line. The <expC> should
evaluate to the name of the first procedure to be run. The output file can
then be called as a self-contained module rather than being used as a
procedure library.

COMMENTS The optional COMMENTS keyword will leave comments and
indentations in the output file. By default these are not included by the
linker.

272

The Recital Linker can also be called from the Operating System command line using the Recital Terminal
Developer “dbl’ utility.

Example

/I Creating linked file appl.src to include all files matching the “appl*.prg” skeleton.
I/l Message output will be written to output.map.

/I First executable line will be ‘do applstart’

// Comments and indentations will be retained

link from “appl*.prg” to appl message output command “applstart” comments

I/l Another example

***appl.dbl

applstart.prg

applmain.prg

applend.prg

***end of appl.dbl

/I Creating linked file appl.src to include all files specified in app1.dbl.
I/l Message output will be written to info.map.

/I First executable line will be ‘do applstart’

/l Comments and indentations will be stripped

link from appl to appl message info command “applstart”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

273

LIST

Class
Fields and Records

Purpose
List the contents of the active table and any related tables

Syntax

LIST [<scope>]

[FIELDS <field list>|<exp list>]
[FOR <condition>]

[HEADING]

[OFF]

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

[WHILE <condition>]

See Also
DISPLAY STATUS, DISPLAY MEMORY, DISPLAY STRUCTURE, LIST, DIR

Description

The LIST command is a general purpose Recital/4GL query command that retrieves and displays the
contents of table files on the screen. The LIST command scrolls continuously unless halted by the [HOLD
SCREEN] key, thereby differing from DISPLAY commands, which pause every 17 lines until a key is
pressed. When displaying a record that is longer than the screen width, the contents to the right of the
display normally will not be displayed unless you have set your terminal to wrap. Consult the relevant
manual for your terminal regarding this feature.

LIST is more powerful than it looks initially. The expressions that you specify can be any valid
Recital/4GL expression, including the use of alias pointers into other workareas. If you have SET
RELATION TO another table, for each record that is read from the active table, the related table will have
its record pointer positioned, and the appropriate record read into its workarea.

If SET FILTER TO <condition> is in effect, only those records that satisfy the filter <condition> will be
displayed. If SET DESCRIPTIONS and SET HEADING are both ON and the FIELDS clause is specified,
the field descriptions will be used as the column headings rather than the field names. The command SET
HEADING TO SINGLE | DOUBLE | NONE controls the underlining of the column headings.

Keyword Description

<scope> If the <scope> is not specified, all records will be displayed, unless the WHILE
clause is used, in which case the <scope> will default to REST.

FOR <condition> Only those records that satisfy the <condition> are displayed.

OFF Disables the display of the record number in the first column of the results.

FIELDS <list> Restricts the fields displayed to those specified.

HEADING A heading corresponding to either the field names or the expression will be
displayed above each column even if SET HEADING is OFF.

TO <file> The display output will be sent to the specified file. The filename can be
substituted with a <expC>, enclosed in round brackets, which returns a valid
filename. If no file extension is specified, then “.txt” will be used. The
command SET PAGELENGTH governs the output file pagination and SET
PAGEWIDTH defines the width of each page. Page numbers are centered on
the bottom of the page according to width.

274

TO PRINT The display output will be sent to a printer. The TO PRINT option will default
to a local printer unless the command SET PRINTER TO WSPOOLER is issued.
The print request will then be spooled to the system printer, which is defined by
the environment variable DB_PRINT.

WHILE <condition> | The <scope> defaults to REST and records are displayed until the <condition>
becomes false.

Example

use patrons index events, names

list fields name, event for event = “BALLET”

seek “OPERA”

list rest name, event, seats, price, seats * price while event = “OPERA”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

275

LIST DATABASE

Class
Databases

Purpose
List information about the active database

Syntax

LIST DATABASE

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT[ER]]

See Also

ALTER INDEX, ALTER TABLE, CLOSE DATABASES, CLOSE TABLES, COMPILE DATABASE,
CREATE DATABASE, CREATE INDEX, CREATE TABLE, CREATE VIEW, DISPLAY DATABASE,
DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP INDEX, DROP TABLE, LIST
INDEXES, LIST TABLES, OPEN DATABASE, USE, SET EXCLUSIVE, ADATABASES(),
DBUSED(), GETENV()

Description
The LIST DATABASE command is used to display information about the currently active database.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV/() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the OPEN DATABASE command.

The LIST DATABASE command displays the following information:

e Database Name, e.g. southwind
e Database Path, e.g. /usr/recital/data/southwind

and for each table in the database the equivalent of LIST STRUCTURE INDEX followed by LIST
DICTIONARY:

Table file name

Number of records

Date of creation

Date of last update

Encryption status

Field names, types, sizes and description
Total record length

Production DBX file name

Index tag names, keys, types and lengths
Dictionary information

276

Keyword

Description

TO <file>

The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT

The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example

VFP/SQL > OPEN DATABASE southwind
VFP/SQL > LIST DATABASE

Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

277

LIST DICTIONARY

Class

Table Basics

Purpose

Display the currently active dictionary

Syntax

LIST DICTIONARY
[TO FILE <.txt filename> | (<expC>)]

[TO PRINT]

See Also

CREATE, LIST DICTIONARY, SET PRINTER

Description

The LIST DICTIONARY command displays the currently active dictionary.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB _PRINT.

Example

use demo

list dictionary

Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

278

LIST FILES

Class
Disk and File Utilities

Purpose
Display a directory of files

Syntax

LIST FILES [<skeleton>]

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also
DIR

Description

The LIST FILES command displays filenames in the current directory and path (see SET PATH) matching
the specified <skeleton>. If LIST FILES is issued with no <skeleton> specified, then it will list details of
table files only.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example

set printer to \\spooler
list files *.prg to print
set printer to

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

279

LIST HISTORY

Class
Error Handling and Debugging

Purpose
Display a list of previously entered commands

Syntax

LIST HISTORY

[LAST <expN>]

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also
I, ALIAS, SET DOHISTORY, SET HISTORY

Description

The LIST HISTORY command displays a list of commands currently held in the command history. When
SET HISTORY is ON, all commands entered in interactive command mode are stored in a command
history list. The SET HISTORY TO <expN> command can be used to specify the size of the history list.

If SET DOHISTORY is also ON, then commands executed in program files are also stored in the command
history.

Keyword Description
LAST <expN> | Displays the last <expN> of previously entered commands
TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT The display output will be sent to a printer. The TO PRINT option will default to a
local printer unless the command SET PRINTER TO WSPOOLER is issued. The
print request will then be spooled to the system printer, which is defined by the
environment variable DB_PRINT.

Example

set history on

dir

use payroll index events, names
list history

1dir

2 use payroll index events, names

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

280

LIST INDEXES

Class
Indexing

Purpose
List index information about the current table

Syntax

LIST INDEXES

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also

FIND, CLOSE INDEX, COPY INDEXES, COPY TAG, CREATE VIEW, DELETE TAG,
DBXDESCEND(), DESCEND(), DTOS(), LOOKUP(), MDX(), LTOS(), REINDEX, RLOOKUP(),
SEEK(), SEEK, SET INDEX, SET ORDER TO, STR(), STRZERO(), SYS(), TAG(), TAGCOUNT(),
TAGNO(), USE

Description
The LIST INDEXES command is used to display index information about the currently active table.
Information is displayed for both production and single index files.
The LIST INDEXES command displays the following information:
e Production DBX file name

and for each tag:

Tag name
Key
Type
Length

and for each open single index:
e Index file name
o Key
e Index cache size

The master index tag is flagged as such.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

281

Example

I/ Recital/AGL

use example

list indexes to file ind_info

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

282

LIST MEMORY

Class
Environment

Purpose
Display the contents of the current memory variables

Syntax

LIST MEMORY

[LIKE <skeleton>]

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also
ALIAS, DISPLAY STATUS, RELEASE, SAVE, RESTORE, PUBLIC, PRIVATE, DECLARE

Description

The LIST MEMORY command displays the contents of the memory variables and array elements currently
defined. Subject to the available system memory, there is no limit to the number of declared memory
variables or to the amount of memory they use.

Keyword Description

LIKE <skeleton> | Displays all the current memory variables that match the wildcard <skeleton>
specification.

TO <file> The display output will be sent to the specified file. The filename can be
substituted with a <expC>, enclosed in round brackets, which returns a valid
filename. If no file extension is specified, then “.txt” will be used. The command
SET PAGELENGTH governs the output file pagination and SET PAGEWIDTH
defines the width of each page. Page numbers are centered on the bottom of the
page according to width.

TO PRINT The display output will be sent to a printer. The TO PRINT option will default to a
local printer unless the command SET PRINTER TO \SPOOLER is issued. The
print request will then be spooled to the system printer, which is defined by the
environment variable DB_PRINT.

Example
list memory

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

283

LIST PROCEDURE

Class

Applications

Purpose

Display the currently active procedures and functions

Syntax

LIST PROCEDURE
[TO FILE <.txt filename> | (<expC>)]

[TO PRINT]

See Also

SET PROCEDURE TO, DISPLAY STATUS

Description

The LIST PROCEDURE command displays on screen the currently active procedures and functions.

Keyword

Description

TO <file>

The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT

The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example

set procedure to yourlib

list procedure

list procedure to print

Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

284

LIST PROTECTION

Class
Table Basics

Purpose
Display current protection and security settings

Syntax

LIST PROTECTION

[TO FILE <.txt filename> | <expC>]
[TO PRINT]

See Also
CREATE, LIST PROTECTION, STR(), GETGID(), GETPID(), GETUID()

Description

The LIST PROTECTION command is used to display to the screen protection and security access control
strings (ACS) for the currently active table. An access control string is a range of user identification codes
used to allow groups or individuals to perform certain table operations. Access control strings are specified
in the CREATE or MODIFY STRUCTURE work surface under the <SECURITY> and <PROTECTION>
menu options.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example
list protection

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

285

LIST REPORT

Class
Reports

Purpose
Display the contents of a report format file

Syntax

LIST REPORT <.frm filename> | (<expC>)
[TO FILE <.txt filename> | (<expC>)]

[TO PRINT]

See Also
SET PRINTER, CREATE REPORT, REPORT

Description

The LIST REPORT command provides a listing of the contents of the specified report <.frm filename>.
The filename can be substituted with a <expC>, enclosed in round brackets, which returns a valid filename.
If no file extension is specified, then “.frm” is assumed. This command is primarily used in preparing
system documentation.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example

create report creditlist

set printer to \\spooler

list report creditlist to print
set printer to

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

286

LIST STATUS

Class
Environment

Purpose
Display the complete status of the session

Syntax

LIST STATUS

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also
DISPLAY DICTIONARY, DISPLAY MEMORY, DISPLAY STRUCTURE, DISPLAY USERS,
DISPLAY STATUS

Description
The LIST STATUS command displays detailed information about the status of the session, including the
following:

e Active status of workareas, including indexes, locks, journals, relations, current record, number of
records

e Language setting

e Printer setting

e Path setting

e Programmable function keys
Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example

set view to patrons
set printer to \\spooler
list status to print

set printer to

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

287

LIST STRUCTURE

Class

Table Basics

Purpose

Display the structure of the active table

Syntax

LIST STRUCTURE

[IN <alias>]
[INDEX]

[TO FILE <.txt filename> | (<expC>)]

[TO PRINT]

See Also

DISPLAY STATUS, DISPLAY MEMORY, CREATE, MODIFY STRUCTURE, DISPLAY
DICTIONARY, DISPLAY USERS

Description

The LIST STRUCTURE command displays the structure of the active table.

Keyword

Description

IN <alias>

The IN <alias> clause is used to display the structure of an open table in a workarea that
is not currently selected. Alias names may be assigned to tables with the USE command,
or default to the table basename.

INDEX

The INDEX keyword is used to list index tag information along with the structure
details.

TO <file>

The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT

The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example
use patrons
list structure

Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

288

LIST TABLES

Class
Databases

Purpose
List table information about the active database

Syntax

LIST TABLES

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT[ER]]

See Also

ALTER TABLE, ALTER INDEX, CLOSE DATABASES, CLOSE TABLES, COMPILE DATABASE,
CREATE DATABASE, CREATE INDEX, CREATE TABLE, CREATE VIEW, DISPLAY DATABASE,
DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP INDEX, DROP TABLE, LIST
DATABASE, LIST INDEXES, OPEN DATABASE, USE, SET EXCLUSIVE, SET SQL,
ADATABASES(), DBUSED(), GETENV()

Description
The LIST TABLES command displays the base name and file name including the full path for each table in
the currently active database.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV/() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the OPEN DATABASE command.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example
VFP/SQL > OPEN DATABASE southwind
VFP/SQL > LIST TABLES

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

289

LIST TRIGGERS

Class
Table Basics

Purpose
Display triggers associated with current table

Syntax

LIST TRIGGERS

[TO FILE <filename>]
[TO FILE <expC>]
[TO PRINT]

See Also

CREATE, MODIFY STRUCTURE, CREATE SCREEN, MODIFY SCREEN, CREATE REPORT,
MODIFY REPORT SET PREFORM TO, SET PRERECORD TO, SET POSTFORM TO, SET
POSTRECORD TO, @...GET PREFIELD, @...GET POSTFIELD

Description

The LIST TRIGGERS command is used to display to the screen all triggers that are associated with the
currently active table. A trigger is used to call a procedure written in the Recital/4GL. Accessible through
the CREATE | MODIFY work surfaces, and through SET commands, triggers may be inserted at table,
field, record, form, and report levels.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted
with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH
governs the output file pagination and SET PAGEWIDTH defines the width of each
page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example
list triggers

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

290

LIST USERS

Class
Enviornment

Purpose
Display all the active users

Syntax

LIST USERS

[TO FILE <.txt filename> | (<expC>)]
[TO PRINT]

See Also
DISPLAY STATUS, DISPLAY MEMORY, DISPLAY DICTIONARY, DISPLAY STRUCTURE

Description
The LIST USERS command displays all the active systems users.

Keyword Description

TO <file> The display output will be sent to the specified file. The filename can be substituted

with a <expC>, enclosed in round brackets, which returns a valid filename. If no file
extension is specified, then “.txt” will be used. The command SET PAGELENGTH

governs the output file pagination and SET PAGEWIDTH defines the width of each

page. Page numbers are centered on the bottom of the page according to width.

TO PRINT | The display output will be sent to a printer. The TO PRINT option will default to a local
printer unless the command SET PRINTER TO WSPOOLER is issued. The print request
will then be spooled to the system printer, which is defined by the environment variable
DB_PRINT.

Example
list users

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

291

LOCAL

Class
Memory Variables

Purpose
Declare a memory variable or array local to the current procedure

Syntax
LOCAL <memvar list> | <array name>

See Also
PUBLIC, PRIVATE, DISPLAY MEMORY, PROCEDURE, DO, FUNCTION, RELEASE, DECLARE,
DIMENSION, SAVE TO, RESTORE FROM, STORE

Description

The LOCAL command declares memory variables or arrays to be local to a procedure, function or
program. When the procedure, function or program returns, then all of the memory variables and arrays
that were declared by the LOCAL command are released.

The memory variables are initially declared as logicals with the value .F., unless SET CLIPPER is ON, in
which case they are undefined.

LOCAL variables differ from PRIVATE variables in that a LOCAL variable is not visible to lower level
procedures or functions.

See DECLARE or DIMENSION for more details on array declaration.
Example

local cTmpbuf

? cTmpbuf

F.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

292

LOCATE

Class
Fields and Records

Purpose
Search the active table for records that satisfy a certain condition

Syntax

LOCATE [<scope>]
[FOR <condition>]
[WHILE <condition>]

See Also
CONTINUE, INDEX, SEEK, FIND, SET FILTER, SET RELATION, SCAN

Description

The LOCATE command evaluates the specified FOR <condition> against each of the records in the active
table, within the specified <scope>. If a record is successfully located, the Recital/4GL FOUND() function
will return .T., and the EOF() function will return .F.. If your table is large, you are advised to INDEX it
and use the SEEK command followed by the LOCATE REST command. This method is much more
efficient. If SET FILTER TO <condition> is in effect, only those records that satisfy the <condition> are
processed. If no FOR clause is specified, then all records that are not filtered are located.

<scope>
If no <scope> is specified, the default ALL is used, unless the WHILE clause is specified in which case the
default <scope> will be REST.

FOR <condition>
If no record is found to satisfy the FOR <condition>, the FOUND() function will return .F.. If the <end of
scope> is encountered before the <end of file>, then the EOF() function will still return .F..

WHILE <condition>

The search starts from the current record and searches he rest of the records in the table for a record
matching the specified condition. FOUND() will return .F. and EOF() will return .T. if no record matching
the condition is located.

The CONTINUE command works in conjunction with LOCATE, in order to continue the search through
the table. The SCAN...ENDSCAN command performs a similar function, but is more efficient.

Example

use patrons

locate for event = “DREAM”

do while found()
display event, name, seats, seats * price
continue

enddo

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

293

LOCKF

Class
Manual Locking

Purpose
Lock a table for exclusive use

Syntax
LOCKF

See Also
UNLOCK, LOCKR, SET EXCLUSIVE

Description

The LOCKF command provides the facility to lock a table for exclusive use. LOCKF works in a similar
way to the FLOCK() function, except that program execution is suspended until the lock is granted. In
order to prepare a table for locking, SET EXCLUSIVE OFF must be in effect when you USE the table. If
you only want to lock a particular record, then you should use LOCKR rather than LOCKF.

The LOCKF command works in conjunction with the UNLOCK command. Whenever you issue CLOSE
DATABASES, UNLOCK, USE, QUIT or CLEAR LOCKS, then any active locks will be removed. You
can see any active locks using the DISPLAY STATUS command. This command is not normally used, as
the Recital/4GL supports automatic file and record locking.

Example
set exclusive off
use patrons index events, names
seek “OPERA”
if found()
lockf
replace price with price*1.2
unlock
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

294

LOCKR

Class
Manual Locking

Purpose
Lock a record for exclusive use

Syntax
LOCKR

See Also
UNLOCK, LOCKF, SET EXCLUSIVE

Description

The LOCKR command provides the facility to lock a record in the active table for exclusive use. LOCKR
is similar to the RLOCK() function except that LOCKR suspends program execution until the lock is
granted. In order to prepare a table for locking, SET EXCLUSIVE OFF must be in effect when you USE
the table.

The LOCKR command works in conjunction with the UNLOCK command. Whenever you issue CLOSE
DATABASES, UNLOCK, USE, QUIT or CLEAR LOCKS, then any active locks will be removed. You

can see any active locks using the DISPLAY STATUS command. This command is not normally needed
as the Recital/4GL performs automatic file and record locking.

Example
set exclusive off
use patrons index events, names
seek “ROMEQO”
if found()
lockr
replace price with price*1.2
unlock
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

295

LOGIN

Data Connectivity

Purpose
Login to a gateway

Syntax
LOGIN [<server>,<nodename>,<username>,<password>[,<database>]]

See Also
CREATE GATEWAY, LOGOUT, SET GATEWAY, GATEWAY/(), CONNECTED()

Description

The LOGIN command allows you to connect to an external database via the Recital Database Server. In
Recital Terminal Developer environments, the login command can be issued without specifying all the
connection parameters. In this case, a dialog box labeled “LOGIN TO DATABASE SERVER” will be
displayed on the screen prompting for the missing parameters.

Parameter Description

Server Database server type, e.g. ORACLE, ODBC, RECITAL

Nodename IP Address or hostname of the machine on which the database resides
Username Username to login to the external database

Password Password for username above

Database Database to connect to. For Oracle databases this entry can be left blank or

used to pass hostname information when SQL*NET is being used. The
information required differs depending on the version of SQL*NET being used:
SQL*NET 1 - ‘database’ = T:<node>:<SID>

SQL*NET 2 - ‘database’ = <service name>

Example
login “oracle”, “hp”, “scott”,
select * from emp;

tiger”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

296

LOGOUT

Class
Data Connectivity

Purpose
Logout from a gateway

Syntax
LOGOUT

See Also
CREATE GATEWAY, LOGIN, SET GATEWAY, GATEWAY (), CONNECTED()

Description
The LOGOUT command closes the open Client/Server gateway in the current workarea.

Example
logout

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

297

LOOP

Class
Applications

Purpose
Force control to beginning of a looping command

Syntax
LOOP

See Also
DO WHILE, EXIT

Description
The LOOP command forces program control to the top of the closest DO WHILE or FOR...NEXT loop.

Example
use patrons index events, names
do while not eof()
if deleted()
loop
endif
display event, name, seats, seats * price
skip
enddo

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

298

LPARAMETERS

Class
Applications

Purpose
Declare formal local parameters to a procedure or program

Syntax
LPARAMETERS <parameter list>

See Also
DO, LOCAL, PARAMETES, PUBLIC, PRIVATE, PROCEDURE, SET CLIPPER, SET PROCEDURE,
DECLARE, &, SET PROCEDURE ADDITIVE

Description

The LPARAMETERS command declares a list of local memory variables or arrays, and assigns them the
values of the actual parameters specified on a DO <program | procedure> WITH command. The
parameters are initially declared as logicals with the value .F.. The LPARAMETERS command must be
the first executable command in a procedure or program. The PCOUNT() function is used to determine
how many parameters were passed.

Parameters may be passed which are memory variables (i.e. they are not part of an expression). The
contents of these memory variables will be updated when the procedure or program returns. This type of
parameter passing is known as call by reference. This is the default for Recital/4GL with PROCEDURES
and PROGRAMS. The ‘@’ character may be placed in front of the memory variable name in User Defined
Functions (UDF), so that they are called by reference.

If you do not wish the parameters to be modified by the called PROCEDURE or PROGRAM, you should
enclose the memory variable in round brackets. This type of parameter passing is known as call by value.
Any expressions that you specify as parameters are always call by value parameters. The default passing of
parameters with User Defined Functions (UDF) is call by value. If COMPATIBLE is set ON then the
parameters will be passed by reference. The limit to the number of parameters that you can pass is 40.

The local memory variables created by the LPARAMETERS command are always released when the
procedure or program returns. If CLIPPER is set ON and not all parameters are passed, the variables in the
LPARAMETERS command not passed will be defined as type ‘U’ instead of .F..

Example

procedure add
Iparameters Iparal, Ipara2
result = Iparal+ Ipara2
return

private result
do add with 10, 40
? result

50

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

299

MENU

Class
Menus

Purpose
Activate the currently defined menu

Syntax

MENU

[EXIT]

[HELPFILE <.hlp filename> | (<expC1>)]
[NOREFRESH]

[OFF]

[PULLRIGHT]

[QUIT]

[SAVE]

[SCREENMAP]

See Also
@...MENU, MENU AT, MENU COMMAND, MENU FIELDS, MENU FILES, MENU FORMAT,
MENU FRAME, MENU QUERY, MENU SCOPE, SET SCREENMAP

Description

The MENU command activates a series of menu options which have previously been defined with the
@...MENU command. The menu options are displayed at the locations on the screen as specified by the
@...MENU commands. A menu option can be selected by moving to the required option with the cursor
and pressing the [RETURN] key, or entering the first letter of the option. If there is more than one menu
option starting with the same letter, then the nearest option with the specified letter is selected.

If a selection is made on a menu item which does not have any commands associated with it, the menu is
exited, the MENU() function returns the menu option number selected, starting at 0, and the MENUITEM()
function returns the menu option as a character string. If no selection was made, then MENU() returns -1
and MENUITEM() returns “”. These two functions can be used on exiting from a MENU or in the menu
COMMAND lines.

If SET MCONFIRM ON has been invoked, the cursor will wait on the menu option that matches the key
pressed. That menu option will only be executed when the [RETURN] key is pressed.

Keyword Description

EXIT The menu is exited after the first selection rather than being reactivated and
refreshed. If the command NOEXIT is included anywhere in the selected
menu item commands, it will overwrite the EXIT keyword. When the EXIT
keyword and the NOEXIT command are used in conjunction, they can cause
some menu items to keep the MENU active and others to leave the MENU
once the command has been executed.

HELPFILE <.hlp> A helpful text file can be associated with the menu. The <.hlp filename> will
be displayed in a read-only window for viewing when the [HELP] key is
pressed. The window will be labeled “Operating instructions.” The file name
can be substituted with a <expC>, enclosed in round brackets, which returns a
valid filename. If no file extension is specified, then “.hlp” is assumed. The
command, INSTRUCT, must be set ON when using this option.

NOREFRESH Refreshing of a menu item after executing its command is disabled.

OFF The display of messages in the message line is disabled.

300

PULLRIGHT Any pulldown menus are displayed to the right of their corresponding menu
options. If PULLRIGHT is not specified, pulldown menus are displayed
directly below their corresponding menu options. Cursor movements handle
subsequent selection of menu options.

QUIT When the QUIT option is specified, the [ABANDON] key exits the menu.

SAVE The menu options are not released and can be activated by another MENU
command.

SCREENMAP The screen is handled as if SCREENMAP is ON even when it is OFF.

When a pulldown menu is activated, the [CURSOR UP] and [CURSOR DOWN] keys operate within the
pulldown menu itself and the [CURSOR RIGHT] and [CURSOR LEFT] keys move between the options of
the menu from which the pulldown was activated.

Example
@0,0 menu “Status”;

command “do statotal”;

help “Total amount of goods ordered for the account prefix.”
menu quit

Products
Recital Mirage Server, Recital Terminal Developer

301

MENU AT

Class
Menus

Purpose
Display a framed menu then activate it

Syntax

MENU AT <expN1>,<expN2> TO <expN3>,<expN4> WITH <exp list>
[BOLD]

[CLEAR]

[COMMAND <expC2>]

[LABEL <expC3>]

[OFF]

[QUIT]

[SELECT <expC4>]

See Also
@...MENU, MENU FRAME, MENU COMMAND, MENU FIELDS, MENU FILES, MENU FORMAT,
MENU QUERY, MENU SCOPE

Description

The MENU AT command displays a static pop-up choice list made up of a series of characters separated by
commas, “<expC>,<expC>" as defined by the WITH <exp list> clause. Each set of characters between the
commas becomes a separate menu item. The MENU AT choice list is non-scrollable, and can take up to 19
item, framed with a box. The menu display is positioned with the AT row <expN1>, column <expN2> TO
row <expN3>, column <expN4> coordinates.

Keyword Description
BOLD The menu frame is highlighted.
CLEAR The inside of the menu frame is cleared before displaying the menu.

COMMAND <expC2> | The command <expC2> and all selections made from the menu are displayed
in the action line (line 22).

LABEL <expC3> The specified character string <expC3> is displayed at the top of the menu
frame.

OFF The display of messages in the message line is disabled.

QUIT When the QUIT option is specified, the [ABANDON] key exits the menu.

SELECT <expC4> Multiple selections can be made. The MENUITEM() function can be used to

return a string containing the selections made, each separated with <expC4>.
Selections are made by placing the cursor on the required menu item and
pressing the [RETURN] key. Once all the required selections have been
made, the [EXIT/SAVE] key is used to save them or the [ABANDON] key
will cancel them. The ASTORE() function can be used to place all the
selections into separate array items.

On completion of this command, the MENUITEM() function will return the menu option selected as a
character string.

Example

menu at 10,10 to 15,18;
label “Options™;
with “Exit”,“Browse”

302

if menuitem() = “Browse”
browse

else
return

endif

Products
Recital Mirage Server, Recital Terminal Developer

303

MENU BAR

Class
Menus

Purpose
Install a Foxbase style menu bar

Syntax
MENU BAR <array>,<expN>

See Also
@...MENU, MENU, MENU FRAME, MENU COMMAND, MENU FIELDS, MENU FILES, MENU
FORMAT, MENU QUERY, MENU SCOPE, READ MENU BAR

Description

The MENU BAR command installs a menu bar <array> into the menu bar. All the elements in the <array>
must be defined as character strings. The <array> may be defined as a two-dimensional array. Where the
first element column is the menu title and the second element column is a message to be displayed in the
message line. The number of menu titles is defined by <expN>. This command is used in conjunction with
the READ MENU BAR and MENU commands.

