

RETURN TO MAIN MENU

1

Recital Web Developer

Recital Web Developer

Recital Corporation,
100 Cummings Center, Suite 318J
Beverly, MA 01915
Recital may have patents and/or patent applications covering subject matter in this document. The furnishing
of this document does not give you any license to these patents.

COPYRIGHT ©1988-2006 Recital Corporation. All rights reserved. All Recital products are trademarks or
registered trademarks of Recital Corporation, Inc. Other brand and product names are trademarks or
registered trademarks of their respective holders.

Last Updated June, 2006

RETURN TO MAIN MENU

1

Developing Web Database Applications with Firecat

This section provides details on how to generate and display dynamic HTML pages using Recital Firecat.

Overview
Recital Firecat is a data centric HTTP Server that incorporates a Database and 4GL. Using Recital Firecat
you can generate dynamic content web pages with the Recital/4GL. Recital Firecat can coexist with the
existing Web Server on your system, so there is no disruption to your existing website infrastructure.
Using Recital Firecat, you can generate rich reports that can be integrated in with Recital Mirage .NET
applications or Recital Terminal applications.

Firecat/RSP Basics
The Recital Firecat HTTP server handles the generation of dynamic content HTML and sends this back to
the browser that requested the page. These pages have a “.rsp” extension (Recital Server Page). Recital
Firecat can serve static html pages, images, and Recital Server Pages (.rsp pages) similar to the way PHP
dynamic pages are generated. With Recital Firecat .rsp pages, you can embed Recital/4GL scripting
commands inside HTML documents. Recital Server Pages are really just HTML files with Recital/4GL
scripting embedded within them. Any scripting commands that are embedded within the file are executed
then removed from the results. All scripting code is hidden from the user viewing your web pages.

The Tags of Firecat/RSP
To distinguish the RSP code from the regular HTML inside the .rsp file, RSP code is placed between <%
and %> tags. The tag combination notifies the Firecat HTTP Server that the code within the <% and %>
should be executed by the server and removed from the results. Any output generated by the Recital/4GL
code (e.g. using the ? command) will be written to the HTML output that is sent back to the web browser
that requested the page.

The following example generates an HTML table that lists all the records in the Suppliers table.

<table>
<%
 set sql to vfp
 open database southwind
 use suppliers
 scan
 ? "<tr>"
 for f=1 to fldcount()
 ? "<td>"
 ? &(field(f))
 ? "</td>"
 next
 ? "</tr>"
 endscan
 use
 close databases
%>
</table>

RETURN TO MAIN MENU

2

You can also echo the result of inline expressions directly using the <%= and %> tags.

<input type="text" name="customer_name" value="<%= field(1) %>">

Firecat/RSP also recognizes several directives. These are enclosed within <%@ and %>. The following
directives are handled.

<%@ include="xxx" %>

This directive allows you to include either other RSP files, JavaScript files or HTML files within your .rsp
page. This provides the ability to build library pages that can be re-used by many .rsp pages.

<%@ codebehind=".wsp filename" %>

This directive allows you to write a .wsp file (Recital program file with a .wsp extension) which can be
used to dynamically generate and output the HTML. The advantage of using this approach is that you can
edit the .prg file in the Recital Enterprise Studio with full color syntax highlighting and IntelliHelp. If you
use this approach, it is advisable to keep all of the .wsp files in the scripts subdirectory of webroot. e.g.

<%@ codebehind="scripts/myproc.wsp" %>

When you use Recital Enterprise Studio to develop and test your .rsp pages, it will automatically
synchronize JavaScript and .wsp files into the wwwscripts directory and images (.gif, .jpg, and .png) into
the wwwimages directory.

RETURN TO MAIN MENU

3

Quick Start Guide

1. Create or add an existing RSP page to your project. To add existing RSP pages to the project, select

Project|Add Files To Project... from the Menu Bar .

2. Test the RSP page by right clicking on it in the “Project Explorer” then choose “Run”.

Tip
If you use the attribute <%@ codebehind="scripts/filename.wsp" %> in the RSP file, you can edit the
Recital 4GL code with full syntax color highlighting and IntelliHelp.

3. Use the showdocument() function in your server based Mirage application to send the request for an

RSP page and for the content to be generated dynamically and then rendered in the browser on the
desktop PC.

showDocument("http://" + getLocalHost() + ":8001/myrspfile.rsp",
"_blank")

Note
By default the Firecat web server listens on port 8001 so this must be post fixed to the hostname that it is
running on as is specified in the sample code above. You can however configure it to run on port 80 too, or
alternatively use the Recital ISAPI filter on Windows or the Apache loadable module (mod_recital) on
Linux/UNIX.

Setting a default page to display

The DB_WWWDEFAULT environment variable can be set to point to a default page that will be
referenced if a URL is given which does not have a page specified. If this is not found, then Firecat will
use the page default.rsp. e.g.

http://localhost:8001

Would reference:

http://localhost:8001/default.rsp

RETURN TO MAIN MENU

4

Firecat/RSP Array Variables

Server configuration and request information, including form parameters are accessible from several public
arrays that are created automatically by the Firecat web server when it is servicing a request for a page.
The elements stored in these public arrays can be accessed by name e.g.