Example

I/ Initialize the array for the menu bar
declare top[3,2]

top[1,1] = “FILE”

top[2,1] = “EDIT”

top[3,1] = “DATA”

top[1,2] = “FILE SELECTIONS”
top[2,2] = “EDIT SELECTIONS”
top[3,2] = “DATA SELECTIONS”

// Initialize arrays for the pull-down menus
I/ Install the pull-down menu system
// Declare top level menu

declare caTOP [2,2]

caTop [1,1] = “File”

caTop [1,2] = “File operations”
caTop [2,1] = “About”

caTop [2,2] = “Product information.”

// Declare pulldown menu items
declare caFiles[3]

caFiles [1] = “Open”

caFiles [2] = “Close”

caFiles [3] = “Exit”

declare caAbout [2]
caAbout [1] = “Program”
caAbout [2] = “Recital”

// Initialize menu system
menu bar caTop, 2
menu 1, caFiles, 7, 3
menu 2, caAbout, 5, 2

304

/I Activate menu system

nCol=1

nRow=1

read menu bar to nCol, nRow save

I/ Info about choice
? “You chose the ”,caTop[nCol,1], “pulldown.”

? “and will execute item number”, nRow
2

Products
Recital Mirage Server, Recital Terminal Developer

305

MENU BROWSE

Class
Menus

Purpose
Provide a selection menu from the contents of one or more tables

Syntax

MENU BROWSE <expC1>
[AT <expN1><expN2> TO <expN3>,<expN4>]
[BOLD]

[CLEAR]

[COMMAND <expC4>]
[FOR <condition>]
[LABEL <expC2>]

[OFF]

[POPUP]

[QUIT]

[SELECT <expC3>]
[WHILE <condition>]

See Also
ASTORE(), MENU(), MENUITEM()

Description

The MENU BROWSE command provides a selection menu from the contents of one or more tables. You
can browse on any character expression, <expC1>, against records in the currently selected workarea or
related workareas.

Files and relationships are also satisfied during the BROWSE. The [PAGE UP],[PAGE DOWN], and the
[CURSOR] keys can be used to move about in the menu. The table is browsed from its current position, so
you must issue a GOTO TOP if you want to browse the entire table, or alternatively you could use SEEK to
position to a specific record. If the target table for a MENU BROWSE is indexed, then pressing the
[FIND] key results in a SEEK being performed rather than a sequential (LOCATE) search.

AT <expN1><expN2> TO <expN3>,<expN4>
The menu may be optionally positioned with at the specified row and coordinates, otherwise the menu is
centered on the screen.

Keyword Description
BOLD The menu frame is highlighted.
CLEAR The inside of the menu frame is cleared before displaying the menu.

COMMAND <expC4> | The command <expC4> and all selections made from the menu are displayed
in the action line (line 22).

FOR <condition> Only the records that satisfy the <condition> criteria are retrieved from the
tables.

LABEL <expC2> The specified character string <expC2> is displayed at the top of the menu
frame.

OFF The display of messages in the message line is disabled.

POPUP The screen is automatically saved when the menu is displayed, and restored
when the menu is cleared.

QUIT When the QUIT option is specified, the [ABANDON] key exits the menu.

306

SELECT <expC3> Multiple selections can be made. The MENUITEM() function can be used to
return a string containing the selections made, each separated with <expC3>.
Selections are made by placing the cursor on the required menu item and
pressing the [RETURN] key. Once all the required selections have been
made, the [EXIT/SAVE] key is used to save them or the [ABANDON] key
will cancel them. The ASTORE() function can be used to place all the
selections into separate array items.

WHILE <condition> Records are retrieved while the <condition> is true. The record pointer should
be positioned on a record matching the condition before issuing the MENU
BROWSE.

The user can move to choices in the menu using the [DOWN ARROW] or [UP ARROW] keys to highlight
the choice, or by typing the letters of the search string. As each letter is typed the highlight bar is moved to
the first choice matching the typed letters. To reset the buffer, press {CTRL} and {Y} simultaneously.

Pop-up choice lists which use MENU BROWSE can be defined globally in the Applications Data
Dictionary (see CREATE), or by using the CHOICELIST clause with the @...GET command. Choice lists
may also be associated with @...GETS at the forms level as part of a validation procedure.

The MENU() function, when used with the MENU BROWSE command, returns the record number of the
selected record. The MENUITEMY() function returns the text of the selected menu item line. The length of
the returned menu item is the total length of the concatenated fields in <expC1>, or the width of the menu
as specified in the <row, col> coordinates. MENU BROWSE does not cause the record pointer to move to
the selected record.

Example

// Menu browse wp files
proc menu-browse
if filecount(**.”+m_filetype) = 0
dialog box “No files in this directory. Press any key to continue.”
else
go top
set message to “Select file required.;
Press ~K to Find or ~G to Abandon.”
menu browse file + descript + who_c¢ +;
dtoc(date_c) + “” + who_m + dtoc(date_m);
at 3,0 to 18,79; label “File Name;

Description-------------- "y
“Created by----Date----Modified by--Date---":
clear;
bold:
quit

if .not. empty(menuitem())
m_file=left(menuitem(),10)
seek m->m_file
endif
endif
return

Products
Recital Mirage Server, Recital Terminal Developer

307

MENU COMMAND

Class
Menus

Purpose
Display a character string in the action line

Syntax
MENU COMMAND <expC>

See Also
@...MENU, MENU, MENU AT, MENU FIELDS, MENU FILES, MENU FORMAT, MENU FRAME,
MENU QUERY, MENU SCOPE

Description

The MENU COMMAND can be used by developers to give further information to the user about the
operation that is taking place. It displays the character expression <expC>, preceded by the string
“Command: ” in the action line (line22 on a 25-line terminal).

Example
Menu command “SELECT * WHERE”

Products
Recital Terminal Developer

308

MENU FIELDS

Class
Menus

Purpose

Select a field list from a menu

Syntax
MENU FIELDS

[AT <expN1><expN2>]

[BOLD]
[CLEAR]

[COMMAND <expC1>]

[INDEX]
[LABEL <expC2>]
[NUMERIC]

[OFF]

[POPUP]

[QUIT]

[SELECT <expC3>]
[SKIP]

See Also

@...MENU, MENU, MENU AT, MENU COMMAND, MENU FILES, MENU FORMAT, MENU
FRAME, MENU QUERY, MENU SCOPE

Description

The MENU FIELDS command displays a menu of fields from the current table.

AT <expN1>,<expN2>]

The menu can optionally be positioned at the specified row <expN1> and column <expN2> positions.

Keyword Description

BOLD The menu frame is highlighted.

CLEAR The inside of the menu frame is cleared before displaying the menu.

COMMAND <expC1> | The command <expC1> and all selections made from the menu are displayed
in the action line (line 22).

INDEX All of the selected fields are converted to character data types suitable for
indexing on mixed data types.

LABEL <expC2> The specified character string <expC2> is displayed at the top of the menu
frame.

NUMERIC Only the numeric fields from the table will be included in the menu.

OFF The display of messages in the message line is disabled.

POPUP The screen is automatically saved when the menu is displayed, and restored
when the menu is cleared.

QUIT When the QUIT option is specified, the [ABANDON] key exits the menu.

SELECT <expC3> Multiple selections can be made. The MENUITEMY() function can be used to

return a string containing the selections made, each separated with <expC3>.
Selections are made by placing the cursor on the required menu item and
pressing the [RETURN] key. Once all the required selections have been
made, the [EXIT/SAVE] key is used to save them or the [ABANDON] key
will cancel them. The ASTORE() function can be used to place all the

309

selections into separate array items.

SKIP

Selections can be made from more than one table. The [CURSOR RIGHT]
key skips to the next workarea, and the [CURSOR LEFT] key skips to the
previous workarea. Names of fields from other workareas will be prefixed
with the workarea alias pointer, e.g. patrons->name.

If the SET DESCRIPTIONS command is set to ON, field descriptions are listed within the menu instead of
field names. The currently selected field name, type and width are displayed above the field descriptions.

When SET DESCRIPTIONS is set to OFF, the reverse is true: the currently selected field description
displays above the menu of field names, types and widths.

The following keys are active in MENU FIELDS:

Key Action
[PAGE DOWN] Display the next page of fields
[PAGE UP] Display the previous page of fields

[CURSOR UP]

Skip to the previous field or previous page if on the top field of a page

[CURSOR DOWN]

Skip to the next field or next page if on the last field of a page

[CURSOR RIGHT]

Display fields from next workarea

[CURSOR LEFT]

Display fields from previous workarea

[RETURN]

Select a field

[ABANDON]

Discard selected field and exit

[EXIT/SAVE]

Exit with selected fields

On exit from MENU FIELDS the MENUITEMY() function will return the field list as a character
expression. If the [JABANDON] key was pressed, or no fields were selected, then MENUITEM() will
return a null string and MENU() will return —1.

Example
menu fields at 2,0;

label “Fields” select

skip

store menuitem() to fieldlist

display all &fieldlist

Products

Recital Terminal Developer

310

MENU FILES LIKE

Class
Menus

Purpose

Display a menu of files for selection

Syntax

MENU FILES LIKE <skeleton>
[AT <expN1><expN2> TO <expN3>,<expN4>]

[BOLD]
[CLEAR]

[COMMAND <expC1>]

[INDEX]

[LABEL <expC2>]
[OFF]

[POPUP]

[QUIT]

[SELECT <expC3>]
[TRIM]

See Also

@...MENU, MENU, MENU AT, MENU COMMAND, MENU FIELDS, MENU FORMAT, MENU
FRAME, MENU QUERY, MENU SCOPE

Description

The MENU FILES LIKE command displays a menu of file names that match the specified <skeleton>

pattern.

AT <expN1><expN2> TO <expN3>,<expN4>
The menu may be optionally positioned with the AT row <expN1>, column <expN2> and TO row
<expN4> clauses, otherwise the menu is centered on the screen.

Keyword Description

BOLD The menu frame is highlighted.

CLEAR The inside of the menu frame is cleared before displaying the menu.

COMMAND <expC1> | The command <expC1> and all selections made from the menu are displayed
in the action line (line 22).

INDEX Only index files that match the active table are displayed in the menu. As the
user scrolls through the menu items the corresponding index expression for
the index file is displayed in the message line.

LABEL <expC2> The specified character string <expC2> is displayed at the top of the menu
frame.

OFF The display of messages in the message line is disabled.

POPUP The screen is automatically saved when the menu is displayed, and restored
when the menu is cleared.

QUIT When the QUIT option is specified, the [ABANDON] key exits the menu.

SELECT <expC3> Multiple selections can be made. The MENUITEM() function can be used to

return a string containing the selections made, each separated with <expC3>.
Selections are made by placing the cursor on the required menu item and
pressing the [RETURN] key. Once all the required selections have been
made, the [EXIT/SAVE] key is used to save them or the [ABANDON] key

311

will cancel them. The ASTORE() function can be used to place all the
selections into separate array items.

TRIM File extensions are not displayed in the menu.

A file can be selected by entering the first character of its name. The following keys are also active in
MENU FILES LIKE:

Key Action

[PAGE DOWN] Display the next page of files
[PAGE UP] Display the previous page of files
[CURSOR UP] Skip to previous file

[CURSOR DOWN] Skip to next file

[RETURN] Select a file

[ABANDON] Discard selected files and exit
[EXIT/SAVE] Exit with selected files

On exit from MENU FILES LIKE the MENUITEMY() function will return the file list as a character string.
If the [ABANDON] key was pressed, or no files were selected, then MENUITEM() will return a null string
and MENU() will return -1.

Example

menu files like *.frm at 2,0 to 10,18;
label “Reports”

store menuitem() to rpt

report form &rpt to print

Products
Recital Terminal Developer

312

MENU FORMAT

Class
Menus

Purpose
Activate a menu format procedure

Syntax

MENU FORMAT <procedure> | <program> | (<expC1>)
[EXIT]

[HELPFILE <.hlp filename> | (<expC2>)]
[NOREFRESH]

[OFF]

[QUIT]

[SAVE]

[SCREENMAP]

See Also
@...MENU, MENU, MENU AT, MENU COMMAND, MENU FIELDS, MENU FILES, MENU FRAME,
MENU QUERY, MENU SCOPE

Description

The MENU FORMAT command executes a procedure or program containing a menu definition. The
MENU command provides full details of how menus are defined. The specified procedure should contain a
series of commands that are used to build a menu. A MENU FORMAT procedure differs from a normal
procedure in the following way: when a menu option is selected and its associated commands executed, the
MENU FORMAT procedure is automatically re-executed. MENU FORMAT procedures may call other
MENU FORMAT procedures from selected menu options, but not as a command when the MENU
FORMAT is being processed.

Keyword Description

EXIT The menu is exited after the first selection rather than being reactivated and
refreshed.

HELPFILE <.hlp> A helpful text file can be associated with the menu. The <.hlp filename> will

be displayed in a read-only window for viewing when the [HELP] key is
pressed. The window will be labeled “Operating instructions.” The file name
can be substituted with a <expC2>, enclosed in round brackets, which returns
a valid filename. If no file extension is specified, then “.hlp” is assumed. The
command, INSTRUCT, must be set ON when using this option.

NOREFRESH The menu is generated without executing the extra commands (e.g. frame
drawing) associated with it.

OFF The display of messages in the message line is disabled.

QUIT When the QUIT option is specified, the [ABANDON] key exits the menu.

SAVE The menu options are not released and can be activated by another MENU
command.

SCREENMAP The screen is handled as if SCREENMAP is ON even when it is OFF.

313

Example

procedure main

clear

@0,0 menu “Exit”;
command “quit”;
help “Exit the system.

@0,5 menu “Browse”;
command “browse”;

help “Browse the table.

return
menu format main

Products

Recital Mirage Server, Recital Terminal Developer

314

MENU FRAME

Class
Menus

Purpose
Draw a menu frame

Syntax
MENU FRAME AT <expN1><expN2> TO <expN3>,<expN4>
LABEL <expC>

See Also
@...MENU, MENU AT, MENU COMMAND, MENU FIELDS, MENU FILES, MENU FORMAT,
MENU QUERY, MENU SCOPE

Description
The MENU FRAME command draws a box with the specified label <expC> and can be used to ‘frame’ a
menu. The frame is positioned at the coordinates specified in <expN1> to <expN4>.

Example
Menu frame at 10,10 to 15,18 label “Options”
@13,11 menu “Exit”;
help “Exit the system.”
@14,11 menu “Browse”;
command “browse”;
help “Browse the table.”
menu

Products
Recital Mirage Server, Recital Terminal Developer

315

MENU FROM

Class
Menus

Purpose
Display a framed menu of options from a database table file

Syntax

MENU FROM <mdf filename> | (<expC1>)
AT <expN1><expN2> TO <expN3>,<expN4>
[BOLD]

[CLEAR]

[EXIT]

[HELPFILE <hlp filename> | (<expC2>)]
[LABEL <expC3>]

[NOREFRESH]

[OFF]

[QUIT]

[SELECT <expC4>]

See Also
@...MENU, MENU AT, MENU COMMAND, MENU FIELDS, MENU FILES, MENU FORMAT,
MENU QUERY, MENU SCOPE

Description

The MENU FROM command uses the entries in a standard Recital table (but with a .mdf filename) to
construct a framed menu of options. The filename can be substituted with a <expC1>, enclosed in round
brackets, which returns a valid filename. The table has an extension of .mdf and must have the following
structure:

Field Type Width
MENU Character 25
COMMAND Character 80
HELP Character 80
NOREFRESH Logical 1

Each record in the database is equivalent to a command in the from: @...MENU <item> COMMAND
<command> HELP <help> [NOREFRESH]. When a menu is activated from an <.mdf filename> the items
in the database are vertically scrollable as with the MENU FILES command. The command list specified
with a menu item can be another MENU FROM command, or a DO <procedure> command which
activates another menu using any of the set of menu commands available in the Recital 4GL.

AT <expN1><expN2> TO <expN3>,<expN4>
The upper left corner of the menu is positioned on the coordinates <expN1> and <expN2>, and the lower
right corner of the menu is positioned on the coordinates <expN3> and <expN4>.

Keyword Description

BOLD The menu frame is highlighted.

CLEAR The inside of the menu frame is cleared before displaying the menu.

EXIT The menu is exited following selection of a menu item and execution of the
associated commands.. If the NOEXIT command is executed as one of the

316

commands associated with a menu item, then the menu will not be exited.

HELPFILE <.hlp>

A helpful text file can be associated with the menu. The <.hlp filename> will
be displayed in a read-only window for viewing when the [HELP] key is
pressed. The window will be labeled “Operating instructions.” The file name
can be substituted with a <expC2>, enclosed in round brackets, which returns
a valid filename. If no file extension is specified, then “.hlp” is assumed. The
command, INSTRUCT, must be set ON when using this option.

LABEL <expC3> The specified character string <expC3> is displayed at the top of the menu
frame.

NOREFRESH The menu is generated without executing the extra commands (e.g. frame
drawing) associated with it.

OFF The display of messages in the message line is disabled.

QUIT When the QUIT option is specified, the [ABANDON] key exits the menu.

SELECT <expC4> Multiple selections can be made. The MENUITEM() function can be used to
return a string containing the selections made, each separated with <expC4>.
Selections are made by placing the cursor on the required menu item and
pressing the [RETURN] key. Once all the required selections have been
made, the [EXIT/SAVE] key is used to save them or the [ABANDON] key
will cancel them. The ASTORE() function can be used to place all the
selections into separate array items.

Example

create menufile

rename menufile.dbf menufile.mdf
menu from menufile at 1,35 to 10,45;

label “Options”

Products

Recital Mirage Server, Recital Terminal Developer

317

MENU QUERY

Class
Menus

Purpose
Construct a query condition through a series of menus

Syntax

MENU QUERY

[AT <expN1>[TO <expN2>]]

[BOLD]

[CLEAR]

[COMMAND <expC1>]

[HELPFILE <.hlp filename> | (<expC2>)]
[OFF]

[POPUP]

[SCREENMAP]

See Also
@...MENU, MENU AT, MENU COMMAND, MENU FIELDS, MENU FILES, MENU FORMAT,
MENU QUERY, MENU SCOPE

Description

The MENU QUERY command displays a series of four menus with a top line at the specified row
<expN1>. The optional AT clause is used to specify the beginning row of the display. The menu query
display starts on row 2 by default. The maximum row number for the AT clause is 9 for 24 line terminals,
and 10 for 25 line terminals. The TO <expN2> clause is used to specify an ending row number for the
FIELDS MENU. The height of the FIELDS MENU will adjust to row numbers specified with the AT and
TO clauses.

The four menus displayed are the FIELDS MENU, the OPERATOR MENU, the CONNECTOR MENU,
and the QUERY FILES MENU. Selections from these menus construct a query condition for the active
table. When the menus display, the FIELDS MENU is automatically activated.

The FIELDS MENU contains fields from the active table. Selections from this menu provide the query
condition with a specific field to select certain records from the table. If the SET DESCRIPTION
command is set to ON, field descriptions are listed within the menu instead of field names. The currently
selected field name, type and width are displayed above the field descriptions. When SET
DESCRIPTIONS is set to OFF, the reverse is true: the currently selected field description is displayed
above the menu of field names, types, and widths. After you have selected a field, the OPERATOR MENU
is activated to allow specification of a value for that field.

The OPERATOR MENU contains operators with which to limit record selection by specifying a field
value. After an operator is selected from this menu, a dialog box appears requesting a field value. Pressing
the [HELP] key from this dialog box displays a pop-up choice list of field values from the currently active
table. Character field values are automatically converted to upper case and enclosed in quotation marks.

The OPERATOR MENU also accepts specification of a character field name rather than a field value.
When a field name is entered, the query condition compares the value of the field selected from the
FIELDS MENU, and the value of the field name entered in the dialog box. The MENU QUERY command
will only compare the values of two character fields.

318

The CONNECTOR MENU allows you to either mark the end of the query, or add another condition. If
anything other than <End of query> is selected, the cursor returns to the FIELDS MENU.

The QUERY FILES MENU allows you to either save the current query condition to a file, or load an
existing query file. The QUERY FILES MENU is accessed by pressing the [MENUBAR] key. Query file
names have an extension of “.qry”.

Keyword Description
BOLD The menu frame is highlighted.
CLEAR The inside of the menu frame is cleared before displaying the menu.

COMMAND <expC1> | The action line (line 22) is updated with the query condition as it is being
constructed. The expression <expC1> displays at the beginning of the query
condition. <expC1> should include a blank space at the end to separate the
command from the query condition.

HELPFILE <.hlp> A helpful text file can be associated with the menu. The <.hlp filename> will
be displayed in a read-only window for viewing when the [HELP] key is
pressed. The window will be labeled “Operating instructions.” The file name
can be substituted with a <expC2>, enclosed in round brackets, which returns
a valid filename. If no file extension is specified, then “.hlp” is assumed. The
command, INSTRUCT, must be set ON when using this option.

OFF The display of messages in the message line is disabled.

POPUP The screen is automatically saved when the menu is displayed, and restored
when the menu is cleared.

SCREENMAP The screen is handled as if SCREENMAP is ON even when it is OFF.

Menu items can be selected by entering the item’s first character. The following keys are active in the
MENU QUERY:

Key Action

[PAGE DOWN] Display next page of fields when in the FIELDS MENU
[PAGE UP] Display previous page of fields when in the FIELDS MENU
[CURSOR UP] Skip to previous menu item

[CUSROR DOWN] Skip to next menu item

[CURSOR LEFT] If in the FIELDS MENU, then skip to previous workarea
[CURSOR RIGHT] If in the FIELDS MENU, then skip to next workarea
[RETURN] Select a menu item

[ABANDON] Discard query and exit

[EXIT/SAVE] Exit with constructed query

Any character entered in response to a prompt will normally be converted to upper case and quotation
marks will be added automatically at the start and end of the string. To enter a query that is case sensitive
and contains lower case characters, it is necessary to enclose the string with quotation marks (“”).

On exit from MENU QUERY, the MENUITEM() function will return the correctly constructed query
condition as a character string. 1f the [ABANDON] key was pressed, or no query was constructed, then
MENUITEMY() will return a null string and MENU() will return —1.

Example
menu query command “REPORT FOR”
store menuitem() to query
if query # “”
query = “FOR ” + query
endif
report form patrons &query to print

319

Products
Recital Terminal Developer

320

MENU SCOPE

Class
Menus

Purpose

Display a popup menu for choosing record selection scope

Syntax
MENU SCOPE

[AT<expN1>,<expN2>]

[HELPFILE <.hlp filename> | (<expC1>)]

[LABEL <expC2>]

[OFF]
[POPUP]

See Also

@...MENU, MENU AT, MENU COMMAND, MENU FIELDS, MENU FILES, MENU FORMAT,

MENU QUERY

Description

The MENU SCOPE command displays a menu containing possible record selection scopes.

Scope Description
Default scope of the operation, e.g. FOR is all, WHILE is
rest.

Next Process next n records. Enter number of records to process,
starting from current record.

All Process all records.

Record Process selected record. Enter the record number of the
record to process.

Rest Process all remaining records, starting from current record.

First Process first n records. Enter number of records to process,
starting from top of file.

AT <expN1><expN2>

Position top left hand corner of menu at these row, column coordinates.

Keyword

Description

HELPFILE <.hlp>

A helpful text file can be associated with the menu. The <.hlp filename> will
be displayed in a read-only window for viewing when the [HELP] key is
pressed. The window will be labeled “Operating instructions.” The file name
can be substituted with a <expC2>, enclosed in round brackets, which returns
a valid filename. If no file extension is specified, then “.hlp” is assumed. The
command, INSTRUCT, must be set ON when using this option.

LABEL <expC2> The specified character string <expC2> is displayed at the top of the menu
frame.

OFF The display of messages in the message line is disabled.

POPUP The screen is automatically saved when the menu is displayed, and restored

when the menu is cleared.

The following keys are active in the MENU SCOPE:

321

Key Action

[CURSOR UP] Skip to previous menu item
[CURSOR DOWN] Skip to next menu item
[RETURN] Select a menu item
[ABANDON] Abandon selection
[EXIT/SAVE] Exit without selecting a scope

You can select a menu item by entering its first character.

On exit from MENU SCOPE the MENUITEM() function will return the record selection scope. If the
[ABANDON] key was pressed, or no scope was selected, then MENUITEM() will return an empty string
“ and MENU() will return -1.

Example

menu scope at 2,0

store menuitem() to scope

report form patrons &scope to print

Products
Recital Mirage Server, Recital Terminal Developer

322

MENU TO

Class
Menus

Purpose
Return a number according to the menu item chosen

Syntax
MENU TO <memvar>

See Also
@...MENU, MENU AT, MENU COMMAND, MENU FIELDS, MENU FILES, MENU FORMAT,
MENU QUERY, MENU SCOPE

Description

The MENU TO <memvar> command returns a number from 1 to n, according to the menu item selected,
and zero if [ABANDON] was pressed. The companion command is @<expN>,<expN> PROMPT “item”
MESSAGE “text”.

The READVAR() function may be used to return the current <memvar>.

The MENU TO <memvar> command starts at the <memvar> position within the range of 1 and the number
of @...MENU items defined in the menu.

The COL() and ROW() function may be used to return the coordinates of the current MENU TO
<memvar>.

These commands are supported for compatibility with other products. It is far better to use
@...MENU...COMMAND for this purpose.

Example
@10,10 prompt “edit”;
message “edit a record.”
@11,10 prompt “append”;
message “add a record.”
@12,10 prompt “delete”;
message “delete a record.”
menu to choice
do case
case choice=1
do editfunc()
case choice=2
do appendfunc()
case choice=3
do deletefunc()
otherwise dialog box “No choice.”
endcase

Products
Recital Mirage Server, Recital Terminal Developer

323

MESSAGE

Class
Screen Forms

Purpose
Display message in the message line, and halt program execution until a key is pressed

Syntax
MESSAGE <expC> [QUERY]

See Also
DIALOG BOX, SET MESSAGE, SET STATUS

Description

The MESSAGE command displays the specified character string on line 24, and waits for any key to be
pressed before continuing. 1f SET STATUS is OFF then the message will not be displayed, but rather the
bell will sound on the terminal. Whenever the message is displayed, the current cursor position is saved,
and then restored after a key has been pressed. The message is automatically erased from line 24 after a
key has been pressed. To change the MESSAGE line from line 24, set MESSAGE ON, STATUS OFF and
SCOREBOARD OFF. Then use the SET MESSAGE AT and SET MESSAGE TO commands to
reposition the message line.

QUERY
If the QUERY keyword is specified, then the message is displayed in a YES/NO dialog box. The response
made at the keyboard can be trapped using the LASTKEY/() function.

Example
seek “BALLET”
if not found()
message “Record not found. Continue?” query
endif
if lastkey()=asc(“N")
quit
endif

Products
Recital Mirage Server, Recital Terminal Developer

324

METHOD

Class
Applications

Purpose
External method definition for a class

Syntax
METHOD
<class-name> :: <method-name>

See Also
CLASS, PARAMETER, RETURN

Description

An object encapsulates methods that perform operations on the object. Encapsulation hides methods within
an object, and makes the object into a fully self-contained operational unit. The METHOD command
allows you to define an external method outside the CLASS...ENDCLASS construct. This allows for a
procedural library of methods, or for each method to be stored in a separate physical file. An external
method can have a parameter list defined with the PARAMETER command. The RETURN command

should be used to define the end of the external method.

Keyword Description

<class-name> The <class-name> to which the method belongs.
" The :: operator is used as a separator between the class name and method name.

<method-name> | A unique <method-name> of up to 32 characters must be specified. This will be
the name used in the METHOD clause in the CLASS...ENDCLASS construct.

Example

class myclass

I/ Define properties
property color as character
property size as numeric

/I Define external methods
method display external

// Define internal methods
method update

return

endclass

I/ External method for 'myclass' class

method myclass::display
parameter whatever

return

Products

Recital Database Server, Recital Mirage Server, Recital Terminal Developer

325

MODIFY BRIDGE

Class
Terminal Developer Development Tools

Purpose
Full screen modification of a bridge definition file through a form

Syntax
MODIFY BRIDGE <brg filename> | (<expC>)

See Also
CREATE BRIDGE, SET BRIDGE, USE

Description

The MODIFY BRIDGE command is a full screen command used to modify an existing bridge definition
<.brg filename>. The filename can be substituted with a <expC>, enclosed in round brackets, which
returns a valid filename. If no file extension is specified, then “.brg” will be used.

NOTE: Bridge files can also be created and modified via an “ini’ file for use in other Recital products.
See the CREATE BRIDGE command for details.

Example

modify bridge rms_patrons

set bridge to rms_patrons

Products
Recital Terminal Developer

326

MODIFY COMMAND

Class
Terminal Developer Development Tools

Purpose
Execute a text editor to edit program files

Syntax
MODIFY COMMAND <prg filename> | (<expC>)

See Also
ED, TEXTEDIT(), VI

Description

MODIFY COMMAND provides the facility to create or modify program files and other text files. The
filename can be substituted with a <expC>, enclosed in round brackets, which returns a valid filename. If
no file extension is present in the file name, then *.prg’ is used.

The default editors are: the “vi’ editor under UNIX and Linux; the ‘edt’ editor under VAX/VMS. You may
override these defaults using the SET TEDIT TO command.

MODIFY COMMAND is a synonym of the ED and VI commands.
Example

modify command myprogram

ed myprogram

Vi myprogram

Products
Recital Terminal Developer

327

MODIFY FILE

Class
Terminal Developer Development Tools

Purpose
Execute a text editor to edit text files

Syntax
MODIFY FILE <txt filename> | (<expC>)

See Also
SET FORMAT TO, CREATE SCREEN, MODIFY COMMAND, VI, ED

Description

MODIFY FILE provides the facility to create or modify text files. The filename can be substituted with a
<expC>, enclosed in round brackets, which returns a valid filename. If no file extension is present in the
file name, then “.txt’ is used.

The default editors are: the “vi’ editor under UNIX and Linux; the “‘edt’ editor under VAX/VMS. You may
override these defaults using the SET TEDIT TO command.

Example
modify file screen.fmt

Products
Recital Terminal Developer

328

MODIFY GATEWAY

Class
Data Connectivity

Purpose
Full screen modification of a gateway definition file through a form

Syntax
MODIFY GATEWAY <.gtw filename> | (<expC>)

See Also
CREATE GATEWAY, SET GATEWAY, GATEWAY()

Description

The MODIFY GATEWAY command is a full screen command used to modify an existing gateway
definition <.gtw filename>. The filename can be substituted with a <expC>, enclosed in round brackets,
which returns a valid filename. If no file extension is specified, then “.gtw” will be used.

See the CREATE GATEWAY command for details.

Example
modify gateway ora_employees
use ora_employees.gtw

Products
Recital Terminal Developer

329

MODIFY LABEL

Class
Terminal Developer Development Tools

Purpose
Full screen modification of a label definition file through a form

Syntax
MODIFY LABEL <Ibl filename> | (<expC>)

See Also
CREATE LABEL, LABEL

Description

The MODIFY LABEL command is a full screen command used to modify existing label format files. The
filename can be substituted with a <expC>, enclosed in round brackets, which returns a valid filename. If
no file extension is specified, then “.1b1” is used.

See the CREATE LABEL command for full details.
Example

use patrons

modify label operalabel

label form operalabel for event = “OPERA”

Products
Recital Terminal Developer

330

MODIFY MEMO

Class
Fields and Records

Purpose
Open a memo in the active window

Syntax

MODIFY MEMO <memofield>
[NOWAIT]

[WINDOW <window name>]

See Also
SET WINDOW OF MEMO, MEMOEDIT()

Description

The MODIFY MEMO command opens the memo field of the current table record in the currently active
window. A window is an area of the screen designated for output and input. Windows are defined with the
DEFINE WINDOW command, and are activated with the ACTIVATE WINDOW command. There is no
limit to the number of defined windows. Before issuing the MODIFY MEMO command, you must
designate a window in which to open memos with the SET WINDOW OF MEMO to <window-name>
command. The <window-name> is the name of a window as specified with the DEFINE WINDOW
command. The <memofield> is the name of the field as specified in the structure of the table.

When MODIFY MEMO is issued, the active or designated window displays the window and allows users
to make changes to the memo. Program execution pauses until the memo is exited. After a memo is exited,
control returns to the currently executing program or to the interactive command prompt.

NOWAIT
When MODIFY MEMO is issued with the NOWAIT keyword, control returns immediately to the
executing program or the interactive command prompt without waiting for the user to edit the memo.

WINDOW <name>

You may specify a pre-defined window other than the currently active window by using the WINDOW
clause. The <window name> must be the name of a window that has been defined with the DEFINE
WINDOW command. Using this clause activates the specified window, and deactivates the currently
active window.

Example

w = woutput()

activate window browse
browse noclear nowait nomenu
activate window memo

modify memo notes nowait
activate window edit

edit noclear nowait nomenu
activate window &w

Products
Recital Terminal Developer

331

MODIFY REPORT

Class
Terminal Developer Development Tools

Purpose
Full screen modification of a report format file through a form

Syntax
MODIFY REPORT <frm filename> | (<expC>)

See Also
CREATE REPORT, REPORT, TREPORT

Description

The MODIFY REPORT command is a full screen command used to modify existing report format files.
The filename can be substituted with a <expC>, enclosed in round brackets, which returns a valid filename.
If no file extension is specified, then “.frm” is used.

See the CREATE REPORT command for more details.
Example

use patrons index names, events

modify report concert

report form concert for event = “CONCERT”

Products
Recital Terminal Developer

332

MODIFY SCREEN

Class
Terminal Developer Development Tools

Purpose
Full screen modification of screen format file

Syntax
MODIFY SCREEN <scr filename> | (<expC>)

See Also
@...GET, @...MENU, CREATE SCREEN, EDIT, CHANGE, APPEND, QUERY, SET FORMAT, SET
QUERYMODE, SET UPDATE

Description

The MODIFY SCREEN command is a full screen command used to modify an existing screen format file.
The filename can be substituted with an <expC>, enclosed in round brackets, which returns a valid
filename. If no file extension is specified, then “.scr’ will be used. This command executes the Forms
Designer.

See the CREATE SCREEN command for more details.
Example

modify screen editscreen

set form to editscreen

edit

Products
Recital Terminal Developer

333

MODIFY STRUCTURE

Class
Terminal Developer Development Tools

Purpose
Full screen modification of a table structure through a form

Syntax
MODIFY STRUCTURE [<dbf filename> | (<expC>)]

See Also
CREATE, CREATE FROM, COPY STRUCTURE EXTENDED, SET DESCRIPTIONS, SET
MCONFIRM, SET RELATION

Description

The MODIFY STRUCTURE command is a full screen command used to modify the structure of table <dbf
filename>. The filename can be substituted with a <expC>, enclosed in round brackets, which returns a
valid filename. If no <dbf filename> is specified the command will work in the current workarea. If no
table is open in the current workarea, you will be prompted for a filename. If no file extension is specified,
then “.dbf” will be used.

If the command MCONFIRM is set OFF, the MODIFY STRUCTURE menu bar operates as pulldown
menus.

When a table structure is modified, a backup of the old table, with the file name extension “.bak’ is created.

When modifying a table structure, the table is automatically reloaded. Any changes to the structure of the
table cause records from the old table to be appended into the new table. Since the APPEND command
only copies fields which exist in both tables, and are of the same data type, you should use MODIFY
STRUCTURE twice if you want to change a field name as well as the field width. APPEND triggers
defined in the data dictionary will be called for each record as the table is reloaded after a MODIFY
STRUCTURE operation. When the width of a character field is increased, the remainder of the field will
be padded with blanks. When the width of a character field is decreased, the field will be truncated to the
new width.

Changes of incompatible data types cause the old field contents to be discarded.(e.g. changing from a Date
field to a Numeric field.)

See the CREATE command for more details.
Example
use events

modify structure

Products
Recital Terminal Developer

334

MODIFY VIEW

Class
Terminal Developer Development Tools

Purpose
Full screen modification of a view definition file through a form

Syntax
MODIFY VIEW <vue filename> | (<expC>)

See Also
CREATE VIEW, SET VIEW

Description

The MODIFY VIEW command is a full screen command used to modify an existing view definition file.
The filename can be substituted with a <expC>, enclosed in round brackets, which returns a valid filename.
If no file extension is specified, then “.vue” is assumed.

See the CREATE VIEW command for full details.
Example
modify view patrons

set view to patrons

Products
Recital Terminal Developer

335

MOVE WINDOW

Class
Screen Windows

Purpose
Move a pre-defined window to a new position

Syntax
MOVE WINDOW <window-name> TO <row, col>| BY <expN1, expN2> | CENTER | SCREEN

See Also
RESIZE WINDOW, WROWS(), WCOLS()

Description

The MOVE WINDOW command is used to move a window to a new screen position. A window is an area
of the screen designated for output and input. Windows are defined with the DEFINE WINDOW
command, and are displayed to the screen with the ACTIVATE WINDOW or SHOW WINDOW
commands. There is no limit to the number of defined windows. The <window-name> is the name of the
window as defined in the DEFINE WINDOW command. A window definition must include the FLOAT
keyword for the window to be moveable.

Windows can be moved using the TO <row, col> clause, using the BY <expN1, expN2> clause or centered
using the CENTER keyword. The TO clause moves the window so that the upper left corner is positioned
at the specified row and column coordinates. The BY clause moves the upper right corner of the window
vertically by the number of rows specified in <expN1>, and horizontally by the number of columns
specified in <expN2>. The CENTER keyword centers the window in the screen.

The SCREEN keyword is included for language compatibility only.

Example

procedure move_up

move window browse by -1,0
return

procedure move_down

move window browse by 1,0
return

procedure move_left

move window browse by 0,-1
return

procedure move_right

move window browse by 0,1
return

set procedure to movewin
set key -1 to move_up
set key -2 to move_down
set key -3 to move_right
set key -4 to move_left

Products
Recital Mirage Server, Recital Terminal Developer

336

NOEXIT

Class
Menus

Purpose
Cause control to remain within a menu after a menu option has been selected

Syntax
NOEXIT

See Also
@...MENU, MENU, MENU AT, MENU COMMAND, MENU FIELDS, MENU FILES, MENU
FORMAT, MENU FRAME, MENU QUERY, MENU SCOPE

Description

The NOEXIT command can be used in conjunction with the MENU EXIT command to cause control to
remain within the menu after a command is executed. Normally, when the EXIT keyword is used with the
MENU command, the menu is exited after a menu item is selected and the associated commands executed.
If the NOEXIT command is executed as one of the commands associated with a menu item, then the menu
will not be exited.

Example

procedure calendar
calendar menu at 2,27
noexit

return

Products
Recital Mirage Server, Recital Terminal Developer

337

NOTE

Class
Applications

Purpose
Comment line

Syntax
NOTE <expC>

See Also
&&, *

Description
The NOTE command allows comment lines to be inserted in programs to enhance their readability and ease
of maintenance. The NOTE command can not be placed on the same line as an executable command.

Example
NOTE open the table
use patrons index names

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

338

ON BAR

Class
Menus

Purpose
Execute a command when a bar is highlighted

Syntax
ON BAR <expN> OF <pop-up> [<command>]

See Also

ACTIVATE POPUP, BAR(), DEACTIVATE POPUP, DEFINE BAR, DEFINE POPUP, MENU FILES
LIKE, ON POPUP, ON SELECTION BAR, ON SELECTION POPUP, POPUP(), PROMPT(), SHOW
POPUP, SET COMPATIBLE

Description

The ON BAR command is used to specify commands which will execute when the specified bar is
highlighted. A bar is a menu option in a Xbase style pop-up menu. These types of menus are created with
the DEFINE POPUP and DEFINE BAR commands. The bar is identified by the numeric expression
<expN> that was assigned with the DEFINE BAR command.

Used without a specified command, the ON BAR command disables previously specified commands. The

command SET COMPATIBLE should be ON when using Xbase style menus. Commands specified by the
ON POPUP command execute on highlighted bars that do not have an ON BAR command associated with
them.

<command>

The pop-up menu is identified by the name <pop-up> that was assigned with the DEFINE POPUP
command. The specified command may be any Recital/4GL command. To specify a command that will
execute when a bar is selected, see the ON SELECTION BAR command.

Example
define menu main
define pad exit of main;
prompt “\<Exit” at 0,0
define pad filelist of main;
prompt “\<Files” at 0,6
on pad filelist of main activate popup files
on selection pad exit of main deactivate menu

define popup files from 1,06

define bar 1 of files prompt “\<Programs>”
define bar 2 of files prompt “\<Databases”
on bar 1 of files dialog box “Enter Bar 1”

on bar 2 of files dialog box “Enter Bar 2”

on exit bar 1 of files dialog box “Exit Bar 1”
on exit bar 2 of files dialog box “Exit Bar 2”
activate menu main

Products
Recital Mirage Server, Recital Terminal Developer

339

ON ERROR

Class
Applications

Purpose
Trap program errors

Syntax
ON ERROR [<command>]

See Also
ON ESCAPE, ON KEY, RETRY, ERRNO(), ERROR(), MESSAGE(), SET ONERROR

Description

The ON ERROR command causes the specified <command> to be executed if an error is encountered in a
program. If ON ERROR is specified without a <command>, then the default Recital/4GL behavior will be
restored. By default, the Recital/4AGL will stop execution at the error and an error.mem file will be created

<command>

The <command> can be any Recital/4GL command. After an error is encountered, the ERROR() function
will return the error number, and the MESSAGE () function will return the error message. Specifying an
“* as the command causes any errors to be ignored, so should be used with caution. The RETRY
command is often used with the ON ERROR trapping facility.

Example

procedure badfile

on error

set message to “File does not exist.”
return to master

on error do badfile
use patrons

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

340

ON ESCAPE

Class
Keyboard Events

Purpose
Trap the interrupt key

Syntax
ON ESCAPE [<command>]

See Also
ON ERROR, ON KEY, SET ESCAPE, SET DOESCAPE

Description
The ON ESCAPE command causes the specified <command> to be executed if the interrupt key is pressed.
If ON ESCAPE is specified without a <command>, then the interrupt key will not be trapped.

<command>
The <command> can be any Recital/4GL command.

Example

procedure interrupt

on escape

set message to “Processing canceled.”
close tables

erase temp.tmp

return to master

on escape do interrupt

Products
Recital Terminal Developer

341

ON EXIT BAR

Class
Menus

Purpose
Execute a command when the cursor moves off of a pop-up menu bar

Syntax
ON EXIT BAR <expN> OF <pop-up> [<command>]

See Also

ACTIVATE POPUP, BAR(), DEACTIVATE POPUP, DEFINE BAR, DEFINE POPUP, ON BAR, ON
POPUP, ON SELECTION BAR, ON SELECTION POPUP, POPUP(), PROMPT(), SHOW POPUP, SET
COMPATIBLE

Description

The ON EXIT BAR command is used to specify commands which will execute when the cursor moves off
of the specified bar. A bar is a menu option in an Xbase style pop-up menu. These types of menus are
created with the DEFINE POPUP and DEFINE BAR commands. The bar is identified by the numeric
expression <expN> that was assigned with the DEFINE BAR command. The pop-up menu is identified by
the name <pop-up> that was assigned with the DEFINE POPUP command. The command SET
COMPATIBLE should be ON when using Xbase style menus.

<command>

The specified command may be any Recital/4GL command. To specify a command that will execute when
a bar is selected, see the ON SELECTION BAR command. Used without a specified command, the ON
EXIT BAR command disables previously specified commands. Commands specified with the ON EXIT
POPUP command execute on highlighted bars that do not have an ON EXIT BAR command associated
with them.

Example

define menu main

define pad exit of main;
prompt “\<Exit” at 0,0

define pad filelist of main;
prompt “\<Files” at 0,6

on pad filelist of main activate popup files
on selection pad exit of main deactivate menu

define popup files from 1,06
define bar 1 of files prompt “\<Programs ”
define bar 2 of files prompt “\<Databases”

on bar 1 of files dialog box “Enter Bar 1”

on bar 2 of files dialog box “Enter Bar 2”

on exit bar 1 of files dialog box “Exit Bar 1”
on exit bar 2 of files dialog box “Exit Bar 2”
activate menu main

Products
Recital Mirage Server, Recital Terminal Developer

342

ON EXIT MENU

Class
Menus

Purpose
Execute a command when the cursor exits an Xbase style menu pad

Syntax
ON EXIT MENU <menu name> [<command>]

See Also

ACTIVATE MENU, DEFINE MENU, DEFINE PAD, ON BAR, ON EXIT BAR ON EXIT PAD, ON
MENU, ON PAD, ON SELECTION MENU, ON SELECTION PAD, SET COMPATIBLE, SET
SCOREBOARD

Description

The ON EXIT MENU command is used to specify commands which will execute when the cursor moves
off of menu bars that do not have an ON EXIT PAD command associated with them. A pad is a menu
option in a Xbase style menu. These types of menus are created with the DEFINE MENU and DEFINE
PAD commands. The menu is identified by the name <menu name> that was assigned with the DEFINE
MENU command. The command SET COMPATIBLE should be ON when using Xbase style menus.

<command>

The specified command may be any Recital/4GL command. To specify a command that will execute when
an individual pad is selected, see the ON SELECTION PAD command. To specify a command to execute
when an individual pad is highlighted, use the ON PAD command. Commands specified by an ON EXIT
PAD command override commands specified by the ON EXIT MENU command. Used without a specified
command, the ON EXIT MENU command disables previously specified commands.

Example

define menu main

define pad exit of main;
prompt “\<Exit” at 0,0

define pad filelist of main;
prompt “\<Files” at 0,6

on menu main dialog box “On Menu”
on exit menu main dialog box “On Exit Menu”
activate menu main

Products
Recital Mirage Server, Recital Terminal Developer

343

ON EXIT PAD

Class
Menus

Purpose
Execute a command when a menu pad is exited

Syntax
ON EXIT PAD <pad name> OF <menu name> [<command>]

See Also

ACTIVATE MENU, DEACTIVATE MENU, DEFINE MENU, DEFINE PAD, ON BAR, ON EXIT BAR,
ON EXIT MENU, ON MENU, ON PAD, PAD(), ON SELECTION PAD, SET SCOREBOARD, SET
COMPATIBLE

Description

The ON EXIT PAD command is used to specify commands which will execute when the cursor moves off
of the specified menu pad. A pad is a menu option in an Xbase style menu. These types of menus are
created with the DEFINE MENU and DEFINE PAD commands. The command SET COMPATIBLE
should be ON when using Xbase style menus.

<pad-name>
The pad is identified by the name <pad name> that was assigned with the DEFINE PAD command.

OF <menu-name>
The menu is identified by the name <menu name> that was assigned with the DEFINE MENU command.

<command>

The specified command may be any Recital/4GL command. To specify a command that will execute when
a pad is highlighted, see the ON SELECTION PAD command. To specify the same exiting command for
all pads in a menu, use the ON EXIT MENU command. Commands specified by an ON EXIT PAD
command override commands specified by the ON EXIT MENU command. Used without a specified
command, the ON EXIT PAD command disables previously specified commands.

Example

define menu main

define pad exit of main;
prompt “\<Exit” at 0,0

define pad filelist of main;
prompt “\<Files” at 0,6

on pad filelist of main activate popup files

on selection pad exit of main deactivate menu
on exit pad exit of main dialog box “Exit Pad”
activate menu main

Products
Recital Mirage Server, Recital Terminal Developer

344

ON EXIT POPUP

Class
Menus

Purpose
Execute a command when the cursor moves off of bars in a pop-up Xbase style menu

Syntax
ON EXIT POPUP <pop-up> [<command>]

See Also

ACTIVATE POPUP, BAR(), DEACTIVATE POPUP, DEFINE BAR, DEFINE POPUP, ON BAR, ON
POPUP, ON SELECTION BAR, ON EXIT BAR, ON EXIT MENU, ON SELECTION POPUP, POPUP(),
PROMPT(), SHOW POPUP, SET COMPATIBLE

Description

The ON EXIT POPUP command is used to specify commands which will execute when the cursor moves
off of menu bars. A bar is a menu option in an Xbase style popup menu. These types of menus are created
with the DEFINE POPUP and DEFINE BAR commands. The pop-up menu is identified by the name
<pop-up> that was assigned with the DEFINE POPUP command. The command SET COMPATIBLE
should be ON when using Xbase style menus.

<command>

The specified command may be any Recital/4GL command. To specify a command that will execute when
a bar is selected, see the ON SELECTION BAR command. Used without a specified command, the ON
EXIT POPUP command disables previously specified commands. Commands specified by an ON EXIT
BAR command override commands specified by the ON EXIT POPUP command.

Example

define menu main

define pad exit of main;
prompt “\<Exit” at 0,0

define pad filelist of main;
prompt “\<Files” at 0,6

on pad filelist of main activate popup files
on selection pad exit of main deactivate menu

define popup files from 1,06
define bar 1 of files prompt “\<Programs>”
define bar 2 of files prompt “\<Databases”

on popup files dialog box “On Popup”
on exit popup files dialog box “On Exit Popup”
activate menu main

Products
Recital Mirage Server, Recital Terminal Developer

345

ON FINISH

Class
Error Handling and Debugging

Purpose
Execute a command when the Recital process ends

Syntax
ON FINISH <command>

See Also
ERROR(), GETSIG(), ON TERMINATION

Description

The ON FINISH command causes the specified <command> to be executed when the Recital process has
finished executing. This can be used in conjunction with the GETSIG() and ERROR() functions to
determine if the user exited by themselves or if they received a signal to terminate.

Example
procedure on_finish
if getsig() '=0

dialog box "Signal received. signo = "+alltrim(str(getsig())) label "ON FINISH"
elseif error() >0

dialog box "Error received, error = "+alltrim(str(error())) label "ON FINISH"
else

dialog box "Successful exit" label "ON FINISH"
endif
return

on finish do on_finish

Products
Recital Mirage Server, Recital Terminal Developer

346

ON KEY

Class
Keyboard Events

Purpose
Trap a specified key or any key pressed

Syntax
ON KEY [= <expN> | LABEL <keyname>] [<command>]

See Also
SET PCFKEYS, SET PCKEYS, SET KEY TO, SET KEY...TO

Description

The ON KEY command causes the specified <command> to be executed if a key is pressed. The numeric
expression = <expN> uses keycodes to specify which key to trap. The LABEL qualifier uses keynames to
specify which key to trap. A specific key that is set to be trapped with the ON KEY command is known as
a ‘hot key’. When a hot key is pressed from a read or wait state, the specified Recital/4GL <command> is
executed. SET PCKEYS must be ON so that the specified keycode is translated to the correct keypad or
function key.

<command>

The ON KEY command traps any key, in other words, the next pressed key, when no keycodes or
keynames are specified with the command. If ON KEY is specified without a <command>, then no keys
will be trapped. The <command> can be any Recital/4GL command.

= <expN>
The optional = <expN> allows a command to be assigned to a particular hot key using keycodes. The
following table illustrates the keycode choices and the keys they represent.

Keypad Key PC Key Keycode
[1] F1 315
[2] F2 316
[3] F3 317
[4] F4 318
[5] F5 319
[6] F6 320
[7] F7 321
[8] F8 322
[9] F9 323
[0] F10 324
[CURSOR LEFT] CURSOR LEFT 331
[CURSOR RIGHT] CURSOR RIGHT 333
[CURSOR UP] CURSOR UP 328
[CURSOR DOWN] CURSOR DOWN 336
[PAGE UP] PgUp 329
[PAGE DOWN] PgDn 337
LABEL

The optional LABEL qualifier uses keynames to specify which key to trap. The keynames may be typed in
upper, lower, or mixed case. SET PCFKEY'S must be ON to enable the use of CTRL-<letter> keynames.
The following table illustrates the keynames that may be used with the LABEL qualifier:

347

Key Keyname
F1to F10 F1,F2,F3 ...
CURSOR LEFT Leftarrow
CURSOR RIGHT Rightarrow
CURSOR UP Uparrow
CURSOR DOWN Downarrow
PAGE UP PgUp

PAGE DOWN PgDn
DELETE Del

INSERT Ins

TAB Tab
CTRLATOCTRL Z Ctrl-A, Ctrl-B, Ctrl-C
Example

// Run mail

procedure mail_procedure
save screen

clear

run mail

clear

restore screen

return

/I Define F10 for mail hot key
set pckeys on
on key = 324 do mail_procedure

// Define F10 another way
set pckeys on

on key label F10 do mail_procedure

I/ Or use Ctrl key
set pckeys on
set pcfkeys on

on key label Ctrl-L do mail_procedure

Products

Recital Mirage Server, Recital Terminal Developer

348

ON MAIL

Class
Input/Output

Purpose
Specify a command to execute when mail messages are trapped.

Syntax
ON MAIL <command>

See Also
1, ALIAS, DO, RUN, SET MAIL, SPAWN, MAIL()

Description

The ON MAIL command causes the specified <command> to execute whenever OpenVMS mail messages
are received. The <command> may be any Recital/4GL command. When ON MAIL is specified without a
<command>, previously specified commands are cleared. SET MAIL must be ON in order to trap
incoming mail messages. When SET MAIL is OFF mail messages are ignored. This command only
operates on OpenVMS, UNIX has no way of trapping mail messages.

Example
procedure go_mail
save screen

run mail

restore screen
return

// Go to mail when a message is received
set mail on

on mail do go_mail

use demo

browse

on mail

Products
Recital Terminal Developer (OpenVMS only)

349

ON MENU

Class
Menus

Purpose
Execute a command when a menu pad is highlighted

Syntax
ON MENU <menu name> [<command>]

See Also
ACTIVATE MENU, DEFINE MENU, DEFINE PAD, ON BAR, ON EXIT BAR, ON EXIT MENU, ON
EXIT PAD, ON PAD, ON SELECTION MENU, ON SELECTION PAD, SET COMPATIBLE, PAD()

Description

The ON MENU command is used to specify commands which will execute when menu pads that do not
have an ON PAD command associated with them are highlighted. A pad is a menu option in an Xbase
style menu. These types of menus are created with the DEFINE MENU and DEFINE PAD commands.
The menu is identified by the name <menu name> that was assigned with the DEFINE MENU command.
The command SET COMPATIBLE should be ON when using Xbase style menus.

<command>

The specified command may be any Recital/4GL command. To specify a command that will execute when
an individual pad is selected, see the ON SELECTION PAD command. To specify a command to execute
when an individual pad is highlighted, use the ON PAD command. Used without a specified command, the
ON MENU command disables previously specified commands. Commands specified by an ON PAD
command override commands specified by the ON MENU command.

Example

define menu main

define pad exit of main;
prompt “\<Exit” at 0,0

define pad filelist of main;
prompt “\<Files” at 0,6

on menu main dialog box “On Menu”
on exit menu main dialog box “On Exit Menu”
activate menu main

Products
Recital Mirage Server, Recital Terminal Developer

350

ON MOUSE

Class
Mirage Forms

Purpose
Execute a command when a menu operation occurs

Syntax
ON MOUSE [<command>]

See Also
INKEY(), LASTKEY (), MCOL(), MROW()

Description

The ON MOUSE command is used to specify a command which will be executed when a mouse operation
occurs. Recital Mirage traps mouse operations using the INKEY (<expN>,“M”) function. The INKEY() or
LASTKEY/() functions can be used to determine the operation which took place and the MCOL() and
MROW() functions return the current mouse column and row position on the screen.

<command>

The specified command may be any Recital/4GL command and may be a call to a function or to DO a
procedure. Used without a specified command, the ON MOUSE command disables previously specified
commands.

In Recital Terminal Developer the ON MOUSE command is ignored.

Example

procedure on_mouse

m_colpos = mcol()

m_rowpos = mrow()

m_mouseop = lastkey()

/I process based on position and operation
return

on mouse do on_mouse
inkey(0,“M”)

Products
Recital Mirage Server, Recital Terminal Developer

351

ON PAD

Class
Menus

Purpose
Define the pop-up menu selection for dABASE-1V style menus

Syntax
ON PAD <pad name> OF <menu name> [<command>]

See Also

DEFINE MENU, DEFINE PAD, ON BAR, ON EXIT BAR, ON EXIT MENU, ON MENU, ON POPUP,
ON SELECTION MENU, ON SELECTION PAD, PAD(), SET SCOREBOARD, SET COMPATIBLE
ON

Description

The ON PAD command is used to associate a command with a pad in an Xbase style menu. The pad,
which must be defined with the DEFINE PAD command, is specified with <pad name>. The menu which
that pad belongs to must be specified with <menu name>.