// get the hostname for the remote machine requesting the page
host = _server["REMOTE_HOST"]

The _SERVER[] array

Argument Description Example
SERVER_SOFTWARE A string that identifies the server Apache/1.3.22 (Unix)
SERVER_NAME The hostname, DNS alias, or IP address

for self referencing URLs
www.yoursite.com

SERVER_PROTOCOL The name and revision of the requested
protocol

HTTP/1.1

SERVER_PORT The server port number to which the
request was sent

8001

REQUEST_METHOD The method the client used to fetch the
document

GET

PATH_INFO Extra path elements given by the client /list/records
PATH_TRANSLATED The value of the PATH_INFO translated

by the server into a full path
/usr/recital/webroot/list/records

SCRIPT_NAME The URL path of the current page /list/records/customers.rsp
QUERY_STRING Everything after the ? in the URL count=10&data=true
REMOTE_HOST The hostname of the machine that

requested this page
mypc.mydomain.com

REMOTE_ADDR A string containing the IP address of the
machine that requested the page

192.168.0.100

CONTENT_TYPE The content type of the information
attached to queries such as PUT and
POST

x-url-encoded

CONTENT_LENGTH The length of the information attached to
queries such as PUT and POST

3866

AUTHORIZATION The authorization realm BASIC (This is the only one supported)
USERNAME The username specified after

response.authenticate()

PASSWORD The password specified after
response.authenticate()

The _GET[] and _POST[] arrays

It is easy to process forms in the Firecat/RSP as the forms parameters are available in the _GET[] and
_POST[] arrays. Use these arrays to access form parameters from your Recital/4GL code in the
Firecat/RSP page. The keys to the array elements are the parameter names and the values are the values of
those parameters.

RETURN TO MAIN MENU

5

The _COOKIE[] array

This array contains all of the cookies that are sent from the client browser when a page is requested. You
reference these by cookies name. You can send cookies to the client browser (session state can be saved
and restored) using the response.addcookie() method call. (See the response object below for further
details).

The _ARGS[] array

You can reference the value of any arguments passed to the Firecat/RSP page by referencing them by name
in the _ARGS[] array.

The Firecat/RSP Request Object

When a web page is requested, along with the HTTP request, information such as the URL of the web page
request and the format of the data requested is also passed. It can also contain the name and contents of
form variables on the user’s form that requested the page. The response object allows you to control the
way the server interacts with the browser

The methods that can be specified are as follows:

Argument Description Example
WRITE Writes a string of text response.write(“<table>”)
REDIRECT Redirects to another URL response.redirect(“http://www.recital.com”)
WRITEFILE Writes out the contents of a file response.writefile(“/usr/recital/temp/myreport.

html”)
APPENDTOLOG Writes a line of text to the

Recital system log
response.appendtolog(“opening database
southwind”)

FLUSH Flushes out the buffers and sends
to the browser

response.flush()

CLEAR Clears (resets) the output buffer response.clear()
ADDHEADER Sends response headers response.addheader(“Content-Type:

text/plain”)
ADDCOOKIE Sends a cookie to the browser response.addcookie(“my_cookie_name”,

“my_cookie_value”)
AUTHENTICATE Causes the browser to prompt for

a username/password
response.authenticate()

IMPERSONATEUSER Impersonates the specified user.
This is used to handle file
permissions for accessing pages.

response.impersonateUser("username","passw
ord")

Special note: When sending response headers or cookies, these must be sent before any text that is output.

RETURN TO MAIN MENU

6

Setting up the Apache loadable module

This section provides details on how to install the Recital Firecat Apache loadable module for Apache 1.3
on Linux and UNIX.

Enable DSO (Dynamic Shared Object) support in Apache

The DSO support for loading individual Apache modules is based on a module named mod_so.c which has
to be statically compiled into the Apache core. It is the only module besides http_core.c which cannot be
put into a DSO itself (bootstrapping!)

Your Apache HTTP Server must have this compiled into it in order to use the Recital Firecat Apache
Module If it is not then you must re-configure the Apache HTTP Server as follows in the directory that
contains the Apache source code:

./configure --enable-module=so
make
make install

Load the Recital loadable module

Version 1.3

1. Stop Apache

/usr/local/apache/bin/apachectl stop

2. Edit the apache httpd.conf file

vi /usr/local/apache/conf/httpd.conf

In the LoadModule section add the following line:

LoadModule recital_module libexec/mod_recital.so

In the AddHandler section add the following lines:

AddHandler recital-handler .rsp
AddHandler recital-handler .wsp

In the Location section add the following lines:

<Location /recital>
SetHandler recital-handler
</Location>

3. Install the Recital module with the Apache Extension Module tool

/usr/local/apache/bin/apxs -i -n recital -a /usr/recital/apache/mod_recital.so

4. Restart Apache

/usr/local/apache/bin/apachectl start

RETURN TO MAIN MENU

7

Version 2.0

1. Stop Apache

/usr/local/apache/bin/apachectl -k stop

2. Edit the apache httpd.conf file

vi /usr/local/apache/conf/httpd.conf

In the AddHandler section add the following lines:

AddHandler recital-handler .rsp
AddHandler recital-handler .wsp

3. Install the Recital module with the Apache Extension Module tool

/usr/local/apache/bin/apxs -i -n recital -a /usr/recital/apache/mod_recital2.so

4. Restart Apache

/usr/local/apache/bin/apachectl -k start

Version 2.2

1. Stop Apache

/usr/local/apache/bin/apachectl -k stop

2. Edit the apache httpd.conf file

vi /usr/local/apache/conf/httpd.conf

In the AddHandler section add the following lines:

AddHandler recital-handler .rsp
AddHandler recital-handler .wsp

3. Install the Recital module with the Apache Extension Module tool

/usr/local/apache/bin/apxs -i -n recital -a /usr/recital/apache/mod_recital2.2.so

4. Restart Apache

/usr/local/apache/bin/apachectl -k start