Typically the ON PAD command is used with the ACTIVATE POPUP command. This activates a pop-up
menu when the menu pad is highlighted. Other commands may be used, or a call to a program or
procedure may be made.

To specify the same command to execute on all pads, use the ON MENU command. To specify a
command to execute when the pad is selected, see the ON SELECTION PAD command.

Example

define menu main

define pad exit of main;
prompt “\<Exit” at 0,0

define pad filelist of main;
prompt “\<Files” at 0,6

on pad filelist of main activate popup files

on selection pad exit of main deactivate menu
on exit pad exit of main dialog box “Exit Pad”
activate menu main

Products
Recital Mirage Server, Recital Terminal Developer

352

ON PAGE

Class
Printing

Purpose
Execute a command when the printed output reaches a specified line number.

Syntax
ON PAGE [AT LINE <expN> <command>]

See Also
EJECT PAGE, ON()

Description

The ON PAGE command is used to specify commands which will execute when the printed output reaches
a line number specified by <expN>. The ON PAGE command without any <command> clears the previous
ON PAGE.

AT LINE <expN> <command>
The specified command may be any Recital/4GL command.

Example
on page at line 50 do footnote

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

353

ON POPUP

Class
Menus

Purpose
Execute a command when a bar is highlighted

Syntax
ON POPUP <pop-up> [<command>]

See Also

ACTIVATE POPUP, BAR(), DEACTIVATE POPUP, DEFINE BAR, DEFINE POPUP, ON EXIT BAR,
ON EXIT POPUP, ON POPUP, ON SELECTION BAR, ON SELECTION POPUP, POPUP(),
PROMPT(), SHOW POPUP, SET COMPATIBLE

Description

The ON POPUP command is used to specify commands which will execute when menu bars that do not
have an ON BAR command associated with them are highlighted. A bar is a menu option in an Xbase style
popup menu. These types of menus are created with the DEFINE POPUP and DEFINE BAR commands.
The pop-up menu is identified by the name <pop-up> that was assigned with the DEFINE POPUP
command. The command SET COMPATIBLE should be ON when using Xbase style menus.

<command>

The specified command may be any the Recital/4GL command. To specify a command that will execute
when a bar is selected, see the ON SELECTION BAR command. Used without a specified command, the
ON POPUP command disables previously specified commands. Commands specified by an ON BAR
command override commands specified by the ON POPUP command.

Example

define menu main

define pad exit of main;
prompt “\<Exit” at 0,0

define pad filelist of main;
prompt “\<Files” at 0,6

on pad filelist of main activate popup files
on selection pad exit of main deactivate menu

define popup files from 1,06
define bar 1 of files prompt “\<Programs>”
define bar 2 of files prompt “\<Databases”

on popup files dialog box “On Popup”
on exit popup files dialog box “On Exit Popup”
activate menu main

Products
Recital Mirage Server, Recital Terminal Developer

354

ON READERROR

Class
Screen Forms

Purpose
Execute specified command when a data entry error occurs

Syntax
ON READERROR [<command>]

See Also
@...GET, APPEND, BROWSE, CHANGE, EDIT, ONERROR, READ

Description

The ON READERROR command executes the specific <command> when a data entry error is made. Data
entry errors are: invalid dates, number out of range, failed VALID condition. ON READERROR can be
used to replace the default error messages that are given when these errors occur. If no <command> is
specified with the ON READERROR command, any previously issued ON READERROR setting is
cancelled.

Example

procedure readtrap

dialog box “Date is out of range”
return

dToday = date()

on readerror do readtrap

@10,00 say “Enter Date” get dToday;
range {01/01/2000%},{01/01/2005}

read

on readerror

Products
Recital Mirage Server, Recital Terminal Developer

355

ON SELECTION BAR

Class
Menus

Purpose
Defines commands for pop-up menu selection

Syntax
ON SELECTION BAR <expN> OF POPUP <popup> [<command>]

See Also
ACTIVATE POPUP, DEACTIVATE POPUP, DEFINE BAR, DEFINE POPUP, ON BAR, ON EXIT
BAR, ON EXIT POPUP, ON POPUP, ON SELECTION POPUP, SHOW POPUP, SET COMPATIBLE

Description

The ON SELECTION BAR command defines a command that will be executed when the specified menu
bar is selected. A menu bar is a selection option in dBASE-1V style pop-up menus. Pop-up menus of this
type are created with the DEFINE POPUP and DEFINE BAR commands. The bar is identified by the
numeric expression <expN> that was assigned with the DEFINE BAR command. The pop-up is identified
by its name which was assigned with the DEFINE POPUP command. The command SET COMPATIBLE
should be ON when using dBASE 1V style menus.

<command>
To specify commands which execute when the menu bar is highlighted, use the ON BAR command. To
specify commands that execute when the menu bar is exited, use the ON EXIT BAR command.

Example

define menu main

define pad exit of main;
prompt “\<Exit” at 0,0

define pad filelist of main;
prompt “\<Files” at 0,6

on pad filelist of main activate popup files
on selection pad exit of main deactivate menu

define popup files from 1,06
define bar 1 of files prompt “\<Programs>”
define bar 2 of files prompt “\<Databases”

on selection bar 1 of popup files;
dialog box “Bar 1”

on selection bar 2 of popup files;
dialog box “Bar 2”

activate menu main

Products
Recital Mirage Server, Recital Terminal Developer

356

ON SELECTION MENU

Class
Menus

Purpose
Define actions performed on every pad in a dBASE-IV style menu

Syntax
ON SELECTION MENU <menu> [<command>]

See Also

ACTIVATE POPUP, DEACTIVATE POPUP, DEFINE BAR, DEFINE POPUP, ON BAR, ON EXIT
BAR, ON EXIT POPUP, ON POPUP, ON SELECTION POPUP, ON SELECTION PAD, SET
COMPATIBLE

Description

The ON SELECTION MENU command defines actions performed on pads that do not have an ON
SELECTION PAD command associated with them. Pads are options in Xbase style menus. These types of
menus are created with the DEFINE MENU and DEFINE PAD commands. The menu is identified with
the name that was assigned with the DEFINE MENU command. Pad selection occurs when the user moves
the highlight onto the menu prompt and presses the [RETURN] key. The command SET COMPATIBLE
should be set ON when using Xbase style menus.

<command>

If no command is given, ON SELECTION MENU disables previously specified commands. To specify the
same command for individual pads in a menu, use the ON SELECTION PAD command. To specify
commands which will execute when pads are highlighted, use the ON PAD command.

Example

define menu main

define pad exit of main;
prompt “\<Exit” at 0,0

define pad filelist of main;
prompt “\<Files” at 0,6

on selection menu main dialog box prompt()
activate menu main

Products
Recital Mirage Server, Recital Terminal Developer

357

ON SELECTION PAD

Class
Menus

Purpose
Define actions performed on pad selection in a dBASE-IV style menu

Syntax
ON SELECTION PAD <pad> OF <menu> [<command>]

See Also
ACTIVATE MENU, DEACTIVATE MENU, DEFINE MENU, DEFINE PAD, MENU(), ON EXIT PAD,
ON PAD, PAD(), PROMPT(), ON SELECTION MENU, SET COMPATIBLE

Description

The ON SELECTION PAD command defines actions performed on a pad selection within a dBASE-IV
style menu. The pad and menu are identified with the names that were assigned with the DEFINE MENU
and DEFINE PAD commands. Pad selection occurs when the user moves the highlight onto the menu
prompt and presses the [RETURN] key. The command SET COMPATIBLE should be set ON when using
Xbase style menus.

<command>
If no command is given, ON SELECTION PAD disables previously specified commands. To specify the
same selection command for all pads in a menu, use the ON SELECTION MENU command.

Example

define menu main

define pad exit of main;
prompt “\<Exit” at 0,0

define pad filelist of main;
prompt “\<Files” at 0,06

on pad filelist of main activate popup files
on selection pad exit of main deactivate menu

activate menu main

Products
Recital Mirage Server, Recital Terminal Developer

358

ON SELECTION POPUP

Class
Menus

Purpose
Defines actions for Xbase style pop-up menu selection

Syntax
ON SELECTION POPUP <popup> | ALL [BLANK] [<command>]

See Also

DEFINE MENU, DEFINE PAD, ON PAD, ON SELECTION PAD, ACTIVATE MENU, DEACTIVATE
MENU, RELEASE MENUS, SHOW MENU, DEFINE POPUP, DEFINE BAR, ACTIVATE POPUP,
DEACTIVATE POPUP, RELEASE POPUPS, CLEAR POPUPS, SHOW POPUP

Description

The ON SELECTION POPUP command defines actions for dBASE 1V style pop-up menu selections.
These types of pop-up menus are created with the DEFINE POPUP and DEFINE BAR commands. The
pop-up is identified using the name which was assigned with the DEFINE POPUP command. The
command SET COMPATIBLE should be ON when using dBASE-IV style menus.

ALL
The ALL clause will apply the specified <command> to all pop-up menus.

BLANK
The BLANK keyword clears the active pop-up menu from the screen before executing the specified
commands.

<command>
The command to be run when the specified popup is selected. If no command is specified, the popup is
reset.

Example
define menu main
define pad exit of main;
prompt “\<Exit” at 0,0
define pad filelist of main;
prompt “\<Files” at 0.06
on pad filelist of main activate popup files
on selection pad exit of main deactivate menu

define popup files from 1,06

define bar 1 of files prompt “\<Programs”
define bar 2 of files prompt “\<Databases”
define bar 3 of files prompt “\<Reports”
define bar 4 of files prompt “\<Screens”

on selection popup files dialog box prompt()
activate menu main

Products
Recital Mirage Server, Recital Terminal Developer

359

ON TERMINATION

Class
Environment

Purpose
Execute a command when Recital receives a hang-up or kill signal

Syntax
ON TERMINATION [<command>]

See Also
ON TIMEOUT, ON()

Description

When the Recital/4GL receives a hang-up or kill signal, the program cleans up its environment and
terminates. The ON TERMINATION command is used to specify commands which will execute when
Recital receives the signal. The ON TERMINATION command without any <command> clears the
previous ON TERMINATION.

<command>
The specified command may be any Recital/4GL command.

Example
on termination do exitfile

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

360

ON TIMEOUT

Class
Keyboard Events

Purpose
Execute a command when the timeout event flag is triggered

Syntax
ON TIMEOUT [<command>]

See Also
SET TIMEOUT, SET CLOCK, SET CLOCKDISPLAY

Description

The ON TIMEOUT command is used to specify a single command that will execute when the timeout
event flag has been triggered. The timeout period is defined by the SET TIMEOUT command. Issuing an
ON TIMEOUT statement without a <command> clears the previous ON TIMEOUT. SET CLOCK ON
must be active for the timeout command to function, but the SET CLOCKDISPLAY command can be set
to OFF if no visible clock is required.

<command>
The specified command may be any the Recital/4GL command.

Example

procedure p_timeout
dialog box “Timeout Occurred”
set timeout off
quit

return

set clock on

on timeout do p_timeout

set timeout to 20

set timeout on

m_var = space(10)

@ 00,00 say “Enter Value:” get m_var
read

return

Products
Recital Mirage Server, Recital Terminal Developer

361

PACK

Class
Fields and Records

Purpose
Remove records from the active table that are marked for deletion

Syntax
PACK [ALL]

See Also
DELETE, RECALL, REINDEX, ZAP, SET DELETED, DELETED()

Description

The PACK command removes all the records from the active table that are marked for deletion, and frees
the disk space that they occupied. If the active table is indexed, the index is updated as the records are
removed from the table. Exclusive use of the table is required for the PACK operation.

ALL
If the ALL option is specified, the PACK command will start at workarea 1 and PACK every open table in
all workareas.

Example
use diary
? reccount()

800
set talk on
delete all for date < date()
100 record(s) deleted.
pack
Pack complete, 700 records copied.
? reccount()

700

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

362

PACK DATABASE

Class
Databases

Purpose
Packs each table in the active database or packs the catalog and rebuilds the catalog index tags for a
specified database

Syntax
PACK DATABASE [<database name> | ?]

See Also

ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE DATABASES, CLOSE TABLES,
COMPILE DATABASE, CREATE DATABASE, CREATE TABLE, CREATE INDEX, CREATE VIEW,
DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP
INDEX, DROP TABLE, INDEX, LIST DATABASE, LIST INDEXES, LIST TABLES, OPEN
DATABASE, PACK, REBUILD DATABASE, RESTORE DATABASE, USE, SET AUTOCATALOG,
SET EXCLUSIVE, ADATABASES(), DBUSED(), GETENV(), DB_MAXWKA

Description
The PACK DATABASE command packs all the tables in the active database. Packing a table removes all
records previously marked for deletion from the table.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the OPEN DATABASE command.

If the <database name> is specified, the PACK DATABASE command will operate on the specified
database’s catalog file: the catalog file will be packed and its index tags rebuilt using INDEX ON. If the
question mark, ‘?, is included instead of the <database name>, the ‘SELECT A FILE’ dialog will be
displayed, allowing the user to select the database. The dialog defaults to the DB_DATADIR directory.

Example

VFP/SQL>open database southwind
VFP/SQL>pack database
VFP/SQL>close databases
VFP/SQL>pack database southwind

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

363

PARAMETERS

Class
Applications

Purpose
Declare formal parameters to a procedure or program

Syntax
PARAMETERS <parameter list>

See Also
DO, LOCAL, LPARAMETERS, PUBLIC, PRIVATE, PROCEDURE, SET CLIPPER, SET
PROCEDURE, DECLARE, &, SET PROCEDURE ADDITIVE

Description

The PARAMETERS command declares a list of private memory variables or arrays, and assigns them the
values of the actual parameters specified on a DO <program | procedure> WITH command. The
parameters are initially declared as logicals with the value .F.. The PARAMETERS command must be the
first executable command in a procedure or program. The PCOUNT() function is used to determine how
many parameters were passed.

Parameters may be passed which are memory variables (i.e. they are not part of an expression). The
contents of these memory variables will be updated when the procedure or program returns. This type of
parameter passing is known as call by reference. This is the default for Recital/4GL with PROCEDURES
and PROGRAMS. The ‘@’ character may be placed in front of the memory variable name in User Defined
Functions (UDF), so that they are called by reference.

If you do not wish the parameters to be modified by the called PROCEDURE or PROGRAM, you should
enclose the memory variable in round brackets. This type of parameter passing is known as call by value.
Any expressions that you specify as parameters are always call by value parameters. The default passing of
parameters with User Defined Functions (UDF) is call by value. If COMPATIBLE is set ON then the
parameters will be passed by reference. The limit to the number of parameters that you can pass is 40.

The private memory variables created by the PARAMETERS command are always released when the
procedure or program returns. If CLIPPER is set ON and not all parameters are passed, the variables in the
PARAMETERS command not passed will be defined as type ‘U’ instead of .F..

Example

procedure add
parameters paral, para2
result = paral+ para2
return

private result
do add with 10, 40
? result

50

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

364

POP KEY

Class
Keyboard Events

Purpose
Restores ON KEY LABELS that were placed on the stack with PUSH KEY

Syntax
POP KEY [ALL]

See Also
PUSH KEY, ON KEY LABEL, ON()

Description

The POP KEY command is used to recover ON KEY LABEL command settings from the stack following a
corresponding PUSH KEY command. SET COMPATIBLE should be set to ON when using this
command.

ALL
Using the ALL clause will clear all currently active key assignments defined with ON KEY LABEL as well
as all key assignments from the stack that were defined with ON KEY LABEL.

Example

clear all

on key label f10 do procl
push key clear

on key label f10 do proc2
read

return

procedure procl
@ 5,5 say “PROC 1 -- Popped The On Key Label”
return

procedure proc2
@ 6,6 say “PROC 2 -- Resetting The On Key Label”

pop key
return

Products
Recital Mirage Server, Recital Terminal Developer

365

POP MENU

Class
Menus

Purpose
Retrieve a menu bar definition from the stack

Syntax
POP MENU <MENU> [TO MASTER]

See Also
ACTIVATE MENU, DEFINE MENU, POP POPUP, PUSH MENU, PUSH POPUP

Description

POP MENU recovers the specified <menu> from the stack following a corresponding PUSH MENU
command. Menus are always placed on and removed from the stack in a last in, first out order. SET
COMPATIBLE should be set to ON when using this command.

TO MASTER
Using the TO MASTER clause will restore the first menu pushed onto the stack and then clear all others
from the stack.

Example

push menu _msysmenu

set sysmenu to _mfile, _medit
pop menu _msysmenu

Products
Recital Mirage Server, Recital Terminal Developer

366

POP POPUP

Class
Menus

Purpose
Restore specified popup from the stack

Syntax
POP POPUP <popup>

See Also
ACTIVATE POPUP, DEFINE POPUP, PUSH POPUP

Description

POP POPUP recovers the specified <popup> from the stack following a corresponding PUSH POPUP
command. Popup definitions are always placed on and removed from the stack in a last in, first out order.
SET COMPATIBLE should be set to ON when using this command.

Example

define popup poptest from 5,5

define bar 1 of poptest prompt “one”

define bar 2 of poptest prompt “two”

define bar 3 of poptest prompt “three”
define bar 4 of poptest prompt “four”
activate popup poptest nowait

push popup poptest

wait “Popup Pushed” window

release bar 2 of poptest

wait “This Is The Modified Popup” window
pop popup poptest

wait “Popup Popped, Original Popup Restored” window
deactivate popup poptest

release popup poptest

Products
Recital Mirage Server, Recital Terminal Developer

367

PRINT

Class
Printing

Purpose
Print a text file on the printer

Syntax
PRINT <.txt filename> | (<expC>)

See Also
TYPE, RUN, SPAWN, PUTENV()

Description

The PRINT command prints the specified <.txt filename> on the printer. The filename can be substituted
with an <expC>, enclosed in round brackets, which returns a valid filename. If no file extension is
specified, then “.txt” is assumed. If the file extension is ‘.tmp’ the PRINT command will delete the file after
printing it.

The Recital/4GL login file contains an environment variable called DB_PRINT which points to a file in the
root directory called print.<operating system name>. It contains the commands used by the host operating
system to print files

The print.<operating system name> file can be customized for your own environment. Multiple print files
can be set up and assigned by changing the DB_PRINT environment variable with the PUTENV/() function.
This allows particular printer files to be associated with a specified group of users, or particular printers.

Example
I/ Print 4 copies of a report
m_filenam = sys(3) = “.txt”
report form analysis to file &m_filenam
fori=1to 4
print &m_filenam
next
erase &m_filenam

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

368

PRIVATE

Class
Memory Variables

Purpose
Declare memory variables private to a procedure or program

Syntax
PRIVATE <memvar> | <memvar-list> |<array> | ALL [EXCEPT | LIKE <skeleton>]

See Also
PARAMETERS, DO, PUBLIC, DISPLAY MEMORY, SET CLIPPER, LOCAL

Description

The PRIVATE command provides a facility for declaring memory variables or arrays which are local to a
procedure or program. When the procedure or program returns, all of the memory variables or arrays that
were declared by PRIVATE, are released. The memory variables are initially declared as logicals with the
value .F., unless CLIPPER is set ON in which case they are defined as ‘U’.

You can declare PRIVATE memory variables with the same name as other memory variables, which were
declared at lower levels. Any procedures or programs that are called can access these private memory
variables. Any memory variables or arrays that need to be accessed globally should be declared using the
PUBLIC command. By default any memory variables declared at the Recital Terminal Developer
development prompt, are declared as PUBLIC memory variables, and any others are declared as PRIVATE
memory variables.

The ALL option allows you to define all current memory variables as private. The ALL EXCEPT
<skeleton> allows the user to define all the current memory variables that do not match the wildcard
<skeleton> as private. The ALL LIKE <skeleton> option allows you to define all the current memory
variables that match the wildcard <skeleton> specification as private. PRIVATE ALL LIKE <skeleton>
and ALL EXCEPT <skeleton> will privatize the memory variables that exist as public when used in a
lower level procedure.

See DECLARE or DIMENSION for more details on array declaration.
Example

private i,j,k

?j

F.

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

369

PROCEDURE

Class
Applications

Purpose
Declare a procedure

Syntax
PROCEDURE <procedure name>

See Also
COMPILE, DEBUG, DO, ENDPROC, FUNCTION, LINK, PARAMETERS, PRIVATE, PUBLIC,
RETURN, ACC(), CALC(), SET PROCEDURE

Description

The PROCEDURE statement marks the beginning of a procedure. A procedure declaration is terminated
with a RETURN statement. You may have other RETURN statements within the procedure body,
provided that they are properly nested between IF...ENDIF, DO WHILE ...ENDDO, or DO CASE
...ENDCASE. Procedure names must be unique within the first 32 characters. They must begin with a
letter or underscore, followed by any combination of letters (A-Z), digits (0-9), and underscores (), and
may not contain any blanks or spaces.

You can include procedures in your program files, as well as in procedure library files. If a procedure is
included in a program file, then it must be defined before it is used. For example, if you issue a command
DO MAIN, then the command PROCEDURE MAIN must be on a line before the line containing the DO
MAIN statement. You make all the procedures in a procedure library file known to the Recital/4GL by
using the SET PROCEDURE TO command.

To execute a procedure, you just issue a DO <procedure name> command, as if you were calling a program
file, or you can use the procedure as a user defined function (UDF) and pass parameters to it as with any
standard Recital function. The limit to the number of parameters that you can pass is 40.

Note that procedures can be called using a DO statement such as:
do procname with paral, para2, para3

or they can be called as functions without assigning a return value, as in:
procname(paral,para2,para3)

There is no limit to the number of procedures that can be declared in the Recital/4GL. The commands
LIST | DISPLAY PROCEDURE will list all currently active functions and procedures.

If SET COMPATIBLE is set to VFP, the PROCEDURE declaration can be terminated with an ENDPROC
command rather than a RETURN. It will also be terminated when another PROCEDURE or FUNCTION
command is reached.

If a procedure library contains a procedure with the same name as the containing library, a call to that name
will run the procedure if SET COMPATIBLE is set to VFP or FOXPRO.

370

Example

/I File: finance.prg
procedure payment2
parameters pmt
return pmt

procedure future
return

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

371

PUBLIC

Class
Memory Variables

Purpose
Declare public memory variable

Syntax
PUBLIC [<memvar-list>] | [<array>]

See Also
PRIVATE, PARAMETERS, DECLARE, SET COMPATIBILE

Description

The PUBLIC statement declares global memory variables or arrays. Memory variables or arrays that have
been declared PUBLIC can be shared and modified by all procedures and programs. By default, any
variables created at the Recital Terminal Developer development prompt are declared PUBLIC. A
PUBLIC memory variable is initially declared as a logical, with a value of .F.. See DECLARE or
DIMENSION for more details on array declaration.

Example
public i, j, k

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

372

PUSH KEY

Class
Keyboard Events

Purpose
Puts ON KEY LABEL settings on the stack

Syntax
PUSH KEY [CLEAR]

See Also
POP KEY, ON KEY LABEL, ON()

Description

The PUSH KEY command is used to place all ON KEY LABEL command settings on a stack in memory.
These key assignments are then effectively saved and can then be changed while still allowing the original
assignments to be restored with the POP KEY command. SET COMPATIBLE should be set to ON when
using this command.

CLEAR
Including the CLEAR clause saves all current ON KEY LABEL assignments to the stack and then clears
the current assignments.

Example

clear all

on key label f10 do procl
push key clear

on key label f10 do proc2
read

return

proc procl
@ 5,5 say “PROC 1 -- Pop'd The On Key Label”
return

proc proc?2
@ 6,6 say “PROC 2 -- Resetting The On Key Label”

pop key
return

Products
Recital Mirage Server, Recital Terminal Developer

373

PUSH MENU

Class
Menus

Purpose
Place a menu bar definition on the stack

Syntax
PUSH MENU <MENU>

See Also
ACTIVATE MENU, DEFINE MENU, POP POPUP, POP MENU, PUSH POPUP

Description

PUSH MENU is used to place the specified <menu> on the stack. The menu definition can then be
changed while still allowing the original definition to be restored with POP MENU. Menus are always
placed on and removed from the stack in a last in, first out order. SET COMPATIBLE should be set to ON
when using this command.

Example

push menu _msysmenu

set sysmenu to _mfile, _medit
pop menu _msysmenu

Products
Recital Mirage Server, Recital Terminal Developer

374

PUSH POPUP

Class
Menus

Purpose
Puts a popup definition on the stack

Syntax
PUSH POPUP <popup>

See Also
ACTIVATE POPUP, DEFINE POPUP, POP POPUP

Description

PUSH POPUP places the specified <popup> on the stack. This allows popup definitions to be changed
while still allowing the original definition to be recovered via the POP POPUP command. Popup
definitions are always placed on and removed from the stack in a last in, first out order. SET
COMPATIBLE should be set to ON when using this command.

Example

define popup poptest from 5,5

define bar 1 of poptest prompt “one”
define bar 2 of poptest prompt “two”
define bar 3 of poptest prompt “three”
define bar 4 of poptest prompt “four”

activate popup poptest nowait
push popup poptest
wait “Popup Pushed” window

release bar 2 of poptest
wait “This Is The Modified Popup” window

pop popup poptest
wait “Popup Popped, Original Popup Restored” window

deactivate popup poptest
release popup poptest

Products
Recital Mirage Server, Recital Terminal Developer

375

QUERY

Class
Screen Forms

Purpose
Full screen viewing of records in a table through a form

Syntax

QUERY [<scope>]
[FIELDS <field list>]
[FOR <condition>]
[KEY <exp>]
[NOCLEAR]
[WHILE <condition>]

See Also

APPEND, EDIT, BROWSE, CHANGE, INSERT, READ, SET FORMAT, SET KEY, SET UPDATE,
SET QUERYMODE, @...GET, @...MENU, CREATE SCREEN, SET MOUSE, SET NAVIGATE,
FMT(), RESTORE SCREEN, SAVE SCREEN, LABEL

Description

The QUERY command provides a read only version of the EDIT and CHANGE commands. Unless the
SET FORMAT TO <.fmt filename> command has been issued, QUERY will use the default form. You
can design your own forms in the Forms Designer using the command CREATE SCREEN. The Forms
Designer will automatically generate a format file that contains @...SAY...GET commands. This form
can be used at any time with the database by issuing the SET FORMAT TO command.

Keyword Description

<scope> If no <scope> is specified, QUERY is activated on the current record and all
records are accessible using the [NEXT RECORD] and [PREVIOUS
RECORD] keys.

FIELDS <field list> | The active fields can be restricted to those specified in the comma separated

<field list>.
FOR <condition> Record navigation is restricted to those records that match the <condition>.
KEY <exp> The active records can be restricted to those that match the specified <exp>.
The <exp> must be based on the index key of the current master index.
NOCLEAR Erasing of the screen on entry and exit from QUERY is disabled.

WHILE <condition> | Record navigation is restricted to those records that match the specified
<condition>. Navigation cannot continue beyond a record that does not match
the <condition>.

If SET MOUSE is ON, cursor keys will move the cursor anywhere on the screen rather than just from field
to field. If SET NAVIGATE is ON, the cursor moves to fields following the direction specified by the key
being pressed, rather than following the order of the GETS on the form. When the RETURN key is
pressed, the cursor moves to the nearest field when SET NAVIGATE is ON.

The following keys are active in QUERY::

Key Action

ABANDON Exit from the form
CURSOR DOWN Skip to next field
CURSOR LEFT Skip to previous field

376

CURSOR RIGHT Skip to next field

CURSOR UP Skip to previous field

EXIT/SAVE Exit from the form

FIND Specify search key/condition

FIND NEXT Search for next key/condition as specified by FIND
HELP Activate pop-up help menu (field list)

MENUBAR Activate the QUERY menu bar

NEXT RECORD Skip to next record

PREV RECORD Skip to previous record

REFRESH Redraw the form

TAB Toggle key identification menu on and off

The following menu options are available from the QUERY menu bar in the default form:

Menu Item Action

Descriptions Toggle the field descriptions on and off
Top Position to the top of the database
Bottom Position to the bottom of the database
Order Select index file order

Help Activate on-line help system

Example

set format to myscreen
query all for event = “BALLET”

Products
Recital Mirage Server, Recital Terminal Developer

377

QUIT

Class
Applications

Purpose
Terminate session

Syntax
QUIT [TO <command>]
[WITH <expN>]

See Also
CLOSE, RUN

Description
The QUIT command closes all open tables, associated index and format files, open program files, the
procedure library, and returns control to the operating system.

TO <command>
The optional TO <command> allows an operating system command to be executed after exiting from the
Recital session.

WITH <expN>
The WITH clause is used to specify an integer from -1 to 254 to be returned upon exiting. This is useful as
an exit code that can be checked by calling programs, command files, or shell scripts.

Example
I/ Quit if [ABANDON] was pressed
if lastkey()=ctrl('g")
quit
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

378

READ

Class
Screen Forms

Purpose
Activate objects created with @...GET commands

Syntax

READ

[COLOR <standard/enhanced>]
[COLOR SCHEME <color scheme> | COLOR <color code>]
[CYCLE]

[LOCK | NOLOCK]
[NOCLEAR]

[NOMOUSE]

[NOREFRESH]

[NOUPDATE]

[SAVE]

[TIMEOUT <expN1>]

[VALID <expL1>]

[WHEN <expL2>]

See Also
@, SET FORMAT, EDIT, CHANGE, APPEND, QUERY, INSERT, CREATE SCREEN, SET MOUSE,
SET NAVIGATE

Description

The READ command activates all objects created with the @...GET command. If no @...GETS are
pending, the READ command waits for any key to be pressed. Normally, the READ command will clear
the GETS after screen input has completed. A READ can be terminated in several ways. Moving forward
past the last object or backward past the first object, if the CYCLE clause is not specified, pressing the
[EXIT/SAVE] key, or selecting an object that was designed to terminate the READ. Calling an event
procedure from an active object and issuing another READ allows for the creation of nested READs. The
READ commands can be nested to a depth of five levels.

If the GET fields that you have specified are fields from a table as opposed to memory variables, then the
Recital/AGL will automatically lock all records in the designated tables, if the active table is opened for
shared use.

If SET MOUSE is ON, cursor keys will move the cursor anywhere on the screen rather than just from field
to field. If SET NAVIGATE is ON, the cursor moves to fields following the direction specified by the key
being pressed, rather than following the order of the GETS on the form. When the RETURN key is
pressed, the cursor moves to the nearest field when SET NAVIGATE is ON.

Note: If an attempt is made to exit from a form by pressing the [EXIT/SAVE] key, and some of the fields
below the current one have the MUST_ENTER attribute, then Recital will beep, indicating an error and
position the cursor on the MUST_ENTER field.

COLOR <standard/enhanced>

COLOR SCHEME <color scheme> | COLOR <color code>

The color of the current @...GET can be set by including the number of an existing color scheme using the
COLOR SCHEME syntax or by including a color pair using the COLOR <standard/enhanced> syntax.

379

CYCLE

The CYCLE keyword prevents the READ from being terminated when you move forward past the last
object, or backwards past the first object. Instead, if you are on the last object and you move forward, the
first object gets focus and if you are on the first object and move backwards past the first object then the
last object gets focus.

LOCK | UNLOCK
The LOCK keyword locks all records accessed from the READ. The UNLOCK keyword makes all fields
accessed by the READ read-only.

NOCLEAR
The NOCLEAR keyword disables the erasing of the screen when a format file is processed.

NOMOUSE
The NOMOUSE keyword only applies to Recital Mirage applications. It forces data entry to occur in the
order of the @...GETs on the screen as it would in a Recital Terminal Developer environment.

NOREFRESH
The NOREFRESH keyword prevents the initial contents of the GET fields from being displayed. It is most
useful when you have a lot of CALCULATED BY fields.

NOUPDATE
The NOUPDATE option prevents updating of the index files. This should only be used if no fields are
updated which affect the index key.

SAVE
The SAVE keyword causes the GETS to remain active, so that subsequent reads can be executed in a loop,
without having to reissue the @...GETSs.

TIMEOUT <expN1>
The TIMEOUT clause determines how long in seconds, <expN1>, the READ will wait for user input
before exiting automatically.

VALID <expL1>
The VALID clause causes <expL1> to be evaluated before the READ is exited. If <expL1> evaluates to
true (.T.), the read is exited, if <expL1> evaluates to false (.F.), the read remains active.

WHEN <expL2>
The WHEN clause determines if the READ is activated. The expression <expL2> must evaluate to true for
the READ to be activated, otherwise the READ command is ignored.

Example

mvar = “xXxx”
@10,10 GET mvar
read

Products
Recital Mirage Server, Recital Terminal Developer

380

READ MENU TO

Class
Menus

Purpose
Activate a FOXBASE+ style pop-up menu

Syntax

READ MENU TO <memvar>
[SAVE]

[TIMEOUT <expN>]

See Also
©@...MENU, READ MENU BAR TO, MENU BAR, MENU

Description
The READ MENU TO activates a pop-up menu defined by the @...MENU command. The <memvar> is a
variable with the initial starting position of the highlighting bar. This <memvar> returns the selected menu
item number.

SAVE
The menu options are not released and can be activated by another READ MENU TO command.

TIMEOUT <expN>
The TIMEOUT clause determines how long in seconds, <expN>, the READ MENU TO will wait for user
input before exiting automatically.

Example

/I Define menu

dimension choice(3,1)

choice(1) = “Edit”

choice(2) = “Delete”

choice(3) = “Add”

m_choice =0

@ 5,0 menu choice,3 title “Choices”
/I Activate menu

read menu to mchoice

Products
Recital Mirage Server, Recital Terminal Developer

381

READ MENU BAR TO

Class
Menus

Purpose
Activate a FOXBASE+ style pull-down menu system

Syntax

READ MENU BAR TO <memvarl>,<memvar2>
[SAVE]

[TIMEOUT <expN>]

See Also
READ MENU TO, MENU BAR, MENU

Description

The READ MENU BAR TO command activates a pulldown menu system. The <memvarl> and
<memvar2> variables are used to position the light bar menu on the required pulldown. On selection of a
pulldown item, the variables return the item selected. The menu clears from the screen after a menu
selection is made, unless the SAVE option is specified. The SAVE option causes the menu to remain on
the screen after a menu selection is made.

As this is the last step in creating a pulldown menu system, menu arrays and menu bars must be initialized
and installed prior to using the READ MENU BAR TO command.

SAVE
The menu options are not released and can be activated by another READ MENU BAR TO command.

TIMEOUT <expN>
The TIMEOUT clause determines how long in seconds, <expN>, the READ MENU BAR TO will wait for
user input before exiting automatically.

Example

/I Install the pull-down menu system
menu bar top,3

menu 1, files,7,7

menu 2, modify 5,5

menu 3,data,9,9

/I Activate the pull-down menu system
row =1

col=1

read menu bar to row, col save

Products
Recital Mirage Server, Recital Terminal Developer

382

RECALL

Class
Fields and Records

Purpose
Reinstate records that are marked for deletion

Syntax

RECALL [<scope>]
[FOR <condition>]
[WHILE <condition>]

See Also
DELETE, PACK, SET FILTER, SET DELETED, ZAP

Description

The RECALL command is used to reinstate those records that are marked for deletion in the active table.
The default scope for the RECALL command is only to recall the current record. Records marked for
deletion cannot be recalled once a table has been packed. If SET FILTER TO is in effect, then any records
that do not satisfy the filter condition are not recalled. While SET DELETED ON is in effect, all deleted
records are automatically filtered and cannot be recalled.

FOR <condition>
If the FOR clause is specified, then only those records which satisfy the <condition> are considered for
recalling. If no <scope> was specified and the FOR clause was specified, then a scope of ALL is used.

WHILE <condition>

If the WHILE clause is specified, then the RECALL command terminates as soon as the specified
<condition> is .F.. The WHILE clause is often used in conjunction with the FIND or SEEK commands to
RECALL records which have a common key.

If the table is indexed, then the records are read in index order unless you specify RECORD <expN>, as the
scope. If the currently selected table is not opened exclusively, the Recital/4GL will automatically lock
each record in turn, recall it if required, then unlock the record.

Recital positions to EOF when RECALL specifies FOR or WHILE conditions and SET COMPATIBLE
TO <XBASE> is in effect.

Example
use patrons index events
delete for event = “OPERA” and eventdate < date()
seek “OPERA”
recall rest;
while event = “OPERA” and eventdate < date()

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

383

RECOVER

Class
Table Basics

Purpose
Recover table and index files from a previous backup and a journal file

Syntax
RECOVER FROM <.dbj filename> | (<expC>)

See Also
SET JOURNAL, COPY FILE

Description

The RECOVER command is used to recover a table and index files after a fatal error such as a disk head
crash. The file name can be substituted with an <expC>, enclosed in round brackets, which returns a valid
filename. If no file extension is specified, then *.dbj’ is assumed. A journal of all transactions applied to a
table can be kept by issuing the SET JOURNAL command. Whenever changes are made to the table
associated with the journal file, then the Recital/4GL will write an ‘after image’ of the modified table
record and other associated information into the journal file. See the SET JOURNAL command for further
details.

The journal file should be kept on a separate device to that on which the table and index files reside. At the
end of each day, or if the table is constantly changing as in an application such as an order processing
system, the table and index files should be ‘checkpointed’ to suitable backup media. If a fatal error occurs,
such as a disk head crash, the following procedure should be carried out. Firstly, restore the table and index
files from the last backup, then execute the RECOVER command.

The Recital/AGL will “apply’ all of the transactions in the journal file to the table, and update the indexes.
After the RECOVER command has completed, you can continue with normal processing. Note that
occasionally a few transactions may have been ‘lost’ as they may not have been written into the journal file
when there was a fatal error. The journal file is a normal Recital table, so you can USE it and see the last
transaction to be written, and if need be, apply the missing transactions manually. It is important to
reinitialize the journal file after each backup of the table and index files. Use the ZAP command, or delete
the file.

Example
use patrons index events, names
recover from patrons

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

384

REINDEX

Class
Indexing

Purpose
Rebuild all of the active index files

Syntax
REINDEX [ALL] [UNIQUE]

See Also
INDEX, SET INDEX, SET UNIQUE, USE, SET ICACHE

Description

The REINDEX command rebuilds all of the index files associated with the currently active table. The disk
space previously occupied by the index files is not released, but merely reinitialized. Any FILTER is
ignored in the reindexing process.

REINDEX cannot be executed if the table or tables in questions are not opened exclusively. Increasing the
size of the index key ‘cache’ can optimize the performance of the REINDEX operation. The SET ICACHE
command can be used to accomplish this.

ALL
If the ALL option is specified, all indexes associated with each open table will be reindexed.

UNIQUE
If the UNIQUE option is specified, or SET UNIQUE ON is in effect, then duplicate keys are discarded
from the index files.

Example

set exclusive on

use patrons index events, names, dates
reindex

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

385

REINDEX DATABASE

Class
Databases

Purpose
Rebuilds the indexes for each table in the active database or rebuilds the catalog index tags for a specified
database

Syntax
REINDEX DATABASE [<database name> | ?]

See Also

ALTER INDEX, ALTER TABLE, BACKUP DATABASE, CLOSE DATABASES, CLOSE TABLES,
COMPILE DATABASE, CREATE DATABASE, CREATE TABLE, CREATE INDEX, CREATE VIEW,
DISPLAY DATABASE, DISPLAY INDEXES, DISPLAY TABLES, DROP DATABASE, DROP
INDEX, DROP TABLE, INDEX, LIST DATABASE, LIST INDEXES, LIST TABLES, OPEN
DATABASE, PACK DATABASE, REBUILD DATABASE, RESTORE DATABASE, USE, SET
AUTOCATALOG, SET EXCLUSIVE, ADATABASES(), DBUSED(), GETENV(), DB_MAXWKA

Description
The REINDEX DATABASE command rebuilds the indexes for each table in the active database.

Databases in Recital are implemented as directories containing files that correspond to the tables and
associated files in the database. Operating System file protection can be applied individually to the files for
added security. The directories are sub-directories of the Recital data directory. The environment variable
/ symbol DB_DATADIR points to the current Recital data directory and can be queried using the
GETENV() function. Files from other directories can be added to the database using the ADD TABLE
command or via the database catalog and SET AUTOCATALOG functionality. Databases are opened
using the OPEN DATABASE command.

If the <database name> is specified, the REINDEX DATABASE command will operate on the specified
database’s catalog file: the catalog’s index tags will be rebuilt. If the question mark, “?’, is included instead
of the <database name>, the ‘SELECT A FILE’ dialog will be displayed, allowing the user to select the
database. The dialog defaults to the DB_DATADIR directory.

Example

VFP/SQL>open database southwind
VFP/SQL> reindex database
VFP/SQL>close databases

VFP/SQL> reindex database southwind

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

386

RELEASE

Class
Memory Variables

Purpose
Delete memory variables and free the storage that they were occupying

Syntax
RELEASE <memvar> | <memvar list> | ALL [LIKE <skeleton>][EXCEPT <skeleton>]

See Also
PRIVATE, PUBLIC, RETURN, CLEAR MEMORY, STORE, SAVE, RESTORE

Description

The RELEASE command deletes memory variables, and releases the storage that they were occupying.
Recital will automatically release PRIVATE memory variables when a PROCEDURE or PROGRAM
returns. You cannot release memory variables belonging to other procedures. If you RELEASE ALL from
the '>' prompt, then all memory variables will be deleted. 1f you RELEASE ALL from a PROCEDURE,
then only those memory variables that are PRIVATE to the PROCEDURE will be deleted. The <skeleton>
takes the usual conventions of ‘?” matching any single character, and “*’ matching zero or more characters.

Example

release i,j,k

release all like code_*
release all except c?de_*
release all

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

387

RELEASE LIBRARY

Class
Applications

Purpose
Close an active API library file built with the Recital SDK

Syntax
RELEASE LIBRARY <library filename>

See Also
CLOSE PROCEDURE, DO, FUNCTION, LINK, LIST PROCEDURE, PARAMETERS, PROCEDURE,
SET LIBRARY

Description

The RELEASE LIBRARY <library filename> command closes the specified APl procedure library file.
The SET LIBRARY command is used to open API procedure library files and can also be used to close all
active API procedure library files.

The SET LIBRARY and RELEASE LIBRARY commands only affect API procedure library files, not
Recital/AGL procedure library files: these are handled by the SET PROCEDURE and CLOSE
PROCEDURE commands.

The active API procedures and functions can be listed with the LIST or DISPLAY PROCEDURE
commands.

For full details on using the Recital SDK, please see the SDK documentation.

Example

// Open Samples.so API procedure library

set library to /usr/recital/UnixDeveloper/sdk/lib/Samples.so

// Open pdf.so procedure library without closing active libraries
set library to /usr/recital/UnixDeveloper/sdk/lib/pdf.so additive
I/ Close pdf.so API procedure library

release library /usr/recital/UnixDeveloper/sdk/lib/pdf.so

/I Close all active API procedure library files

set library to

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

388

RELEASE MENUS

Class
Menus

Purpose
Releases defined Xbase style menus

Syntax
RELEASE MENUS [<expC>]

See Also
CLEAR MENUS, DEACTIVATE MENU, SET COMPATIBLE

Description

The RELEASE MENUS command deletes menu definitions and frees the storage space that Xbase style
menus were occupying. A menu currently in use cannot be released, and must be deactivated first. Using
the RELEASE MENUS command without a menu name list <expC> will release all menus.

Example
release menus sort_men

Products
Recital Mirage Server, Recital Terminal Developer

389

RELEASE POPUPS

Class
Menus

Purpose
Releases Xbase style pop-up menus

Syntax
RELEASE POPUPS [<expC>]

See Also
DEACTIVATE POPUP, CLEAR POPUPS, SET COMPATIBLE

Description

The RELEASE POPUPS command deletes popup definitions and frees the storage space that Xbase style
pop-up menus were occupying. Specified popups in the name list <expC> will be deactivated and all
related ON SELECTION POPUP commands will be cleared. If you do not specify a pop-up name list
<expC>, the RELEASE POPUP command erases all pop-up menus from the screen and from memory.

Example
release popups popup_4

Products
Recital Mirage Server, Recital Terminal Developer

390

RELEASE WINDOWS

Class
Screen Windows

Purpose
Delete window definitions and free the storage space that they were occupying

Syntax
RELEASE WINDOWS <window-name> | <window-name list> | ALL

See Also
ACTIVATE WINDOW, CLEAR WINDOWS, DEFINE WINDOW, DEACTIVATE WINDOW

Description

The RELEASE WINDOWS command removes windows from memory and from the screen. A window is
an area of the screen designated for output and input. There is no limit to the number of defined windows.
Windows are defined with the DEFINE WINDOW command, and activated with the ACTIVATE
WINDOW command. You may release a single window, a group of windows, or all currently defined
windows. The <window-name> is the name of the window as specified in the DEFINE WINDOW
command. To release a group of windows, use a <window-name list>, which is a list of window names,
each separated by a comma. To release all currently defined windows, use the ALL keyword.

The RELEASE WINDOWS command is a quick way to clear the screen and reclaim memory space for
more windows. Once the RELEASE WINDOWS command is issued, the DEFINE WINDOW command
must be used to establish further window definitions, and the ACTIVATE WINDOW or SHOW WINDOW
commands must be used to display them. The RELEASE WINDOWS command is synonymous with the
CLEAR WINDOWS command.

If you wish to clear a window from the screen, but retain its definition in memory, use the DEACTIVATE
WINDOW command. If you wish to clear a window from the screen, but keep it active, use the HIDE
WINDOW command. If you wish to clear windows from the screen, and save the window definition and
the current window contents to a file, use the SAVE WINDOW and RESTORE WINDOW commands.

Example
release windows

Products
Recital Mirage Server, Recital Terminal Developer

391

RENAME

Class
Disk and File Utilities

Purpose
Change the name of a file

Syntax
RENAME <.dbf filenamel> | (<expC>)[TO] <.dbf filename2> | (<expC>)

See Also
COPY FILE, ALIAS

Description

The RENAME command renames <filenamel> to <filename2>. Either filename can be substituted with an
<expC>, enclosed in round brackets, which returns a valid filename. If <filename2> already exists, the
original file is overwritten. If no file extension is present in the file name, then the Recital/4GL uses *.dbf’.
You cannot rename a file that is open. You cannot rename a file onto another disk, the COPY FILE
command can be used for this purpose.

Example
rename patrons.dbf to patron.dbf
rename events.ndx event.ndx

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

392

REPLACE

Class
Fields and Records

Purpose
Modify fields in a table file

Syntax

REPLACE [<scope>]

<field> WITH <exp> [,<field> WITH <exp>] | <memo-field> with <exp> [ADDITIVE]
[,<field> WITH <exp>...] | [[<memo-field> with <exp> [ADDITIVE]...]

[BLANK]

[FROM ARRAY <array-name>]

[FOR<condition>]

[WHILE <condition>]

[REINDEX]

See Also
=, CHANGE, EDIT, READ, BROWSE, SET FILTER, SET DELETED, SET RELATION, SET
DICTIONARY TO, DELETE, RECALL, PACK, USE, ZAP

Description

The REPLACE command updates fields in the active table. The default <scope> is the current record. The
REPLACE command may also update fields in open tables other than the active table. Fields in other
tables must be prefixed with an alias pointer, which is an alias name followed by the symbol *->" or *.”.
The alias name is the name optionally assigned in the USE command (if no alias is specified, the table

basename is used) or the workarea letter.

If SET FILTER TO is in effect, then only those records that satisfy the filter are processed. If SET
DELETED ON is in effect, then only those records that are not marked for deletion are processed.

BLANK
If the optional keyword BLANK is used the current record is cleared and replaced into the table. Default
settings defined in the Data Dictionary apply to the replaced record.

<memo-field> WITH <expC> [ADDITIVE]

The <memo-field> with <exp> command is used to replace the specified memo field with an expression. If
the ADDITIVE keyword is not used, existing memo field contents are overwritten by <exp>. The
ADDITIVE keyword is used to append new text to the end of memo contents instead of overwriting the
contents of the memo.

FROM ARRAY <array>

The REPLACE FROM ARRAY command allows you to replace fields in the current table with the
contents of a previously declared two-dimensional <array> of the specified name. The data types and sizes
of elements in the rows of the arrays must correspond to the fields in the table.

FOR <condition>
If the FOR <condition> clause is specified, only those fields in the rows which satisfy the specified
<condition> will be replaced. When the FOR clause is used, the <scope> defaults to ALL.

WHILE <condition>

The WHILE <condition> clause can be used to restrict the number of records replaced. When the condition
becomes false, the REPLACE operation will stop. If the WHILE condition is used in conjunction with the

393

FIND or SEEK commands on index files, the range of records being replaced can be restricted and
performance can be optimized. When the WHILE clause is used, the <scope> defaults to REST.

REINDEX
The REINDEX keyword allows the indexes to be rebuilt upon completion of the command.

The field and the expression data types must be compatible. If the table is indexed, then the Recital/4GL
processes the records in the table in the order as specified in the master index file. When you update fields
in indexed files, and if the field being updated is part of the key, then the index file will also be updated
automatically. Block replacements on indexed files have undefined results, as the next record keeps
moving as the indexes are repositioned. You can overcome this if you issue the command SET ORDER
TO 0 before executing REPLACE.

The REPLACE command can be used to update memos from long strings. If the currently selected table is
shareable, then the Recital/4GL will automatically lock and then unlock each record in turn as it performs
the REPLACE operation. If a replacement requires an index file to be updated, then the Recital/4GL will
automatically lock the index file, update it and unlock it. If the record cannot be locked, an error message
will be returned. The ON ERROR command can be used to trap this message.

The REPLACE command will evaluate any validation defined in the Applications Data Dictionary and
return an error if the validation fails. The error can be trapped with the ON ERROR command. To bypass
the Dictionary temporarily, use the SET DICTIONARY TO command.

If SET LOCKTYPE TO OPTIMISTIC is active, an attempt to use the REPLACE command on a record
that has been modified since it was last read will generate an error.

Example

use patrons index events, names

replace all date with ctod(*26/04/2000");
for event = “PHANTOM”

// Multiple Replace Statements

replace firstname with m_firstname,;
surname with m_surname,;
state with m_state

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

394

REPLACE AUTOMEM

Class
Memory Variables

Purpose
Update fields with values stored in correspondingly named memory variables

Syntax
REPLACE AUTOMEM

See Also
GATHER, READ, SCATTER, STORE AUTOMEM, USE...AUTOMEM

Description

The REPLACE AUTOMEM command updates fields in the current record of the active table. It assumes
the existence of memory variables that match the fields in terms of name, data type and size. Such memory
variables can be generated automatically using the STORE AUTOMEM or USE...AUTOMEM commands.

Example
set locktype to optimistic
use customer
store automem
@1,1 get m.name
@2,1 get m.address
@3,1 get m.state
read
if not change()
replace automem
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

395

REPLAY

Class
Keyboard Events

Purpose
Replay a keyboard macro

Syntax
REPLAY FROM <.kbm filename> | (<expC>)

See Also
SET CAPTURE, &, MENU QUERY

Description

The REPLAY command is used to replay a keyboard macro <.kbm filename>. The file name can be
substituted with an <expC>, enclosed in round brackets, which returns a valid filename. If no file extension
is specified, “.kbm’ is assumed. REPLAY works in conjunction with the SET CAPTURE TO command.
SET CAPTURE TO initiates the capturing of all keys pressed at the keyboard to be stored in a keyboard
macro file.

Everything typed, whether at the >’ prompt, or in a form or menu, is stored in the keyboard macro file.
When keyboard capture is complete, the capture file can be closed by issuing the SET CAPTURE TO
command without a <.kbm filename> specified. The REPLAY command then allows the keys to be played
back. This is particularly useful for saving a session where you set up a report format, a table or similar
file, or build a query using the MENU QUERY command.

As an alternative, keyboard macros can be initiated from within forms and menus by pressing the key
sequence [*OC], then replayed by pressing the key sequence [*OR]. This allows you to store standard
“form filling” sequences and replay them when needed.

Example

set capture to mydbfkb
create mydbf

use

replay from mydbfkb

Products
Recital Terminal Developer

396

REPORT

Class
Reports

Purpose
Generate a report as defined in a report format file

Syntax

REPORT FORM <.frm filename> | (<expC>)
[<scope>]

[FOR <condition>]

[WHILE <condition>]

[PLAIN]

[HEADING <expC>]
[NOCONSOLE]

[NOEJECT]

[PREVIEW]

[UNDERLINE]

[SEPARATE]

[SEPCHAR <expC>]

[SUMMARY]

[LPP <expN>]

[TO TERMINAL]

[TO PRINT]

[TO FILE <.txt filename> | (<expC>)]

See Also
@, SET PRINT, SET ALTERNATE, CREATE REPORT, TREPORT, PRINT, SET FILTER, SET
DELETED, ACC(), CALC()

Description

The REPORT command formats information from the active table, and any related tables, using the report
format <.frm filename> set up with the CREATE REPORT Recital Terminal Developer development tool.
The filename can be substituted with an <expC>, enclosed in round brackets, which returns a valid
filename. The default <scope> for the report is to process ALL records, unless the WHILE condition is
used, in which case the default is REST. You can report from more than one table by issuing the SET
RELATION TO command, and using alias pointers in the expressions that you have specified. If SET
FILTER TO is in effect, then only those records that satisfy the FILTER condition will be processed. If
SET DELETED ON is in effect, then only those records that are not marked for deletion will be processed.
If no file extension is specified in the FORM name, then “.frm’ is assumed. If the report format contains
group/subtotals, then the table must be either sorted, or indexed in group/subtotal order.

FOR <condition>
If the FOR clause is specified, then only those records which satisfy the specified <condition> will be
processed.

WHILE <condition>

If the WHILE clause is specified, then processing will terminate when the specified <condition> is .F.. The
WHILE clause can be used in conjunction with the FIND or SEEK commands, and the REST <scope> to
restrict the records that are processed, and therefore optimize the performance of the command.

PLAIN

397

If the PLAIN option is specified, then the report is printed with the heading defined in the report format
file, on the first page only.

HEADING
If the HEADING option is specified, then it will be printed on the top line of each page, in the center.
HEADING accepts multiple lines of text that are separated by the “;” character.

NOCONSOLE
If the NOCONSOLE option is specified, the report will not be displayed on the screen when being sent to a
printer or file.

NOEJECT
If the NOEJECT option is specified, then there will be no initial form feed output.

LPP
The LPP clause is used to specify the number of lines per report page. The LPP clause will override the
page length specification in the report format file (.frm).

PREVIEW
If the PREVIEW option is specified, the report will be previewed on the screen.

TO PRINT
If the TO PRINT option is specified, the report will be output to the printer.

TO FILE <file>

If the TO FILE option is specified, then the report will be output to an ASCII text <.txt filename>. If no
file extension is specified in the file name, then “.txt” is assumed. The file name can be substituted with an
<expC>, enclosed in round brackets, which returns a valid filename.

TO TERMINAL
If the TO TERMINAL option is specified, then the report will be output in pages to the issuing terminal.
The user will be prompted to press a key between pages.

UNDERLINE
If the UNDERLINE option is specified, then subtotal and total lines will be underlined.

SEPARATE
If SEPARATE is specified, then each report row will be separated from the next with *-* characters.

SEPCHAR <expC>

The SEPCHAR option allows you to specify a character <expC> to separate each column. If the “|”
character is used for this purpose, together with the SEPARATE option to separate rows, the report will be
generated with the appearance of a table with horizontal and vertical rules.

SUMMARY

The SUMMARY option can be specified to overwrite the summary flag as specified with CREATE
REPORT. If this option is used, only headings, sub-headings, sub-totals and totals will be produced from
the report.

Word wrapping of columns is implemented if the column expression is longer than the column width.
MEMO fields are automatically word wrapped in the column. User Defined Functions (UDF) can be used
as part of the column expression to create more complex reports. These must be active when the report is
created as the Recital/4GL evaluates the column expression for syntax errors. If you need to calculate
horizontal totals across each line of the report, the ACC() and CALC() functions can be used to provide this
functionality (see the CREATE REPORT command for details). If the active table is indexed, then the
Recital/AGL processes the records in the order of the master index file.

398

Example

use patrons index events

report form patrons;
for event = “BALLET” and date>date();
heading “BALLET PATRONS”;
noeject;
separate

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

399

RESET IN

Class
Transaction Processing

Purpose
Disable journaling in a specified workarea

Syntax
RESET IN <workarea | alias>

See Also
ISMARKED(), ROLLBACK, ROLLBACK(), BEGIN...END TRANSACTION, COMPLETED(), SET
ROLLBACK

Description

The RESET IN command is used to disable Before Image Journaling (BI1J) in the specified workarea.
When BEGIN TRANSACTION is issued, all currently open tables and all tables opened between BEGIN
and END TRANSACTION will have B1J invoked automatically. If B1J is not required on a particular
table, then the RESET IN command should be issued for the relevant workarea.

Example
I/ Clear BIJ in workarea suppliers
reset in suppliers

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

400

RESIZE WINDOW

Class
Screen Windows

Purpose
Change the size of a pre-defined window

Syntax
RESIZE WINDOW <window-name> BY <expN1>,<expN2>,<expN3>,<expN4>

See Also
ACTIVATE WINDOW, DEFINE WINDOW, MOVE WINDOW, WROWS(), WCOLS()

Description

The RESIZE WINDOW command changes the size of a window that has been previously defined with the
DEFINE WINDOW command, and activated with the ACTIVATE WINDOW command. Resizable
windows are specified by including the GROW keyword in the DEFINE WINDOW command. The
<window-name> is the name of the window as specified in the DEFINE WINDOW command.

The RESIZE WINDOW command changes the size of a window according to the ordinates specified by
numeric expressions <expN1> - <expN4>. The numeric expressions refer to the top and bottom rows, and
the left and right columns, respectively. The ordinates are relative to the window's current position, not to
the entire screen. Depending on the numeric expression a negative ordinate will resize the window to the
left or up, and a positive ordinate will resize the window to the right or down.

Example
resize window browse by -1,0,0,0

Products
Recital Mirage Server, Recital Terminal Developer

401

RESTORE

Class
Memory Variables

Purpose
Restore memory variables and arrays previously saved with the SAVE command

Syntax

RESTORE FROM <.mem filename> | (<expC>)
[ADDITIVE]

[FOXPRQ]

See Also
DISPLAY STATUS, MODIFY, PRIVATE, PUBLIC, RELEASE, SAVE, STORE, DB_FOXMEM

Description

The RESTORE command restores memory variables and arrays previously saved with the SAVE TO
<.mem filename> command. The file name can be substituted with an <expC>, enclosed in round brackets,
which returns a valid filename. All variables that exist prior to the RESTORE command being issued are
released unless the ADDITIVE option is specified. The memory variables that are restored are all declared
as PRIVATE at the current level, regardless of whether they were PRIVATE or PUBLIC when they were
saved. If no file extension is specified on the FROM file, then “.mem’ is used.

The Recital/AGL memory files are normal ASCII text files which can be modified with MODIFY
COMMAND. They contain a series of STORE... TO commands, produced by the SAVE command.

If the FOXPRO keyword is specified, the memory files are treated as FoxPro style binary files. The
FOXPRO keyword is not required: the RESTORE command will recognize the file format automatically.

Example
restore from monday additive

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

402

RESTORE COLOR

Class
Screen Forms

Purpose
Restore saved color schemes

Syntax
RESTORE COLOR FROM <memvar> | FILE <.col filename> | (<expC>)

See Also
@...GET COLOR, @...FILL, @...TO, SAVE COLOR, SET COLOR SCHEME TO, ISCOLOR(),
SETCOLOR()

Description
The RESTORE COLOR FROM command allows the current color scheme to be changed to a previously
saved color scheme.

FROM <memvar>
The FROM <memvar> clause can be used to restore the color scheme from a memory variable that was
saved with the SAVE COLOR TO <memvar> command.

FROM FILE <.col filename>
The FROM FILE <.col filename> clause can be used to restore the color scheme from a color file. This file
must have been created with the SAVE COLOR TO FILE <.col filename> command. The file name can be
substituted with an <expC>, enclosed in round brackets, which returns a valid filename. If no file extension
is specified, “.col’ is assumed.

Example

save color to m_old_color

set color

I/ Restore color scheme from a memory variable
restore color from m.m_old_color

I/ Restore color scheme from a color file

restore color from file payroll.col

Products
Recital Mirage Server, Recital Terminal Developer

403

RESTORE GETS

Class
Screen Forms

Purpose
Restore saved @...GETS

Syntax
RESTORE GETS [FROM <memvar>]

See Also
@...GET, SAVE GETS, READ, READVAR()

Description

The RESTORE GETS command allows reactivation of @...GETS previously saved with the SAVE GETS
command. The optional FROM <memvar> clause can be used to restore GETS from a memory variable.
This allows for multiple SAVE and RESTORE GETS. Since the Recital/4GL allows @...GET commands
to be specified within a validation routine, you can execute a screen form in a procedure invoked by the
@...GET...VALIDATE command. When the validation procedure is terminated, the READ in the calling
screen form is reactivated. This process is called nesting reads. The RESTORE GETS command also

restores the value returned by the READVAR() function.

Example

/I Set up validation procedure
procedure checkit

parameters check

save screen

I/ Specify SAVE GETS before @...gets
save gets

@1,1gettl

@3,1 get t3

read

/I Reactivate reads in main screen form
restore gets

restore screen

return

@1,1 get fieldl
@2,1 get field2;
when field1="g”
@3,1 get field3 validate with checkit
read

Products
Recital Mirage Server, Recital Terminal Developer

404

RESTORE KEYS

Class
Keyboard Events

Purpose
Restore saved hot key assignments

Syntax
RESTORE KEYS FROM <memvar>

See Also
SET KEY TO, CLEAR KEYS, SAVE KEYS, ON KEY

Description

The RESTORE KEYS command reinstates hot key assignments that were previously saved with the SAVE
KEYS command. The SAVE KEYS command allows you to save hot key assignments to a memory
variable. Any keys except a-z or 0-9 may be assigned to procedures using the SET KEY or ON KEY
commands. When a user presses this key, the assigned procedure executes. Keys used in this way are
known as ‘hot keys’. The <memvar> is the name of the memory variable to which the hot key assignments
were saved, and from which they will be restored. To reset the hot key assignments back to default, use the
CLEAR KEYS command.

Example

set key -1 to helpfunc

save keys to m_hotkeys

clear keys

restore keys from m.m_hotkeys

Products
Recital Mirage Server, Recital Terminal Developer

405

RESTORE MENU

Class
Menus

Purpose
Restore a previously saved menu

Syntax
RESTORE MENU [FROM <memvar>]

See Also
SAVE MENU TO, SET KEY TO, SET KEY...TO, SET PCKEYS, SET PREMENU, SET POSTMENU,
ON KEY, MENU(), MENUITEM()

Description
The RESTORE MENU command restores a menu that was previously saved with the SAVE MENU
command.

FROM <memvar>

The optional FROM <memvar> clause is used when you have saved more than one menu. Without the
FROM <memvar> clause the RESTORE MENU command restores the last menu saved. The <memvar> is
a memory variable to which @...MENU context has been stored with the SAVE MENU TO command.

Example

procedure check_value
save menu to m_recv
restore menu from m_recv
return

Products
Recital Mirage Server, Recital Terminal Developer

406

RESTORE RECORDVIEW

Class
Fields and Records

Purpose
Restore a previously saved workarea status

Syntax
RESTORE RECORDVIEW FROM <memvar>

See Also
DO, SAVE RECORDVIEW TO, SET KEY TO, SET KEY...TO, SET PCKEYS, ON KEY, SKIP,
REPLACE()

Description

The RESTORE RECORDVIEW command restores a workarea status that was previously saved to the
specified <memvar> with the SAVE RECORDVIEW command. RESTORE RECORDVIEW restores the
following information:

Workarea number
Current record number
Current index order
Lock status

The SAVE and RESTORE RECORDVIEW commands are useful in validation and hot key procedures
when you want to move off the current record, execute a validation procedure, and then return to the same
record. The SKIP 0 command must be used prior to a GOTO command in order to flush locked records to
the disk if they have been modified. SET CLIPPER must be ON for SKIP 0 to work correctly.

Example

procedure check value

save recordview to m_recv

I/ Validate data

restore recordview from m_recv
return

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

407

RESTORE SCREEN

Class
Screen Forms

Purpose
Restore a previously saved screen to the terminal display

Syntax

RESTORE SCREEN

[AT <expN1><expN2> TO <expN3>,<expN4>]

[FROM <memvar>] | [FROM FILE <.img filename> | (<expC>)]

See Also
SET SCREENMAP, SAVE SCREEN, SAVE SCREEN TO, @...SAY, @...MENU, MENU, ACHOICE()

Description

The RESTORE SCREEN command restores a screen that has been saved using the SAVE SCREEN
command. Screen imaging must be enabled with SET SCREENMAP ON when using RESTORE
SCREEN. All output to the screen except that from the RUN command is stored as part of the screen
image. Up to 20 screen images can be saved in succession. Each time RESTORE SCREEN is executed, it
restores from the last screen saved. When RESTORE SCREEN is executed, only those parts of the screen
that have changed since the SAVE SCREEN was issued are refreshed.

AT <expN1><expN2> TO <expN3>,<expN4>]
The optional AT can be used to restrict the area of the screen to be restored by specifying the top row
<expN>1 and column <expN2> and bottom row <expN3> and column <expN4> coordinates.

FROM <memvar> | FROM FILE <.img filename> | (<expC>)

The FROM option restores a screen which has been stored to a memory variable or file using the TO
option. The filename can be substituted with an <expC>, enclosed in round brackets, which returns a valid
filename.

Note: No SCREEN memory variables are saved to the <.mem> file if the command SAVE TO is used. If
you require the SCREEN IMAGE to be saved for subsequent recall, use the SAVE SCREEN TO FILE
command.

Example
save screen
dialog query
restore screen

Products
Recital Mirage Server, Recital Terminal Developer

408

RESTORE WINDOW

Class
Screen Windows

Purpose
Restore windows from a file

Syntax
RESTORE WINDOW <window-name> | <window-name list> | ALL
FROM <.win filename>

See Also

ACTIVATE SCREEN, ACTIVATE WINDOW, CLEAR WINDOWS, DEACTIVATE WINDOW,
DEFINE WINDOW, HIDE WINDOW, MOVE WINDOW, MODIFY MEMO, RELEASE WINDOWS,
RESIZE WINDOW, SAVE WINDOW, SHOW WINDOW, SET COMMANDWINDOW, SET
ERRORWINDOW, SET STATUS, SET TRACEWINDOW, SET WINDOW OF EDIT, SET WINDOW
OF MEMO, WROWS(), WCOLS(), WEXIST(), WVISIBLE(), WONTOP(), WOUTPUT()

Description

The RESTORE WINDOW command restores windows to memory from a file that was created with the
SAVE WINDOW command. A window is an area of the screen designated for output and input. There is
no limit to the number of defined windows. Windows are created with the DEFINE WINDOW command
and activated with the ACTIVATE WINDOW command. The SAVE WINDOW command saves windows
to a file with a “.win’ extension.

You may restore a single window, a group of windows, or all the windows in the window file. The
<window-name> is the name of the window as specified in the DEFINE WINDOW command. To restore
a group of windows, use the <window-name list>, which is a list of window names each separated by a
comma. To restore all currently defined windows, use the ALL keyword. Windows are restored with the
same status they had when last stored with the SAVE WINDOW command. Windows being restored will
overwrite any current window with the same name.

Example

clear windows

restore window sales from stats
activate window sales

Products
Recital Mirage Server, Recital Terminal Developer

409

RESUME

Class
Error Handling and Debugging

Purpose
Continue processing of a suspended program

Syntax
RESUME

See Also
SUSPEND, SET STEP, SET ECHO

Description

The RESUME command is used in conjunction with the SUSPEND command. RESUME continues
processing of a program which has been suspended with the SUSPEND command. This command is
primarily used when debugging programs. It can be used in conjunction with the SET STEP and SET
ECHO commands.

Example
suspend

resume
Products
Recital Terminal Developer

410

RETRY

Class
Error Handling and Debugging

Purpose
Retry a command after an error was encountered

Syntax
RETRY

See Also
RETURN, ON ERROR, ERROR(), ERRNO(), MESSAGE ()

Description
The RETRY command re-executes a command that was reported as being in error. It is used in conjunction
with the ON ERROR command.

Example
procedure file_open

if error() = 15 .and. errno() = 11
dialog message message()+ “. Retry?”
if lastkey() = asc(“Y”)
retry
endif
endif
return

on error do file_open
use accounts exclusive
on error

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

411

RETURN

Class
Applications

Purpose
Return from a procedure, function, or program

Syntax
RETURN [TO MASTER] [<exp>]

See Also
PROCEDURE, SET PROCEDURE, RETRY, ON ESCAPE, ON KEY, ON ERROR, FUNCTION

Description

The RETURN statement closes the active program file, releases memory variables and arrays defined as
private, and passes control back to the calling program. The RETURN statement is also used to denote the
end of a procedure definition.

TO MASTER
If the TO MASTER is specified, then control is passed back to the highest level calling procedure.

<exp>
If the optional <exp> is specified, it will be returned to the calling program if the procedure or function was
called as a User Defined Function.

Example

procedure example 1

do example_2

/I Returns here<---------------
return

procedure example_2
do example_3
return

procedure example_3
if .T.
return to master -------------
endif
return

do example_1

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

412

ROLLBACK

Class
Transaction Processing

Purpose
Restore tables to their condition at the beginning of a transaction

Syntax
ROLLBACK [<workarea | alias> | (<expC>)]

See Also
SET ROLLBACK, BEGIN...END TRANSACTION, ISMARKED(), RESET IN, COMPLETED()

Description

The ROLLBACK command is used in a BEGIN TRANSACTION ... END TRANSACTION block to roll
back changes made to tables by any transaction performed between the two statements. ROLLBACK used
by itself affects all open tables, but can be directed to a single table by specifying the <.dbf filename>. The
filename can be substituted with an <expC>, enclosed in round brackets, which returns a valid filename. A
‘transaction’ is considered to be all the file modifications that occur within the commands BEGIN
TRANSACTION and END TRANSACTION.

This command is particularly useful if an error occurs during a program modifying files. When BEGIN
TRANSACTION is issued, all currently open files and all files opened between BEGIN and END
TRANSACTION will have Before Image Journaling (BIJ) invoked automatically. The journals are stored
in a log file <.log> that the Recital/4GL generates automatically. You can optionally specify the disk and
directory path if you include them after the BEGIN TRANSACTION statement. If B1J is not required on a
particular file, then the command RESET IN <workarea> should be issued and journaling will no longer
occur in that workarea.

The ROLLBACK() function returns .T. if a rollback succeeds. The COMPLETED() function can be used
after the END TRANSACTION command to determine if any errors occurred during processing of the
commands between BEGIN and END TRANSACTION. It returns .F. if errors occurred and .T. otherwise.
If the command SET ROLLBACK is OFF, the COMPLETED() function can be used in conjunction with
the ROLLBACK command to force a manual rollback. If SET ROLLBACK is ON and an error is
encountered, any modifications to files within the transaction will be rolled back automatically to their state
before the BEGIN TRANSACTION was executed.

Please note the following commands are not allowed during a transaction:

CLEAR ALL

CLOSE ALL

CLOSE DATABASE
CLOSE INDEX
MODIFY STRUCTURE
PACK

ZAP

If users do not have a specific reason for setting up manual error trapping and rollback routines using the
ROLLBACK command, Recital Corporation recommends the use of the SET ROLLBACK ON command
to perform automatic Before Image Journaling and rollback.

Example
procedure recovery

413

rollback
if rollback()
dialog box “Rollback was ok.”
else
dialog box “Rollback not completed.”
endif
return

use setcomm
on error do recovery

begin transaction

delete first 15

replace all t1 with (t2*t3)/100

list
end transaction
if completed()

dialog box “Transaction completed
else

dialog box “Errors occurred during transaction”
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

414

RUN

Class
Disk and File Utilities

Purpose
Execute an operating system command or external program.

Syntax
RUN | ! <os-command>

See Also
ALIAS, QUIT, KEYWORD, FUNCTION, SPAWN, LIST HISTORY, SET HISTORY

Description
The RUN command and the ! command are synonymous. They provide the facility for running operating
system commands or external programs from within the system.

Example
run dir

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

415

SAVE COLOR

Class
Screen Forms

Purpose
Save current color scheme

Syntax
SAVE COLOR TO <memvar> | FILE <.col filename>

See Also
@...GET COLOR, @...FILL, @...TO, RESTORE COLOR, SET COLOR SCHEME TO, ISCOLOR(),
SETCOLOR()

Description

The SAVE COLOR TO command saves the current color scheme to a memory variable or a file. When
Recital Terminal Developer is activated from the operating system prompt, the colors are set from a system
wide color file, called default.col, stored in the software root directory. Also, a local default.col file can be
created in your current directory to be called after the system file. These files can be changed with the
SAVE COLOR TO FILE and SET COLOR SCHEME TO commands.

TO <memvar>
The TO <memvar> clause can be used to save the color scheme to a memory variable. This variable can be
restored with the RESTORE COLOR FROM <memvar> command.

TO FILE <.col filename>

The TO FILE <.col filename> clause can be used to save the color scheme to a color file. This file can be
restored with the RESTORE COLOR TO FILE <.col filename> command. The filename can be
substituted with an <expC>, enclosed in round brackets, which returns a valid filename. If no file extension
is specified, “.col’ is used.

Example

save color to m_old_color

set color

restore color from m->m_old_color
save color to file payroll.col

Products
Recital Mirage Server, Recital Terminal Developer

416

SAVE ERROR

Class
Error Handling and Debugging

Purpose
Save error.mem information to a specified file when an error occurs

Syntax
SAVE ERROR TO <mem filename>

See Also
ON ERROR, SET ERRORVERSION, ERRNO(), ERROR(), MESSAGE(), PROCLINE(), PROCNAME()

Description
The SAVE ERROR command saves the error.mem information to a specified file <mem filename> when
an error occurs. This includes the following information:

e Recital Software version, patch release and compilation date
Date and time file created

Machine and user names

Stack trace

Active public and private procedures and functions

Public and private memory variables

Active status of workareas

Settings as per DISPLAY STATUS

The SAVE ERROR command should be used in conjunction with the ON ERROR command. NOTE:
multiple numbered error.mem files can be created automatically if SET ERRORVERSION is ON.

Example
procedure errproc
on error

lerrflag = .T.

save error to errlog
return

I/ Attempt to open non-existent table
lerrflag = .F.
on error do errproc
use nontable
if not lerrflag
// Continue processing
else
dialog box “Error has occurred”
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

417

SAVE GETS

Class
Screen Forms

Purpose
Save status of current GETS

Syntax
SAVE GETS [TO <memvar>]

See Also
@...GET, @ GET VALIDATE, RESTORE GETS, SAVE SCREEN, RESTORE SCREEN, FMT()

Description

The SAVE GETS command lets you save a description of the GETS in the current screen form for
subsequent retrieval by the RESTORE GETS command. Since the Recital/4GL allows @...GET
commands to be specified within a validation routine, the SAVE GETS command is particularly useful in
letting you execute a screen form in a procedure invoked by the @...GET...VALIDATE command. When
the validation procedure is terminated, the READ in the calling screen form is reactivated. This process is
called nesting reads.

TO <memvar>
The optional TO <memvar> clause can be used to save the active GETS to a memory variable. This allows
for multiple SAVE and RESTORE GETS.

Example

I/ Set up validation procedure
procedure checkit

parameters check

save screen

I/ Specify SAVE GETS before @...gets
save gets

@1,1 gettl

Il Activate gets in validation procedure
read

I/ Reactivate reads in main screen form
restore gets

restore screen

return

@1,1 get fieldl
@2,1 get field2;
when field1="g”
@3,1 get field3 validate with checkit
read

Products
Recital Mirage Server, Recital Terminal Developer

418

SAVE KEYS

Class
Keyboard Events

Purpose
Save hot key assignments to a memory variable

Syntax
SAVE KEYS TO <memvar>

See Also
SET KEY TO, CLEAR KEYS, RESTORE KEYS, ON KEY

Description

The SAVE KEYS command allows you to save hot key assignments to a memory variable. Any keys,
except a-z and 0-9 may be assigned to procedures using the SET KEY or ON KEY commands. When a
user presses this key, the assigned procedure executes. Keys used in this way are known as ‘hot keys’. The
<memvar> is the name of the memory variable to which currently active hot key assignments will be saved.
The CLEAR KEYS command resets hot key assignments back to their default. The RESTORE KEYS
command may be used to recall stored hot key assignments from the specified memory variable.

Example

set key -1 to helpfunc

save keys to m_hotkeys

clear keys

.r.e.:store keys from m.m_hotkeys

Products
Recital Mirage Server, Recital Terminal Developer

419

SAVE MENU

Class
Menus

Purpose
Save current @...menu context

Syntax
SAVE MENU [TO <memvar>]

See Also
RESTORE MENU TO, SET KEY TO, SET KEY...TO, SET PCKEYS, SET PREMENU, SET
POSTMENU, ON KEY, MENU(), MENUITEM()

Description

The SAVE MENU command saves a menu that can be restored again with the RESTORE MENU
command. The SAVE MENU command saves the current @...MENU context, which is useful in
validation and hot key procedures when you want to move off and then back on the current menu.

TO <memvar>

The optional TO <memvar> clause is used to store the current @...MENU context to a memory variable.
Menus saved to a memory variable can be restored with the RESTORE FROM <memvar> command.
Without the FROM <memvar> clause the RESTORE MENU command restores the last menu saved.

Example

procedure check_value
save menu to m_recv
restore menu from m_recv
return

Products
Recital Mirage Server, Recital Terminal Developer

420

SAVE RECORDVIEW

Class
Fields and Records

Purpose
Save the status of the currently active workarea to a memory variable

Syntax
SAVE RECORDVIEW TO <memvar>

See Also
RESTORE RECORDVIEW FROM, SET KEY...TO, SET PCKEYS, ON KEY, SKIP, REPLACE()

Description

The SAVE RECORDVIEW TO command is used to save the status of the active workarea to the specified
memory variable <memvar>. The SAVE RECORDVIEW command saves the following information
pertaining to the active workarea:

Workarea number
Current record number
Current index order
Lock status

The RESTORE RECORDVIEW command may be used to restore the above information from the specified
memory variable. The SAVE and RESTORE RECORDVIEW commands are particularly useful in
validation and hot key procedures when you want to move off and then back on the current record. The
SKIP 0 command must be used prior to a GOTO command in order to flush locked records to disk if they
have been modified. SET CLIPPER must be ON for SKIP 0 to work correctly.

Example

procedure check value

save record view to m_recv

I/ Validate data

restore recordview from m_recv
return

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

421

SAVE SCREEN

Class
Screen Forms

Purpose
Save the currently displayed screen in a memory variable or file

Syntax

SAVE SCREEN

[AT <expN1><expN2> TO <expN3>,<expN4>]

[TO <memvar>] | [TO FILE <.img filename> | (<expC>)]

See Also
SET SCREENMAP, RESTORE SCREEN, CHANGE, EDIT, QUERY, APPEND, BROWSE, @...SAY,
@...MENU, MENU

Description

When SCREENMAP is ON, the SAVE SCREEN command allows an image of the current terminal display
to be saved. All screen output except that from the RUN command is stored as part of the screen image.
The screen image can be restored with the RESTORE SCREEN command. Up to 20 screen images can be
saved at any one time. Each time RESTORE SCREEN is executed, it restores from the last screen saved.
When RESTORE SCREEN is executed, only those parts of the screen that have changed since the SAVE
SCREEN was issued are refreshed. These commands are particularly useful when used in conjunction with
pop-up menus from within forms.

AT <expN1><expN2> TO <expN3>,<expN4>
The optional AT clause will save a screen image of the screen from top row <expN1> and column
<expN2> to bottom row <expN3> and column <expN4>.

TO <memvar>
The optional TO clause can be used to save the screen image to a <memvar>.

TO FILE <.img filename> | (<expC>)
The optional TO FILE clause can be used to save the screen image to an <.img filename>. The file name
can be substituted with an <expC>, enclosed in round brackets, which returns a valid filename.

Example
save screen

restore screen

Products
Recital Mirage Server, Recital Terminal Developer

422

SAVE TO

Class
Memory Variables

Purpose
Save the current memory variables to a file

Syntax

SAVE TO <.mem filename> | (<exp>)
[ALL LIKE <skeleton>]

[ALL EXCEPT <skeleton>]
[FOXPRQ]

See Also
PRIVATE, PUBLIC, RESTORE, STORE, DB_FOXMEM

Description

The SAVE TO command saves all of the memory variables and arrays to an ASCI|I text file <.mem
filename>. The filename can be substituted with an <expC>, enclosed in round brackets, which returns a
valid filename. If no file extension is specified, then the Recital/4GL uses *.mem’. By default, all memory
variables are saved unless the ALL LIKE or ALL EXCEPT clauses are specified. The <skeleton> takes the
normal rules of “?” matching any single character and “*’ matching zero or more characters.

The saved file is a normal ASCII text file, which can be edited using MODIFY COMMAND. The contents
of this file consist of a series of STORE commands that give details of the value of the memory variable
when it was saved. The memory variables can be restored from the file using the RESTORE FROM
command. Whenever an error is detected in a program file, the Recital/AGL automatically saves the state
of all the current memory variables in the file “‘error.mem’. This file also contains the same information
that is displayed with the DISPLAY STATUS command.

If the FOXPRO keyword is specified, the memory files are created as FoxPro style binary files. This is also
the case if the DB_FOXMEM environment variable / symbol is set (on, true, yes).

Example
save to monday all like mon_*
save to others all except mon_*

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

423

SAVE WINDOW

Class
Screen Windows

Purpose
Save window definition to a file

Syntax
SAVE WINDOW <window-name> | <window-name list> | ALL
TO <.win filename>

See Also

ACTIVATE SCREEN, ACTIVATE WINDOW, CLEAR WINDOWS, DEACTIVATE WINDOW,
DEFINE WINDOW, HIDE WINDOW, MOVE WINDOW, MODIFY MEMO, RELEASE WINDOWS,
RESIZE WINDOW, RESTORE WINDOW, SHOW WINDOW, SET COMMANDWINDOW, SET
ERRORWINDOW, SET STATUS, SET TRACEWINDOW, SET WINDOW OF EDIT, SET WINDOW
OF MEMO, WROWS(), WCOLS(), WEXIST(), WVISIBLE(), WONTOP(), WOUTPUT()

Description

The SAVE WINDOW command saves window definitions to a file that can be restored later with the
RESTORE WINDOW command. A window is an area of the screen designated for output and input.
There is no limit to the number of defined windows. Windows are created with the DEFINE WINDOW
command and activated with the ACTIVATE WINDOW command. You may save a single window, a
group of windows, or all the currently defined windows in the window file. The <window-name> is the
name of the window as specified in the DEFINE WINDOW command. To save a group of windows, use
the <window-name list>, which is a list of window names, each separated by a comma. To save all
currently defined windows, use the ALL keyword.

By default, the SAVE WINDOW command saves windows to a file with a “.win” extension, however you
may specify any extension desired. When windows are restored, they have the same status they had when
last stored with the SAVE WINDOW command. Windows being restored will overwrite any current
window with the same name.

Example

clear

define window sales from 2,1 to 13,75;
title “Today's Sales”

use sales

total on amt_rcvc to temp;
for date = date()

use temp

list fields item, amt_recvd;
save window sales to stats

Products
Recital Mirage Server, Recital Terminal Developer

424

SCAN

Class
Applications

Purpose
Perform list of commands interactively

Syntax

SCAN [<scope>] [FOR <condition>] [WHILE <condition>]
[EXIT]

[LOOP]

ENDSCAN

See Also
LOCATE, CONTINUE, DO WHILE, IF

Description

The SCAN ... ENDSCAN command executes a list of commands repeatedly for a specified selection of
records while an optionally specified condition is true, or until an EXIT is encountered. The optional
LOOP keyword forces control to the beginning of the SCAN.

The SCAN...ENDSCAN command can be used to reduce the programming involved in a LOCATE ... DO
WHILE ... CONTINUE construct.

Example

scan all for code = “HMT”
display name, address

endscan

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

425

SCATTER

Class
Array Processing

Purpose
Copy the contents of fields to an array or to a series of memory variables

Syntax
SCATTER [FIELDS <field list>] [MEMO] TO <array> [BLANK] | MEMVAR [BLANK]

See Also
COPY FROM ARRAY, COPY TO ARRAY, GATHER, PRIVATE, PUBLIC, AFILL(), ADIR(),
ASORT(), ALEN(), AFIELDS(), AINS(), ADEL(), ACHOICE(), ASCAN()

Description
The SCATTER command copies the contents of fields from the current table record into an array or series
of memory variables.

FIELDS <fields>
The optional FIELDS clause is used to copy only the contents of fields specified in the <field list>. If the
FIELDS clause is not specified, the SCATTER command copies the contents of all fields.

MEMO
By default, memo fields are ignored by the SCATTER command. If the MEMO keyword is specified,
memo fields will be included.

To <array> [BLANK]

The fields are copied into consecutive elements of the specified array. If the array does not exist, then it is
created. If the BLANK keyword is specified, the elements are created but are empty and are the same size
and data types as the specified fields.

MEMVAR [BLANK]

The fields are copied into a series of memory variables with the same name as the field names. If the
memory variables do not exist, then they are created. If the BLANK keyword is specified, the memory
variables are created but are empty and are the same size and data types as the specified fields.

NOTE: ‘TO’ should not be included in the MEMVAR clause.

Example
use addresses index add_1
seek “Seymour House”
if found()
scatter to aTemp
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

426

SCROLL

Class
Screen Forms

Purpose
Designate a scrollable screen area

Syntax
SCROLL <expN1><expN2>,<expN3>,<expN4>,<expN5>

See Also
SCROLL (), HSCROLL, MAXCOL(), MAXROW(), MENU BROWSE

Description

The SCROLL command designates a rectangular portion of the screen as scrollable. <expN1> and
<expN2> represent the upper left row and column coordinates of the rectangle, respectively. <expN3> and
<expN4> represent the lower right row and column coordinates of the rectangle, respectively. The
<expN5> specifies the number of rows to scroll inside the defined rectangular area. A negative value will
scroll down, and a positive value will scroll up.

Example
fori=1t020
@ 1,10 say replicate(str(i,2),30)
next
fori=310 18
scroll 3,19,18,59,1
sleep 1
next

Products
Recital Terminal Developer

427

SEEK

Class
Indexing

Purpose
Search for specified key in the master index and if found, position the record pointer in the table

Syntax
SEEK <key expression>

See Also
FIND, INDEX ON, SET EXACT, SET TALK, DBXDESCEND(), DESCEND(), DESCENDING(),
DTOS(), EOF(), FOUND(), LTOS(), STR()

Description

The SEEK command is identical to the FIND command, except that you can specify any valid expression
as the key without the need to use macros. The SEEK command looks up the specified key in the master
index file. If the key is found, then the FOUND() function will return .T., and the EOF() function will
return .F.. If the key is not found, then the FOUND() function will return .F., and the EOF() function will
return .T..

In the Recital/4GL, you can build indexes on any data type or any combination of data types. The
conversion functions STR(), DTOS() and LTOS() are used to build indexes on mixed data types. The
DESCEND() function can also be used to build indexes in descending key order. If the DESCEND()
function is used to create the index key, it must also be used in the search <key expression>. Tag indexes
built with the DESCENDING keyword require the use of the DBXDESCEND() function in the <key
expression>. The DESCENDING() function can be used to determine whether a particular tag was built
with the DESCENDING keyword.

If SET TALK ON is in effect and the specified key is not found, then the system displays a message on the
screen. If SET EXACT is OFF, then the Recital/4GL will match partial keys. If SET EXACT is ON, then
the Recital/4GL will match only complete keys.

Example

use patrons

index on event to events
seek “BALLET”

index on date to dates
seek ctod(“01/01/2000")

index on dtos(eventdate) + “/” + event to dates
seek “20010101/BALLET”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

428

SELECT

Class
Table Basics

Purpose
Select a workarea

Syntax
SELECT <workarea | alias>

See Also
USE, ALIAS(), SELECT (), WORKAREA(), SET FILTER, SET RELATION, SET VIEW

Description

The SELECT command is used to select a workarea. By default Recital environments have 20 workareas.
At any given time, a particular workarea is active and selected. The number of workareas may be
configured up to the maximum supported by setting the environment symbol DB_ MAXWKA.

The workareas are numbered 1 to 20 (or DB_ MAXWKA) and can be selected by number. When you USE
a table in a selected workarea, an ALIAS name may be optionally specified. If none is specified, the table
basename can also be used as the alias as can the workarea letter Ato T (up to Z if DB_ MAXWKA is set
higher). The alias ‘m’ is reserved for memory variables and cannot be used to reference a workarea. This
ALIAS name gives the workarea an identification, so that you can reference fields in workareas other than
the currently selected one, by preceding the field name with the ALIAS name followed by ‘-> or .
followed by the field name. This construction is known as an alias pointer.

Each workarea contains the context for the table that has been opened in that workarea. The current record
pointer, the current record, the format file, the index files, the filter condition, and the relationships to other
workareas. The SELECT 0 command selects the next available workarea and provides an alternative to
using the WORKAREA() function. The LIST STATUS command provides full details of the current status
of each workarea.

Example
select a
use patrons index events, dates alias pat
select b
use addresses;
index addr_names alias add
select pat
? add.state

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

429

SHOW GET

Class
Screen Forms

Purpose
To redisplay the specified ‘get’ object or call a ‘get’ method

Syntax

SHOW GET <expN1> | <expC1l> [, <expN2> [PROMPT <expC2>]]
[COLOR SCHEME <expN3>] | [COLOR <expC3>]

[ENABLE | DISABLE]

[LEVEL <expN4>]

[PROPERTIES <expC4>]

See Also
@...GET, READ, SHOW GETS, SHOW OBJECT

Description

The SHOW GET command is used to update the screen display for a specific get or to call a get method. If
the value of a get is changed without user intervention, for example via a validation function, the SHOW
GET command can be used to redisplay the altered value on the screen. The <expN1> is the number of the
get based on its screen position. The numbers start at 1 for the top left-hand get. The get can also be
specified using a character expression, <expC1>, that returns the variable or field name of the get.

PROMPT <expC2>
Where the specified get is a pushbutton, radio button or check box, the PROMPT clause can be used to
change the current prompt of the get. The new prompt is specified in <expC2>.

COLOR SCHEME <expN3> | COLOR <expC3>

The COLOR SCHEME | COLOR clause is used to update the foreground and background colors of the
specified get. The <expN3> is the number of a color scheme. The <expC3> is a color pair in the format
foreground / background.

ENABLE | DISABLE
The ENABLE keyword enables the get, allowing it to be modified or selected, whereas the DISABLE
keyword disables the get and it cannot be modified or selected.

LEVEL <expN4>
The LEVEL clause can be used to specify the level number of the READ, <expN4>. SHOW GET defaults
to the current READ level.

PROPERTIES <expC4> (Recital Mirage only)

The PROPERTIES clause can be used to either specify properties for the specified get or to call one of its
methods. For information on the properties and methods appropriate to each object, please see The Mirage
Object Model in the Recital Mirage documentation.

Example
function v_button
do case
case mbutton = 1
show get 1 properties "method=moveNextPage"
case mbutton = 2
show get 1 properties "method=movePreviousPage"

430

case mbutton = 3
dialog message "Do you want to quit the Mirage demo?"
if lastkey() == 89
show get 2 properties "method=quit"
quit
endif
case mbutton = 4
printFile("c:\Program files\RecitaNUAS\Mirage\Mirage_demo\mirage_demo.prg" + ;
"?tabs=4&topMargin=50&autoNumber=true", ;
"{FILE}, {DATE}",",-- Page {PAGE} --,")
endcase
return .T.

Products
Recital Mirage Server, Recital Terminal Developer

431

SHOW GETS

Class
Screen Forms

Purpose
Refreshes current @...GETs on the screen.

Syntax
SHOW GETS

See Also
@...GET, SET POSTRECORD, SET PRERECORD, SET PREMENU, SET POSTMENU

Description

The SHOW GETS command refreshes current @...GET values on the screen. This command is
particularly useful when called from a VALID function or from trigger procedures which change the values
of currently displayed @...GETs. NOTE: This command is not designed for use in table fields, created
with the DEFINE TABLE command.

Example
function get_state
do case
case substr(m_zip,1,2) = “01”
m_state = “MA”
case substr(m_zip,1,2) = “91”
m_state = “CA”
otherwise
m_state = “XX”
endcase
show gets
return .T.

m_zip = space(5)

m_state = space(2)

@10,05 say “Enter Zip” get m_zip;
valid get_state()

@12,05 say “Enter State” get m_state

read

Products
Recital Mirage Server, Recital Terminal Developer

432

SHOW MENU

Class
Menus

Purpose
Displays an Xbase style menu on the screen without activating it

Syntax
SHOW MENU <expC1> [PAD <expC2>]

See Also
ACTIVATE MENU, CLEAR, CLEAR MENU, DEFINE MENU, DEFINE PAD, SET COMPATIBLE

Description

The SHOW MENU command displays the specified Xbase style menu named <expC1> over any existing
display. The SHOW MENU command does not activate the menu. The command SET COMPATIBLE
should be set ON when using Xbase style menus.

PAD <expC>
The PAD option highlights the specified pad name <expC2> when the menu displays.

Example
show menu sort_men

Products
Recital Mirage Server, Recital Terminal Developer

433

SHOW OBJECT

Class
Screen Forms

Purpose
To redisplay a Recital Mirage object or call a Recital Mirage object method

Syntax
SHOW OBJECT <expC1> [PROPERTIES <expC2>]

See Also
@...GET, READ, SHOW GET, SHOW GETS

Description

The SHOW OBJECT command is only available in Recital Mirage: it is ignored in Recital Terminal
Developer. It allows Recital Mirage objects to be redisplayed on the screen or their methods to be called.
Objects are assigned in Recital Mirage using the id = <object_name> syntax in the PROPERTIES clause of
@...SAY and @...GET commands. For more information on the PROPERTIES clause and the methods
appropriate to each object, please see The Mirage Object Model in the Recital Mirage documentation.

Example
function ButtonEventHandler

show object “customer_name” properties “method=hide”
return .t.

@2,0 say “Customer Name:” properties “id=customer_name”

store 1 to mchoice

@3,3 get mchoice picture "@*H Update" valid ButtonEventHandler()
read

Products
Recital Mirage Server

434

SHOW POPUP

Class
Menus

Purpose
Displays specified Xbase style pop-up menu to screen

Syntax
SHOW POPUP <expC> [SAVE]

See Also
ACTIVATE POPUP, CLEAR POPUPS, DEFINE BAR, DEFINE POPUP, POPUP(), SET COMPATIBLE

Description

The SHOW POPUP command displays an Xbase style pop-up menu named <expC> to the screen. This
command does not activate the specified pop-up menu. The command SET COMPATIBLE should be set
ON when using Xbase style menus.

SAVE
The optional SAVE keyword can be used to automatically save the screen prior to the display of the popup
and restore the screen when the popup is no longer hidden or exited.

Example
show popup popup_4

Products
Recital Mirage Server, Recital Terminal Developer

435

SHOW WINDOW

Class
Screen Windows

Purpose
Display a pre-defined window

Syntax
SHOW WINDOW <window-name> | <window-name list> | <ALL>

See Also
ACTIVATE WINDOW, DEFINE WINDOW, RESTORE WINDOW, SAVE WINDOW

Description

The SHOW WINDOW command displays a pre-defined window, but does not activate it. A window is an
area of the screen designated for output and input. There is no limit to the number of defined windows.
Windows are defined with the DEFINE WINDOW command, and are activated with the ACTIVATE
WINDOW command. If the window was previously activated with the ACTIVATE WINDOW command,
the SHOW WINDOW command displays the window in an active state.

The SHOW WINDOW command can display a single window, a group of windows, or all previously
defined windows. The <window-name> is the name of the window as specified with the DEFINE
WINDOW command. A <window-name list> is a list of window names, each separated by a comma. To
display all currently defined windows, use the ALL keyword.

Used in conjunction with the HIDE WINDOW command, the SHOW WINDOW command can be used to
display previously hidden windows. The HIDE WINDOW command removes a window or group of
windows from the screen. Hidden windows remain active in memory, and output may be directed to
hidden windows. Hidden windows may be revealed with either the SHOW WINDOW or ACTIVATE
WINDOW commands.

The HIDE WINDOW and SHOW WINDOW commands may be used in a hot key procedure to switch the
screen display from windows to full screen. Full screen display is enabled with the ACTIVATE SCREEN
command. Hot keys enable users to press a key that causes execution of a specified procedure while
running an application that is waiting for keyboard input.

Example
show window all

Products
Recital Mirage Server, Recital Terminal Developer

436

SKIP

Class
Fields and Records

Purpose
Move the record pointer forwards and backwards in the active table

Syntax
SKIP [<expN>] [IN | ALIAS <workarea | alias>]

See Also
LOCATE, CONTINUE, FIND, REPLACE, SEEK, SET CLIPPER. GOTO, BOF(), EOF(), RECNO(),
FOUND()

Description

The SKIP command moves the record pointer forwards or backwards in the currently selected table. The
numeric expression <expN> can be positive or negative. If the SKIP command is issued with no numeric
expression <expN> specified then the record pointer advances on to the next record. If the currently
selected table is indexed, then the SKIP command follows the order of the master index. The SET ORDER
TO command can be used to select which of the open index files should be the master or controlling index.

If the record pointer is currently positioned on the last record of the table and the SKIP command is issued,
the EOF() function will return .T.. If the record pointer is currently positioned on the first record of the
table, and the SKIP -1 command is issued, the BOF() function will return .T..

If SET CLIPPER is ON, the SKIP 0 command will flush locked records to disk if they have been modified.
If no records are locked, SKIP 0 is ignored. SKIP 0 will not work this way in interactive mode. SKIP will
ignore empty tables, and no error will occur. SKIP 0 is most effective from within forms using REPLACE
commands in a validation procedure. The SKIP command is primarily used in conjunction with the
DO...WHILE command.

IN | ALIAS <workarea | alias>

The optional IN <workarea | alias> or ALIAS <workarea | alias> clause allows you to move the record
pointer in a workarea other than the current workarea. The record pointer in the current workarea is not
moved as a result of this option.

Example
use patrons index events, dates, names
m_event = event
do while .not. eof()
display off date, event, name
if m_event # event
?
m_event = event
endif
skip
enddo
/I Another example
skip 9 in orders

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

437

SLEEP

Class
Applications

Purpose
Pause program execution for a specified number of seconds

Syntax
SLEEP <expN>

See Also
SET MESSAGE, DIALOG BOX, INKEY(), ON KEY

Description
The SLEEP command pauses execution of a program for the specified number of seconds.

Example
use patrons index events, dates, names
seek “CONCERTO”
if .not. found()
set message to “Event not found.”
sleep 2
set message to
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

438

SORT

Class
Fields and Records

Purpose
Sort a table to another in a specific order

Syntax

SORT [<scope>] TO <.dbf filename> | (<expC>)
ON <field> [/A] [/D] [/C]

[FOR <condition>]

[WHILE <condition>]

See Also
INDEX, DESCEND(), SET INDEX

Description

The SORT command copies records from the currently selected table to another table in the specified
sorted order. The file name can be substituted with a <expC>, enclosed in round brackets, which returns a
valid filename. If no file extension is specified, ‘.dbf’ is used. If no <scope> is specified, a scope of ALL
is used, unless the WHILE clause is specified, in which case the <scope> will default to REST. When you
want to sort a table on multiple fields, then you should specify the most important field first.

IAID/C

The /A, /D, and /C options can be specified for each sort field. The /A option sorts on the specified field in
ascending order. The /D option sorts in descending order. The /C option can be used in conjunction with
/A or /D to provide case insensitive sorting for character fields. For example, /AC causes the Recital/4AGL
to treat all characters in the sort field as upper case. If no sort order is specified on a field, then /A is
assumed.

FOR <condition>
If the FOR <condition> is specified, then only those records which satisfy the specified <condition> are
processed.

WHILE <condition>
The WHILE <condition> is often used in conjunction with the SEEK command, and the REST <scope>, to
restrict the range of records processed, and therefore reduce the time needed to sort the table.

If the currently selected table is indexed, then SORT processes the records in order of the master index.
You cannot sort on logical fields. You cannot sort a table on expressions using the SORT command, this
can be achieved using the INDEX command. The INDEX command is a much faster way of organizing a
table. The DESCEND() function can be used with the INDEX command to create indexes in descending
order.

Example

use patrons

sort to temp on date/a, event/ac, name/ac;
for year(date)=1999

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

439

SPAWN

Class
Disk and File Utilities

Purpose
Execute an external program and optionally wait for its completion

Syntax
SPAWN | I <os-command>

See Also
SPAWNPID(), ACTIVEPID(), CANCELPID()

Description

The SPAWN command is synonymous with the I' command. These commands provide the facility for
executing external programs, in the ‘background’, from within the Recital/4AGL. The SPAWN command
differs from the RUN command in that the specified <os command> executes in parallel without waiting
until command execution is complete. It is particularly useful for generating reports from shared tables.
When running a command in the background, terminal output is disabled for the background command if it
is running the Recital/4GL.

The SPAWNPID() function returns the identity of the spawned process. The ACTIVEPID(<pid>) function
returns .T. if the specified process is still active and .F. otherwise. The CANCELPID(<pid>) function
returns .T. if the specified process could be “killed” and .F. otherwise. A spawned process will only remain
active while the user remains logged in. All spawned processes will be terminated when the user logs out.

Example
spawn db printrep
pid = spawnpid()
on escape killed = cancelpid(pid)
if .not. activepid(pid)
set message to “Printing completed.”
endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

440

STORE

Class
Memory Variables

Purpose
Save the result of an expression in a memory variable

Syntax
STORE <exp> TO <memvar> [,<memvar>,...]

See Also
=, AVERAGE, COUNT, PARAMETERS, PRIVATE, PUBLIC, SUM

Description
The STORE command saves the result of the expression <exp> into a memory variable. This is equivalent
to the assignment statement:

<memvar>=<exp>

If the memory variable does not exist, then it is created. If the memory variable already exists, its contents
are updated.

Recital automatically performs type conversions for memory variables. If, for example, an existing
memory variable called NAME contains a character string, and the command STORE 10 TO NAME is
issued, the memory variable will automatically be converted to a numeric memory variable.

Memory variables are normally created with the STORE command, the assignment command '=', the
PUBLIC command, or the PRIVATE command. When a program is being executed, Recital gives field
variables the ‘highest precedence’ in expressions. In other words, if a field name in a table is the same as
the name of a memory variable, then Recital will take the value of the field variable. To overcome this you
can use the special alias name ‘m->’ or ‘m.” to reference the memory variable. You only need to use this
notation where an expression can be specified.

Memory variables created with the STORE command are declared PUBLIC if they are created at the >’
prompt, and PRIVATE otherwise. When assigning expressions to memory variables, Recital allows
character variables to be added together, full date arithmetic is also supported.

Numeric memory variables may be incremented and decremented by 1 by placing '++' or "--' at the
beginning of a command line. The SET DECIMALS and SET FIXED commands can be used to specify
numeric accuracy for calculations involving decimal places. The STORE command and the assignment
command '=" cannot be used to modify the contents of field variables - the REPLACE command should be
used for this purpose.

Recital allows any word to be used as a memory variable, but it is strongly recommended that Recital
keywords are not used, as any program written in this way is more difficult to read and maintain. Memory
variables can be saved in a file by issuing the SAVE TO command and restored with RESTORE FROM.
Memory variable files are normal text files containing a series of STORE commands. They can be viewed
and modified with MODIFY COMMAND. When Recital detects an error in a program, it will SAVE the
active memory variables in a file in the current directory called “error.mem”. This file also contains the
information that is displayed with the DISPLAY STATUS command, and can be viewed with MODIFY
COMMAND to inspect the values of the memory variables at the time the error was detected.

The DISPLAY MEMORY command can be used to inspect the current status of memory variables. There
is no fixed limit to the number of memory variables that can be declared in Recital. Memory variables that

441

are PRIVATE to a procedure or program are automatically released when the RETURN statement is
encountered. The RELEASE command can be used to release memory variables if they are no longer
needed. The CLEAR MEMORY command releases all current memory variables.

Example

store “hello ” to stringl

store stringl + “world” to string2
? string2

hello world

area = length * width
area = “change to a string”

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

442

STORE AUTOMEM

Class
Memory Variables

Purpose
To generate memory variables corresponding to the current record

Syntax
STORE AUTOMEM

See Also
GATHER, REPLACE, SCATTER, USE

Description

The STORE AUTOMEM command is used to generate memory variables corresponding to the current
record. A memory variable with a matching name, data type and length is created for each field in the
current record. The memory variables are initialized with the field values.

Example

set locktype to optimistic

use customer

store automem

@1,1 get m.name

@2,1 get m.address

@3,1 get m.state

read

if not change()

replace customer.name with m.name,;

customer.address with m.address,;
customer.state with m.state

endif

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

443

SUM

Class
Fields and Records

Purpose
Sum numeric expressions against records in the currently selected table

Syntax

SUM [<scope>] [<expN1> [,<expN2>....]]
[TO <memvar list>]

[FOR <condition>]

[WHILE <condition>]

See Also
COUNT, TOTAL, AVERAGE, REPORT

Description

The SUM command totals the specified numeric expressions with respect to the records in the currently
selected table. If <scope> is not specified, then ALL is used, unless the WHILE clause is specified, in
which case the <scope> will default to REST. Up to fifteen numeric expressions can be summed. You can
specify different target memory variables, with comma separators, for storing the different expressions. If
SET DELETED ON is in effect, then records that are marked for deletion will not be included in the
calculations. If a FILTER <condition> is active, then only those records that satisfy the <condition> will
be included in the calculations. If the target memory variables do not exist, then they will be automatically
created.

TO <memvar list>
If the TO <memvar list> clause is not specified, then the results are displayed on the screen only if TALK
is ON. If TALK is OFF, then a <memvar list> must be specified so that the results are accessible.

FOR <condition>
If a FOR <condition> is specified, then only those records which satisfy the <condition> are included in the
calculations.

WHILE <condition>

The WHILE <condition> can be used in conjunction with the FIND or SEEK commands, and the REST
<scope>, to restrict the number of records which are processed and therefore optimize the performance of
the SUM command.

TO ARRAY <array>

The TO ARRAY clause is used to store the SUM results in a one-dimensional array. The result of the first
numeric expression is placed in the first array element; the second result is placed in the second element,
and so on. If there are fewer elements than expressions, the SUM command will only store results for
which there are elements. If there are more elements than expressions, the remaining elements are left
empty.

Example
use patrons
sum seats to m_seats;
for event = “BALLET” and date = date()
? m_seats
1680

444

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

445

SUSPEND

Class
Error Handling and Debugging

Purpose
Suspend program execution

Syntax
SUSPEND

See Also
RESUME, CANCEL, LIST HISTORY, SET HISTORY, SET ECHO, SET STEP, SET HISTORY, SET
DOHISTORY, SET STEP, SET DEBUG, SET ESCAPE

Description

The SUSPEND command suspends the execution of a program, and returns control to the “>" prompt.
Current memory variables are not released, and all files currently open are not closed. When a program has
been suspended, you can execute Recital/4GL commands at the “>" prompt to help you in program
debugging. Memory variables can be inspected and updated if required.

Program execution continues when the RESUME command is issued. If SET ESCAPE is ON, and the
interrupt key is pressed, the Recital/4GL allows you to suspend program execution at that point. When
debugging a program in single step mode, with the SET STEP ON command, you can also choose when
you want to suspend program execution. The SET HISTORY command and the SET DOHISTORY
command can be used in conjunction with SUSPEND to provide an execution ‘trace’ of the program.
When a program is suspended, you can cancel it altogether by issuing the CANCEL command.

You cannot SUSPEND in a runtime environment. If a SUSPEND command is encountered, program
execution terminates and the user is returned to the operating system.

Example

set history to 500
set history on

set dohistory on
on error suspend
do testprg

Products
Recital Terminal Developer

446

TEXT

Class
Input/Output

Purpose
Display a block of text on the screen or printer

Syntax

TEXT [TO <memvar> [ADDITIVE] [TEXTMERGE] [NOSHOW] [PRETEXT <expC> | <expN>]]
<text to be displayed>

ENDTEXT

See Also
TREPORT, @...SAY, SET DEVICE

Description

The TEXT and ENDTEXT commands can be used to delimit a block of text that will be output to the
screen or printer. The Recital/4GL performs & macro substitution on the text unless SET MACROS is
OFF. All of the text is displayed exactly as it appears within the TEXT and ENDTEXT commands.

If SET PRINT is ON, then the text will be output to the printer. The printer can be assigned to be the
system printer, a location specific printer, or a printer attached to the printer port of the issuing terminal.
See the SET PRINTER TO command for full details. If SET ALTERNATE is ON, then the text will be
output to the alternate file.

TO <memvar>

If the optional TO <memvar> is included, the text will be sent to the memory variable specified in
<memvar>. The variable will be created if it does not already exist. The following keywords can also be
used in conjunction with TO <memvar>:

Keyword Description

ADDITIVE If ADDITIVE is specified, the text will be added to the contents of
<memvar>, otherwise the contents will be overwritten.

TEXTMERGE Operates as if SET TEXTMERGE is ON.

NOSHOW Disables the display of the text on the screen.

PRETEXT <expC> Inserts the specified character expression, <expC> at the start of each
delimited line of text.

PRETEXT <expN> Specifies a numeric flag (1-7) with the following values:
1 — Eliminates spaces before each delimited line.
2 — Eliminates tabs before each delimited line.
4 — Eliminates carriage returns before each delimited line.
Multiple options can be specified by adding the values.

Example

set print on

TEXT

The following patrons attended the
BALLET event on 01/10/1999

ENDTEXT

447

use patrons index events, dates, names
seek “BALLET”
list off name, seats, amount;
while event = “BALLET”
set print off

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

448

TOTAL

Class
Fields and Records

Purpose
Total the numeric fields in the currently selected table creating a new table to contain the results

Syntax

TOTAL ON <key expression> TO <.dbf filename> | (<expC>) [<scope>]
[FIELDS <field list>]

[FOR<condition>]

[SUMMARY]

[WHILE <condition]

See Also
SUM, AVERAGE, COUNT, CREATE REPORT, UPDATE, SET ICACHE

Description

The TOTAL command creates a new table <.dbf filename> containing a record for each unique <key
expression> in the active table. The file name can be substituted with a <expC>, enclosed in round
brackets, which returns a valid filename. If no file extension is specified, .dbf' is used. If no <scope> is
specified, then ALL is used, unless the WHILE clause is specified, in which case the <scope> will default
to REST.

FIELDS <field list>
If the FIELDS clause is specified, then only those fields specified in the <field list> will be totaled in the
new table. All numeric fields copied to the new table will be totaled.

FOR <condition>
If the FOR <condition> is specified, then only those records which satisfy the <condition> will be
processed.

SUMMARY
The optional SUMMARY clause will total and only copy to the new table, the fields specified in the
FIELD <field list> option.

WHILE <condition>

The WHILE <condition> can be used in conjunction with the FIND, SEEK or LOCATE commands, and
the REST <scope> to restrict the range of records which are processed. This can be used to optimize the
performance of the TOTAL command.

If a FILTER <condition> is active, then only those records that satisfy the <condition> are processed. If
SET DELETED is ON, then records that are marked for deletion are not processed.

When a table is being totaled on a particular expression, all non-numeric fields will contain the values from
the first occurrence of the expression in the active table. For TOTAL to work correctly, a numeric field
being totaled must be large enough to hold the totaled value.

The currently selected table does not have to be indexed or sorted on the <key expression> for TOTAL to
operate. During the operation of TOTAL, the Recital/4GL builds a temporary index file for the <key
expression>. If there are a large number of unique key expressions, then adjusting ICACHE will accelerate
the TOTAL command. See SET ICACHE for full details.

449

Example

I Select wages

seek dtos(date())

total on dtos(pay_date) + emp_no to;
(cmonth(date()) + strzero(day(date()),2));
while pay_date = date()

return

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

450

TREPORT

Class
Reports

Purpose
Free format text based report writer

Syntax

TREPORT FROM <.trf filename> | (<expC>)
[FOOTER <expC1l>, <expC2>, <expC3>]
[HEADING <expC4>, <expC5>, <expC6>]
[LPP <expN>]

[TO FILE <.txt filename> | (<expC>)]

[TO PRINT]

[TO TERMINAL]

See Also
CREATE REPORT, REPORT, MODIFY COMMAND, SET DEVICE, SET PRINT, SET PRINTER,
PRINT

Description

TREPORT is a free format text based report writer, which formats a file of text and commands written in
the TREPORT report definition language (RDL). Reports defined in RDL can extract data from one or
more tables.

FOOTER <expC1>,<expC2>,<expC3>

The FOOTER clause specifies a footer line to appear at the bottom of each report page. The character
expression <expC1> represents text to appear on the left side of the footer line. Expression <expC2>
represents text to appear in the center of the footer line, and <expC3> will appear on the right side of the
footer line. The FOOTER clause is synonymous with the #FOOTER report definition language directive.

HEADING <expC4>,<expC5>,<expC6>

The HEADING clause specifies a heading line to appear at the top of each report page. The character
expression <expC4> represents text to appear on the left side of the heading line. Expression <expC5>
represents text to appear in the center of the heading line, and <expC6> will appear on the right side of the
heading line. The HEADING clause is synonymous with the #HEADING report definition language
directive.

LPP
The LPP clause is used to specify the number of lines per page. The numeric expression <expN>
represents the number of lines. By default the number of lines is 60.

TO FILE <file>

If the TO FILE <.txt filename> clause is specified, then the report is output to a file, which can be printed
later with the PRINT command. The file name can be substituted with an <expC>, enclosed in round
brackets, which returns a valid filename. If no file extension is specified, ".txt' is used.

TO PRINT

If the TO PRINT clause is specified, the report is output to the printer. The printer can be assigned to be
the system printer, a location specific printer, or a printer attached to the printer port of the issuing terminal.
See the SET PRINTER TO command for full details.

451

TREPORT operates by reading the specified <.trf filename> and formatting the free format text contained
within it, as specified by the RDL directives which are intermingled within the text. The text contained in
the <.trf filename> can be printed in bold or underlined. To define text to be printed in bold, surround the
text with B and ~ (e.g. "BHAMLET” would be printed in bold). To define text to be printed underlined,
surround the text with ~S and ~ (e.g. "SHAMLET") would be printed underlined. The RDL contains a
wide range of directives. These directives are defined by preceding them with a '# character. There must
be no space between the '# character and the RDL directive. RDL directives can be entered in upper or
lower case.

Lines of text which do not have '# as the first printable character, are output just as they appear in the <.trf
filename>. & macro substitution is performed on each line as it is read from the <.trf filename>. You can
indent directives to assist in the readability of the RDL program. You can also use Recital/4GL expressions
as the arguments to RDL directives.

The following RDL layout directives are available:

#HEADING “<left>'<middle>'<right>"’

The HEADING, or HD directive defines a one line heading to appear at the top of each report page. The
heading is specified in three parts. The <left> part is displayed at the leftmost side of the page. The
<right> part is displayed at the rightmost side of the page, and the <middle> part is displayed in the center
of the page. If '# appears in any of the heading text, it is replaced with the current page number.

#HEADING2 “<left>'<middle>'<right>"’

THE HEADING2, or HD2 directive defines a one line heading to appear below the HEADING line. The
heading is defined in the same way as HEADING. If the '# character appears in any of the HEADING2
text, it is replaced with the current page number.

#HEADER_START

<lines of text>
#HEADER_END
The HEADER_START...HEADER_END, or HS...HE directives define a block of text to be displayed as a
header below the HEADING line at the top of each page. & macro substitution is not performed until the
header block is processed. This allows & macros to be included in the header block.

#FOOTER “<left>'<middle'<right>"

The FOOTER, or FO directive defines a one line footer to appear at the bottom of each report page. The
FOOTER text is defined in the same way as HEADING. The <left> part is displayed at the leftmost side of
the page. The <right> part is displayed at the rightmost side of the page, and the <middle> part is displayed
in the center of the page. If '# appears in any of the footer text, it is replaced with the current page number.

#FOOTER_START

<lines of text>
#FOOTER_END
The FOOTER_START...FOOTER_END, or FS...FE directives define a block of text to be displayed as a
footer above the FOOTER line at the bottom of each page. & macro substitution is not performed until the
footer block is processed. This allows & macros to be included in the footer block.

#NEEDLINES <expN>
The NEEDLINES, or NE directive informs TREPORT that if less than <expN> lines are available at the

bottom of the current page, then it should eject to the next page. This directive is used when you want to
keep a block of text together on the same page, rather than split it across a page boundary.

#BLANKLINES <expN>
The BLANKLINES, or SP directive outputs <expN> blank lines in the report.

#CENTRE_ON [(<expN>)]

452

The CENTRE_ON, or CE directive instructs TREPORT to center all text lines from the next line onwards.
The optional numeric expression <expN> may be used to specify a line length in which to center the text.
The default line length for centering is 80 characters.

#CENTRE_OFF
The CENTRE_OFF, or CF directive instructs TREPORT to turn off centering of text lines.

#MACROS_ON
The MACROS_ON, or MO directive instructs TREPORT to macro substitute field names that are prefixed
with the '?' character.

#MACROS_OFF
The MACROS_OFF, or MF directive instructs TREPORT to turn off macro substitution of field names
prefixed with the '?' character.

#NUMBER_ON

The NUMBER_ON, or NO directive instructs TREPORT to number each remaining text line from the <.trf
filename>. This directive can be used to produce program listings to include in system documentation.
The line numbers restart at 1 each time NUMBER_ON is encountered.

#NUMBER_OFF
The NUMBER_OFF, or NF directive turns off line numbering which has been turned on with
NUMBER_ON.

#LINESPACING <expN>
The LINESPACING or LS directive defines the spacing between lines in the report. A LINESPACING of
2 will produce a double spaced report.

#INDENT <expN>
The INDENT, or IN directive defines an indentation of <expN> spaces from the left margin. To stop the
indentation, specify a second INDENT directive.

#EJECT

The EJECT, or BP directive ejects to the head of the next page. The footer is output at the bottom of the
current page, and the header is displayed at the head of the next page. This directive should only be used if
you specifically want to “force” a page eject, as TREPORT handles pagination automatically.

#LEFTMARGIN <expN>
The LEFTMARGIN, or PO directive defines the left margin offset where the printer report lines should
start. TREPORT pads lines out to the required column before outputting them.

#LINELENGTH <expN>
The LINELENGTH, or LL directive defines the maximum width of a line of text. Lines that are wider than
LINELENGTH are truncated.

#TEMPINDENT <expN>
The TEMPINDENT, or Tl directive defines an indentation of <expN> for the next line only. Following
processing of the next line, indentation will return to that defined with the INDENT directive.

#SUBTITLE <expC>

The SUBTITLE, or SH directive is used to output a subtitle as specified by <expC>. The SUBTITLE
directive is processed as follows: if there are less than 3 lines left on the current page then eject to the next
page, output one blank line, output the specified text <expC>, then output one more blank line.

#PAGELENGTH <expN>

453

The PAGELENGTH, or PL directive defines the number of lines to be placed on each output page of the
report. The number specified in <expN>, is reduced by 3, to leave space for HEADING, HEADING2, and
FOOTER. By default, PAGELENGTH is 60.

#PARAGRAPH

The PARAGRAPH, or PP directive is processed in the following way: if there are less than 2 lines left on
the current page then eject to a new page, output one blank line, then set a temporary indentation of 4
spaces.

The following RDL processing directives are available:

#SINGLE_SHEET

The SINGLE_SHEET, or SS directive informs TREPORT that the report is to be printed on a printer which
does not have an automatic sheet feeder. Whenever a new page is ejected, TREPORT asks you to place the
next sheet in the printer, then press the RETURN key.

#TRANSLATE “<expCl>,<expC2>"

The TRANSLATE directive is used to translate the meaning of a significant character to a different
character. The <expC1> is the character whose meaning you wish to translate. The <expC2> is the
character you wish to translate to.

#INCLUDE “<.trf filename>”
The INCLUDE, or SO directive causes TREPORT to read the specified <.trf filename> and process the text
or RDL directives contained within it.

#EXECUTE <command>

The EXECUTE, or EX directive is used to execute a Recital/4GL command. EXECUTE is normally used
to perform report calculations. Typical commands used with EXECUTE are SKIP, SEEK, and STORE.
You should not execute TREPORT from an EXECUTE directive. Any output from the Recital/4GL
command executed with EXECUTE is not included in TREPORT formatting.

#IF <condition>

<text or RDL directives>
#ELSEIF

<text or RDL directives>
#ELSE

<text or RDL directives>
#ENDIF
The IF...ELSEIF...ELSE...ENDIF directives conditionally process the text and RDL directives of a <.trf
filename>, depending upon the specified <condition>. The ELSE and ELSEIF blocks are optional.
IF...ELSEIF...ELSE...ENDIF may contain other IF...ELSE...ENDIF directives as well as DO
WHILE...ENDDO repetition directives.

#DO WHILE <condition>
<text or RDL directives>
#ENDDO
The DO WHILE...ENDDO directives repeatedly process the <text or RDL directives> until the specified
<condition> is .F. These directives are typically used in conjunction with the EXECUTE directive.

#SCAN FOR <condition>

#ENDSCAN

The SCAN FOR...ENDSCAN directives locate all records that match the <condition> and repeatedly
process the <text or RDL directives> until the specified <condition> is .F.. These directives are typically
used in conjunction with the EXECUTE directive.

454

#! <comment line>
The ! directive allows comments to be included in the <.trf filename>. Text contained on a ! line is not
formatted, but can be used to improve the readability and maintainability of the RDL program.

455

Example
#|**

#!* REPORT IDENTIFICATION SECTION*
#!**
#! FILE : patrons.trf

#! PURPOSE: report for event HAMLET

#!

#1 *kk *kk *kk *kk *okk *kk

#1* REPORT LAYOUT SECTION *
#!*************************************
#macros on

#execute store date() to today

#heading “"HAMLETPatron List'&today™

#heading2 ' ' '

#header_start

NAME OF NUMBER OF ADDRESS OF

PATRON SEATS PATRON

#header_end
#!
#footer_start

Total patrons this page: &m_totpatrons
Total seats sold this page: &m_totseats
#footer_end

#footer “"- # -"”

#!

#1 Kok Kk Kk Kk Kk Kok Kk

#!* REPORT PROCESSING SECTION *

#|**

#execute use patrons index events,dates,names

The following report provides details of the patrons who attended the showing of "BHAMLET”. This is a
summary report only; a full report is also available if you need it.

#execute store 0 to m_totpatrons

#execute store 0 to m_totseats

#ex seek “HAMLET”

#do while event="HAMLET"

#needlines 4

?name?seats ?street

?city

?postcode

#execute store m_totpatrons+1 to m_totpatrons
#execute store m_totseats+m_seats to m_totseats
#ex skip

#enddo

#execute use

#! ** End of TREPORT definition **

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

456

TRY...ENDTRY

Class
Error Handling and Debugging

Purpose
Structure to handle errors and exceptions within a block of code

Syntax

TRY

[<tryCommands>]

[CATCH [TO <memvar>] [WHEN <expL>]
[<catchCommands>]]

[THROW [<exp>]]

[EXIT]

[FINALLY
[<finallyCommands>]]

ENDTRY

See Also
ON ERROR, ERROR(), MESSAGE()

Description

TRY...CATCH...FINALLY is a command structure to handle errors and exceptions within a block of
code. The <tryCommands> which follow the TRY statement are executed. If no error occurs in the
<tryCommands> program execution continues from the FINALLY statement. If an error occurs, program
execution jumps immediately to the CATCH statement.

CATCH

The CATCH block with its <catchCommands> handles the error. If the optional TO <memvar> clause is
specified, a reference to an Exception object is stored to <memvar>. Please see the table below for
Exception Class properties. If the optional WHEN <expL> clause is specified, the <expL> is evaluated and
must be equal to True (.T.) for the <catchCommands> to be processed.

THROW

The THROW command causes an error to be thrown. This is primarily used to escalate an error to an outer
TRY...CATCH...FINALLY structure. If the THROW is not in a nested TRY...CATCH...FINALLY
structure, the error is handled by the active ON ERROR error handler or if none is active, by the default
Recital error handler, which will generate an error.mem error log. The optional <exp> is used to specify
the UserValue property of a new Exception object.

EXIT
The EXIT command is used to break out of the structure and execution continues from the FINALLY block
or after the ENDTRY if no FINALLY block exists or the EXIT is called from the FINALLY block itself.

FINALLY
The FINALLY block <finallyCommands> are run unless a CANCEL or QUIT has been used to exit the
structure. It can be used to clean up or release any resources used in the TRY or CATCH blocks.

ENDTRY
The ENDTRY statement completes the structure.

457

Exception Class

PROPERTY DESCRIPTION

BaseClass The System base class: ‘Exception’.

Class The class: ‘Exception’.

ClassLibrary The class library: *” for System classes.

Comment Descriptive text string.

Details Additional details relating to the Message property value.

ErrorNo The error number for the last error that occurred (same as ERROR()). If the Exception

object is created by a THROW <exp>, ErrorNo is 2071.

LineContents

The line that caused the error (same as MESSAGE(1)).

LineNo The number of the line that caused the error (same as LINENO()).
Message The error message (same as MESSAGE()).

Name The name used to reference the object: ‘EXCEPTION’.

Parent The parent object.

ParentClass The parent object class.

Procedure The name of the procedure in which the error occurred.
StackLevel The stack level at which the error occurred.

Tag Used to store any additional string data required.

UserValue The value passed by the THROW statement, which can be used as an object reference.
Example

try

use example exclusive

catch
dialog box [Unab
endtry

/IAnother example
try

le to open example table]

use example exclusive

catch to oExc

if oExc.message = “ALIAS name already in use”

select example
exit
else

dialog box [Unable to open example table]

endif
endtry

/IAnother example

try
? [Outer Try]

try

use example exclusive

catch to oExc

oExc.UserValue = “Nested CATCH message: Unable to handle”
?[: Nested Catch]

?[Inner Exception Object:]

?[Error:] + str(oExc.ErrorNo)

?[LineNo:] + str(oExc.LineNo)

?[Message:] + oExc.Message

?[Procedure:]
?[StackLevel:

+ 0Exc.Procedure
] + str(oExc.StackLevel)

?[LineContents:] + oExc.LineContents

458

?[UserValue:] + oExc.UserValue
throw oExc
finally
?[: Nested FINALLY executed]
endtry
catch to oExcl
?[: Outer CATCH]
?[Outer Exception Object:]
?[Error:] + str(oExcl.ErrorNo)
?[LineNo:] + str(oExcl.LineNo)
?[Message:] + oExcl.Message
?[Procedure:] + oExcl.Procedure
?[StackLevel:] + str(oExcl.StackLevel)
?[LineContents:] + oExcl.LineContents
?[->UserValue becomes inner exception THROWNnN from nested TRY/CATCH]
if oExcl.UserValue.Message = “ALIAS name already in use”
select example
endif
finally
?[: FINALLY executed]
endtry

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

459

TYPE

Class
Input/Output

Purpose
Display a text file on the screen or printer

Syntax
TYPE [FILE] <.txt filename> | (<expC>) [TO PRINT]

See Also
PRINT, ALIAS, SET PAGELENGTH TO

Description

The TYPE command displays the specified text file on the screen. If no filename is specified, ".txt' is used.
The file name can be substituted with an <expC>, enclosed in round brackets, which returns a valid
filename.

FILE

If the optional FILE keyword is specified, then the text file will be displayed in pages, with line numbers,
and the name of the file will be displayed as a heading above each page. The length of each page may be
specified with the SET PAGELENGTH TO command. This feature is particularly useful for producing
program listings.

TO PRINT

If the optional TO PRINT clause is specified, then the file will be output to the printer. The TO PRINT
option will default to a local printer unless the command SET PRINTER TO WSPOOLER is issued. SET
PRINTER TO WSPOOLER causes the file to be spooled to the system printer defined by the environment
variable DB_PRINT.

Example

set printer to \\spooler

file = dir(“*.prg”, .T.)

do while .not. empty(file)
type file &file to print
file = dir(**.prg”, .F.)

enddo

set printer to

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

460

#UNDEF

Class
Memory Variables

Purpose
Stops text substitution for a constant created with #DEFINE

Syntax
#UNDEF <constant>

See Also
#DEFINE, LOCAL, PRIVATE, PUBLIC

Description

The #DEFINE command is used to define FoxPro compatible constants. Constants declared using
#DEFINE can be overridden by a memory variable of the same name, but cannot be modified or manually
released after their initial declaration. Constants are automatically updated if the value of <exp> changes
and are released on exit from the session. The #UNDEF command stops the text substitution for a constant
created with #DEFINE

Example

#DEFINE NEXT_LOOP

for 1 =1to NEXT_LOOP
?i

next

#UNDEF NEXT_LOOP

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

461

UNLOCK

Class
Manual Locking

Purpose
Release active table and record locks

Syntax
UNLOCK [ALL] [IN <alias>]

See Also
LOCKR, LOCKF, RLOCK(), FLOCK()

Description
The UNLOCK command releases any active file or record locks for the currently selected workarea. This
command is only effective with shared tables.

ALL
If the optional ALL keyword is specified, then the active file and record locks are released for all
workareas.

IN <alias>
The IN <alias> clause is used to release file or record locks in another workarea. Alias names may be
assigned to tables with the USE command.

The UNLOCK command works in conjunction with the RLOCK() and FLOCK() functions, and the
LOCKR and LOCKF commands. This command is supported to provide compatibility with Xbase, but is
normally not needed as the Recital/4GL performs automatic file and record locking.

Example
set exclusive off
use patrons index events, dates, names
seek “PHANTOM”
I/ Lock record with dBASE |1l compatibility
do while not rlock()
sleep 2
enddo
/I NOTE Recital automatically locks the
I/ record in the EDIT command. The RLOCK()
// and UNLOCK are not really necessary.
edit
unlock

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

462

UPDATE

Class
Fields and Records

Purpose
Update the contents of the active table with data from another table

Syntax

UPDATE ON <key expression> FROM <workarea | alias>
REPLACE <field> WITH <exp> [,<field> WITH <exp>...]
[RANDOM]

See Also
TOTAL, SUM, COUNT, AVERAGE, SET RELATION, SET FILTER

Description

The UPDATE command updates fields in the active table based upon data from another table. The <key
expression> must exist in both tables. The active table must be indexed on the specified <key expression>
unless the RANDOM keyword is specified. The FROM table can be in any order. If a FILTER
<condition> is active in the FROM workarea, then only those records which satisfy the <condition> are
processed. If SET DELETED is ON, then records which are marked for deletion in the FROM workarea
are not processed.

It is strongly recommended that the active table be indexed on the <key expression>, otherwise ALL
records satisfying the <key expression> values in the FROM file are updated in the active table, which can
be a lengthy process. The UPDATE command is primarily used to update a ‘master’ file from records held
in a ‘transaction’ file.

Example
select b
use newpatrons alias new
select a
use patrons index names, events, dates
update on name from new;
replace balance with balance + new->balance

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

463

USE

Class
Table basics

Purpose
Open a table

Syntax

USE [<filename> | (<expC1>)

[AGAIN]

[ALIAS <name>]

[AUTOMEM]

[ENCRYPTION <expC2>]
[EXCLUSIVE]

[IN <workarea>]

[INDEX < index filelist> | (<expC3>)]
[NODBX]

[NOUPDATE]

[ORDER <.ndx file>|[TAG] <.dbx tag> [OF <.dbx filename>]]
[ORDER BY <expl> WHERE <exp2>]]

See Also
CREATE BRIDGE, CREATE VIEW, DECRYPT, ENCRYPT, SET AUTOFORMAT, SET
COMPATIBLE, SET ENCRYPTION, SET FORMAT, SET INDEX, SET ORDER TO, SET VIEW

Description

The USE command opens an existing table in the currently selected workarea or in the workarea specified
in the IN <workarea> option. The <filename> can be substituted with a <expC1> enclosed in round
brackets that returns a valid file name. The <filename> can include the encryption key for encrypted
database tables. The three part comma-separated key should be enclosed in angled brackets and appended
to the filename, e.g. mytable<key 1,key 2,key 3>.

AGAIN

The AGAIN keyword is used to open an already open table in another workarea. The compatibility mode
must be set to an alternative Xbase mode. Please see the SET COMPATIBLE command for more
information.

ALIAS <name>

An optional alias name can be specified for the workarea with the ALIAS keyword. Once a table is opened
in a workarea, the workarea can be identified using any of the following ‘aliases’: the workarea letter (A-Z)
excluding M; the specified ALIAS name, or if none is specified, the first 32 characters of the file name

AUTOMEM

An empty memory variable of corresponding name, data type and size will be created for each field from
the table.

464

ENCRYPTION <expC2>

The ENCRYPTION <expC2> clause is used to specify the encryption key for encrypted tables. The
<expC2> is a string containing a three part comma-separated key, e.g. “key_1,key 2 key 3”. The key may
optionally be enclosed in angled brackets, e.g. “<key_1,key 2,key 3>”. ”. The SET ENCRYPTION
command allows a default encryption key to be defined. If the ENCRYPTION <expC2> clause is not
specified and the key is not included in the <filename>, this default key will be used. If the default key is
not the correct key for the table, an error will be given. If no default key is active, a dialog box will be
displayed in Recital Terminal Developer to allow the user to enter the key.

EXCLUSIVE

If the EXCLUSIVE keyword is specified, then the table is opened for private use, disallowing access by
other users. To open a table for shared use, issue the SET EXCLUSIVE OFF command before the USE
command.

IN <alias>

If the IN keyword is specified then the table is opened in the workarea specified by alias. Alias can be
either: the workarea letter (A-Z) excluding M or the workarea number. Specifying 0 as the workarea
number causes the table to be opened in the lowest free workarea.

INDEX <index filelist>

The INDEX < index filelist> clause specifies a list of index files which should be opened and associated
with the table. The <index filelist> may contain both single (.ndx), and multiple (.dbx) files. The first
index in the list is known as the master index file, and is used to search for key values with the SEEK and
FIND commands. The SET ORDER TO command can be used to reselect a master index from the list of
open index files. Index files are created within the CREATE and MODIFY STRUCTURE Terminal
Developer Development Tools, or using the INDEX ON command.

NODBX
If the NODBX keyword is specified then the table is opened without its associated production index file.
All index definitions in the table header are released.

NOUPDATE

When NOUPDATE is specified, the table and related index file are opened with read only access. When
used with an RMS bridge on OpenVMS, the RMS file is opened with ‘shared read” access instead of
‘shared read-write’ access.

ORDER <.ndx file>|[TAG] <.dbx tag> [OF <.dbx filename>]

The ORDER qualifier can be used to specify the master index. The order can be specified by using the
name of an .ndx file or by specifying the name of a tag. The OF <.dbx filename> may be used to explicitly
specify the .dbx file to use.

ORDER BY <expl> where <exp2>

This format of the USE command is only available for database gateways. When the ORDER BY <expl>
clause is used, the data file on the information server is initially opened and ordered by the expression
specified. When the WHERE <exp2> clause is used, the data file on the server will extract only records
that meet the criteria defined by <exp2>.

All open files associated with the currently selected workarea are closed before any new files are opened.
The USE command on its own closes all open files associated with the currently selected workarea. After a
table has been opened, the record pointer is positioned to record number 1 if no index files have been
specified, or to the first record in the master index if the table has been opened with associated index files.

Please see the SQL USE command for information on the MySQL compatible USE <database> usage.

465

Example

use accounts index address.dbx;
order tag last of address;
in3

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

466

Vi

Class
Terminal Developer Development Tools

Purpose
Execute a text editor to edit program files

Syntax
VI <prg filename> | (<expC>)

See Also
MODIFY COMMAND, TEXTEDIT(), ED

Description

VI provides the facility to create or modify program files and other text files. The filename can be
substituted with a <expC>, enclosed in round brackets, which returns a valid filename. If no file extension
is present in the file name, then *.prg’ is used.

The default editors are: the “vi’ editor under UNIX and Linux; the ‘edt’ editor under VAX/VMS. You may
override these defaults using the SET TEDIT TO command.

VI is a synonym of the MODIFY COMMAND and ED commands.
Example

modify command myprogram

ed myprogram

Vi myprogram

Products
Recital Terminal Developer

467

WAIT

Class
Keyboard Events

Purpose
Suspend program execution until a key is pressed at the keyboard

Syntax

WAIT [<expC>]
[CLEAR]
[NOWAIT]

[TO <memvar>]
[TIMEOUT <expN>]
[WINDOW]

See Also
DIALOG BOX, MESSAGE, ACCEPT, @...GET, READ, INPUT

Description

The WAIT command displays the specified prompt <expC> on the screen and suspends program execution
until a key is pressed. If no <expC> is specified, then “Press any key to continue...” is displayed. The key
that is read from the keyboard is not echoed.

CLEAR
The CLEAR keyword will remove a system window or window message when the WAIT command is
called from a program.

NOWAIT

The NOWAIT keyword will create a message like the Recital/4GL system message, which is displayed in
the upper right hand corner. A message created with the NOWAIT keyword does not discard the keystroke
you use to remove the message.

TIMEOUT <expN>
The TIMEOUT clause lets you specify the number of seconds, <expN>, the message will remain on the
screen before the program execution continues. This is provided for Xbase language compatibility only.

TO <memvar>

If the optional TO <memvar> clause is specified, then the key that is pressed is stored as a character string
in the designated memory variable. If the [RETURN] key is pressed, or the key which is pressed does not
represent a printable character, then a null string, “”, is stored in the memory variable. If the memory
variable does not exist, it is created.

WINDOW
The WINDOW keyword will cause the message to be displayed in the system message window.

Example
@23,0
wait “Enter your selection...” to option

Products
Recital Mirage Server, Recital Terminal Developer

468

WITH...ENDWITH

Class
Objects

Purpose
Specify multiple properties for an object

Syntax

WITH <object>
<property definitions>

ENDWITH

See Also
DEFINE CLASS...ENDDEFINE, CLASS

Description

The WITH...ENDWITH block is used to specify multiple properties for an object. The object name is
specified in <object>. The <property definitions> consists of property assignments. The properties are
specified using preceding dot notation.

Example

with oProduct
.productname = “Recital Mirage”
.productversion = “2.0”
.productyear = “20001”

endwith

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

469

ZAP

Class
Fields and Records

Purpose
Permanently remove all records from the active table

Syntax
ZAP

See Also
DELETE, PACK, SEQNO(), SET SAFETY, SET SEQNO

Description

The ZAP command permanently removes all of the records from the active table, without affecting the
table structure. ZAP is equivalent to DELETE ALL, followed by PACK. The ZAP command can only be
performed on a table that is open for exclusive use. The ZAP command is typically used to reinitialize a
‘transaction’ table, or a journal file. If SET SAFETY is ON, a message prompting for confirmation of the
operation will be displayed before the ZAP can take place. ZAP also resets the table SEQNO to zero.

Any index files that have been associated with the active table are also reinitialized. Once a table has been
‘zapped’, there is no way of recovering the records that were previously contained in it. You should always
use this command with caution. Permission to use the ZAP command on a table can be disabled. The
ADMIN field in the <SECURITY> option from the menu bar of the CREATE, MODIFY STRUCTURE
table work surface is used for this purpose.

Example

set exclusive on
use newpatrons
zap

Products
Recital Database Server, Recital Mirage Server, Recital Terminal Developer

470

